Heap.cpp 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Badge.h>
  7. #include <AK/Debug.h>
  8. #include <AK/HashTable.h>
  9. #include <AK/StackInfo.h>
  10. #include <AK/TemporaryChange.h>
  11. #include <LibCore/ElapsedTimer.h>
  12. #include <LibJS/Heap/CellAllocator.h>
  13. #include <LibJS/Heap/Handle.h>
  14. #include <LibJS/Heap/Heap.h>
  15. #include <LibJS/Heap/HeapBlock.h>
  16. #include <LibJS/Interpreter.h>
  17. #include <LibJS/Runtime/Object.h>
  18. #include <LibJS/Runtime/WeakContainer.h>
  19. #include <setjmp.h>
  20. namespace JS {
  21. Heap::Heap(VM& vm)
  22. : m_vm(vm)
  23. {
  24. if constexpr (HeapBlock::min_possible_cell_size <= 16) {
  25. m_allocators.append(make<CellAllocator>(16));
  26. }
  27. static_assert(HeapBlock::min_possible_cell_size <= 24, "Heap Cell tracking uses too much data!");
  28. m_allocators.append(make<CellAllocator>(32));
  29. m_allocators.append(make<CellAllocator>(64));
  30. m_allocators.append(make<CellAllocator>(128));
  31. m_allocators.append(make<CellAllocator>(256));
  32. m_allocators.append(make<CellAllocator>(512));
  33. m_allocators.append(make<CellAllocator>(1024));
  34. m_allocators.append(make<CellAllocator>(3072));
  35. }
  36. Heap::~Heap()
  37. {
  38. collect_garbage(CollectionType::CollectEverything);
  39. }
  40. ALWAYS_INLINE CellAllocator& Heap::allocator_for_size(size_t cell_size)
  41. {
  42. for (auto& allocator : m_allocators) {
  43. if (allocator->cell_size() >= cell_size)
  44. return *allocator;
  45. }
  46. dbgln("Cannot get CellAllocator for cell size {}, largest available is {}!", cell_size, m_allocators.last()->cell_size());
  47. VERIFY_NOT_REACHED();
  48. }
  49. Cell* Heap::allocate_cell(size_t size)
  50. {
  51. if (should_collect_on_every_allocation()) {
  52. collect_garbage();
  53. } else if (m_allocations_since_last_gc > m_max_allocations_between_gc) {
  54. m_allocations_since_last_gc = 0;
  55. collect_garbage();
  56. } else {
  57. ++m_allocations_since_last_gc;
  58. }
  59. auto& allocator = allocator_for_size(size);
  60. return allocator.allocate_cell(*this);
  61. }
  62. void Heap::collect_garbage(CollectionType collection_type, bool print_report)
  63. {
  64. VERIFY(!m_collecting_garbage);
  65. TemporaryChange change(m_collecting_garbage, true);
  66. Core::ElapsedTimer collection_measurement_timer;
  67. collection_measurement_timer.start();
  68. if (collection_type == CollectionType::CollectGarbage) {
  69. if (m_gc_deferrals) {
  70. m_should_gc_when_deferral_ends = true;
  71. return;
  72. }
  73. HashTable<Cell*> roots;
  74. gather_roots(roots);
  75. mark_live_cells(roots);
  76. }
  77. sweep_dead_cells(print_report, collection_measurement_timer);
  78. }
  79. void Heap::gather_roots(HashTable<Cell*>& roots)
  80. {
  81. vm().gather_roots(roots);
  82. gather_conservative_roots(roots);
  83. for (auto* handle : m_handles)
  84. roots.set(handle->cell());
  85. for (auto* list : m_marked_value_lists) {
  86. for (auto& value : list->values()) {
  87. if (value.is_cell())
  88. roots.set(&value.as_cell());
  89. }
  90. }
  91. if constexpr (HEAP_DEBUG) {
  92. dbgln("gather_roots:");
  93. for (auto* root : roots)
  94. dbgln(" + {}", root);
  95. }
  96. }
  97. __attribute__((no_sanitize("address"))) void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
  98. {
  99. FlatPtr dummy;
  100. dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
  101. jmp_buf buf;
  102. setjmp(buf);
  103. HashTable<FlatPtr> possible_pointers;
  104. auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
  105. for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr))
  106. possible_pointers.set(raw_jmp_buf[i]);
  107. auto stack_reference = bit_cast<FlatPtr>(&dummy);
  108. auto& stack_info = m_vm.stack_info();
  109. for (FlatPtr stack_address = stack_reference; stack_address < stack_info.top(); stack_address += sizeof(FlatPtr)) {
  110. auto data = *reinterpret_cast<FlatPtr*>(stack_address);
  111. possible_pointers.set(data);
  112. }
  113. HashTable<HeapBlock*> all_live_heap_blocks;
  114. for_each_block([&](auto& block) {
  115. all_live_heap_blocks.set(&block);
  116. return IterationDecision::Continue;
  117. });
  118. for (auto possible_pointer : possible_pointers) {
  119. if (!possible_pointer)
  120. continue;
  121. dbgln_if(HEAP_DEBUG, " ? {}", (const void*)possible_pointer);
  122. auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<const Cell*>(possible_pointer));
  123. if (all_live_heap_blocks.contains(possible_heap_block)) {
  124. if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
  125. if (cell->state() == Cell::State::Live) {
  126. dbgln_if(HEAP_DEBUG, " ?-> {}", (const void*)cell);
  127. roots.set(cell);
  128. } else {
  129. dbgln_if(HEAP_DEBUG, " #-> {}", (const void*)cell);
  130. }
