SHA1.cpp 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. /*
  2. * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Endian.h>
  7. #include <AK/Types.h>
  8. #include <LibCrypto/Hash/SHA1.h>
  9. namespace Crypto {
  10. namespace Hash {
  11. static constexpr auto ROTATE_LEFT(u32 value, size_t bits)
  12. {
  13. return (value << bits) | (value >> (32 - bits));
  14. }
  15. inline void SHA1::transform(const u8* data)
  16. {
  17. u32 blocks[80];
  18. for (size_t i = 0; i < 16; ++i)
  19. blocks[i] = AK::convert_between_host_and_network_endian(((const u32*)data)[i]);
  20. // w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1
  21. for (size_t i = 16; i < Rounds; ++i)
  22. blocks[i] = ROTATE_LEFT(blocks[i - 3] ^ blocks[i - 8] ^ blocks[i - 14] ^ blocks[i - 16], 1);
  23. auto a = m_state[0], b = m_state[1], c = m_state[2], d = m_state[3], e = m_state[4];
  24. u32 f, k;
  25. for (size_t i = 0; i < Rounds; ++i) {
  26. if (i <= 19) {
  27. f = (b & c) | ((~b) & d);
  28. k = SHA1Constants::RoundConstants[0];
  29. } else if (i <= 39) {
  30. f = b ^ c ^ d;
  31. k = SHA1Constants::RoundConstants[1];
  32. } else if (i <= 59) {
  33. f = (b & c) | (b & d) | (c & d);
  34. k = SHA1Constants::RoundConstants[2];
  35. } else {
  36. f = b ^ c ^ d;
  37. k = SHA1Constants::RoundConstants[3];
  38. }
  39. auto temp = ROTATE_LEFT(a, 5) + f + e + k + blocks[i];
  40. e = d;
  41. d = c;
  42. c = ROTATE_LEFT(b, 30);
  43. b = a;
  44. a = temp;
  45. }
  46. m_state[0] += a;
  47. m_state[1] += b;
  48. m_state[2] += c;
  49. m_state[3] += d;
  50. m_state[4] += e;
  51. // "security" measures, as if SHA1 is secure
  52. a = 0;
  53. b = 0;
  54. c = 0;
  55. d = 0;
  56. e = 0;
  57. __builtin_memset(blocks, 0, 16 * sizeof(u32));
  58. }
  59. void SHA1::update(const u8* message, size_t length)
  60. {
  61. for (size_t i = 0; i < length; ++i) {
  62. if (m_data_length == BlockSize) {
  63. transform(m_data_buffer);
  64. m_bit_length += 512;
  65. m_data_length = 0;
  66. }
  67. m_data_buffer[m_data_length++] = message[i];
  68. }
  69. }
  70. SHA1::DigestType SHA1::digest()
  71. {
  72. auto digest = peek();
  73. reset();
  74. return digest;
  75. }
  76. SHA1::DigestType SHA1::peek()
  77. {
  78. DigestType digest;
  79. size_t i = m_data_length;
  80. // make a local copy of the data as we modify it
  81. u8 data[BlockSize];
  82. u32 state[5];
  83. __builtin_memcpy(data, m_data_buffer, m_data_length);
  84. __builtin_memcpy(state, m_state, 20);
  85. if (BlockSize == m_data_length) {
  86. transform(m_data_buffer);
  87. m_bit_length += BlockSize * 8;
  88. m_data_length = 0;
  89. i = 0;
  90. }
  91. if (m_data_length < FinalBlockDataSize) {
  92. m_data_buffer[i++] = 0x80;
  93. while (i < FinalBlockDataSize)
  94. m_data_buffer[i++] = 0x00;
  95. } else {
  96. // First, complete a block with some padding.
  97. m_data_buffer[i++] = 0x80;
  98. while (i < BlockSize)
  99. m_data_buffer[i++] = 0x00;
  100. transform(m_data_buffer);
  101. // Then start another block with BlockSize - 8 bytes of zeros
  102. __builtin_memset(m_data_buffer, 0, FinalBlockDataSize);
  103. }
  104. // append total message length
  105. m_bit_length += m_data_length * 8;
  106. m_data_buffer[BlockSize - 1] = m_bit_length;
  107. m_data_buffer[BlockSize - 2] = m_bit_length >> 8;
  108. m_data_buffer[BlockSize - 3] = m_bit_length >> 16;
  109. m_data_buffer[BlockSize - 4] = m_bit_length >> 24;
  110. m_data_buffer[BlockSize - 5] = m_bit_length >> 32;
  111. m_data_buffer[BlockSize - 6] = m_bit_length >> 40;
  112. m_data_buffer[BlockSize - 7] = m_bit_length >> 48;
  113. m_data_buffer[BlockSize - 8] = m_bit_length >> 56;
  114. transform(m_data_buffer);
  115. for (size_t i = 0; i < 4; ++i) {
  116. digest.data[i + 0] = (m_state[0] >> (24 - i * 8)) & 0x000000ff;
  117. digest.data[i + 4] = (m_state[1] >> (24 - i * 8)) & 0x000000ff;
  118. digest.data[i + 8] = (m_state[2] >> (24 - i * 8)) & 0x000000ff;
  119. digest.data[i + 12] = (m_state[3] >> (24 - i * 8)) & 0x000000ff;
  120. digest.data[i + 16] = (m_state[4] >> (24