  131. }
  132. }
  133. }
  134. }
  135. class MarkingVisitor final : public Cell::Visitor {
  136. public:
  137. MarkingVisitor() { }
  138. virtual void visit_impl(Cell& cell)
  139. {
  140. if (cell.is_marked())
  141. return;
  142. dbgln_if(HEAP_DEBUG, " ! {}", &cell);
  143. cell.set_marked(true);
  144. cell.visit_edges(*this);
  145. }
  146. };
  147. void Heap::mark_live_cells(const HashTable<Cell*>& roots)
  148. {
  149. dbgln_if(HEAP_DEBUG, "mark_live_cells:");
  150. MarkingVisitor visitor;
  151. for (auto* root : roots)
  152. visitor.visit(root);
  153. }
  154. void Heap::sweep_dead_cells(bool print_report, const Core::ElapsedTimer& measurement_timer)
  155. {
  156. dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
  157. Vector<HeapBlock*, 32> empty_blocks;
  158. Vector<HeapBlock*, 32> full_blocks_that_became_usable;
  159. Vector<Cell*> swept_cells;
  160. size_t collected_cells = 0;
  161. size_t live_cells = 0;
  162. size_t collected_cell_bytes = 0;
  163. size_t live_cell_bytes = 0;
  164. auto should_store_swept_cells = !m_weak_containers.is_empty();
  165. for_each_block([&](auto& block) {
  166. bool block_has_live_cells = false;
  167. bool block_was_full = block.is_full();
  168. block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
  169. if (!cell->is_marked()) {
  170. dbgln_if(HEAP_DEBUG, " ~ {}", cell);
  171. if (should_store_swept_cells)
  172. swept_cells.append(cell);
  173. block.deallocate(cell);
  174. ++collected_cells;
  175. collected_cell_bytes += block.cell_size();
  176. } else {
  177. cell->set_marked(false);
  178. block_has_live_cells = true;
  179. ++live_cells;
  180. live_cell_bytes += block.cell_size();
  181. }
  182. });
  183. if (!block_has_live_cells)
  184. empty_blocks.append(&block);
  185. else if (block_was_full != block.is_full())
  186. full_blocks_that_became_usable.append(&block);
  187. return IterationDecision::Continue;
  188. });
  189. for (auto* block : empty_blocks) {
  190. dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
  191. allocator_for_size(block->cell_size()).block_did_become_empty({}, *block);
  192. }
  193. for (auto* block : full_blocks_that_became_usable) {
  194. dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
  195. allocator_for_size(block->cell_size()).block_did_become_usable({}, *block);
  196. }
  197. for (auto* weak_container : m_weak_containers)
  198. weak_container->remove_swept_cells({}, swept_cells);
  199. if constexpr (HEAP_DEBUG) {
  200. for_each_block([&](auto& block) {
  201. dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
  202. return IterationDecision::Continue;
  203. });
  204. }
  205. int time_spent = measurement_timer.elapsed();
  206. if (print_report) {
  207. size_t live_block_count = 0;
  208. for_each_block([&](auto&) {
  209. ++live_block_count;
  210. return IterationDecision::Continue;
  211. });
  212. dbgln("Garbage collection report");
  213. dbgln("=============================================");
  214. dbgln(" Time spent: {} ms", time_spent);
  215. dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
  216. dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
  217. dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
  218. dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
  219. dbgln("=============================================");
  220. }
  221. }
  222. void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
  223. {
  224. VERIFY(!m_handles.contains(&impl));
  225. m_handles.set(&impl);
  226. }
  227. void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
  228. {
  229. VERIFY(m_handles.contains(&impl));
  230. m_handles.remove(&impl);
  231. }
  232. void Heap::did_create_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
  233. {
  234. VERIFY(!m_marked_value_lists.contains(&list));
  235. m_marked_value_lists.set(&list);
  236. }
  237. void Heap::did_destroy_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
  238. {
  239. VERIFY(m_marked_value_lists.contains(&list));
  240. m_marked_value_lists.remove(&list);
  241. }
  242. void Heap::did_create_weak_container(Badge<WeakContainer>, WeakContainer& set)
  243. {
  244. VERIFY(!m_weak_containers.contains(&set));
  245. m_weak_containers.set(&set);
  246. }
  247. void Heap::did_destroy_weak_container(Badge<WeakContainer>, WeakContainer& set)
  248. {
  249. VERIFY(m_weak_containers.contains(&set));
  250. m_weak_containers.remove(&set);
  251. }
  252. void Heap::defer_gc(Badge<DeferGC>)
  253. {
  254. ++m_gc_deferrals;
  255. }
  256. void Heap::undefer_gc(Badge<DeferGC>)
  257. {
  258. VERIFY(m_gc_deferrals > 0);
  259. --m_gc_deferrals;
  260. if (!m_gc_deferrals) {
  261. if (m_should_gc_when_deferral_ends)
  262. collect_garbage();
  263. m_should_gc_when_deferral_ends = false;
  264. }
  265. }
  266. }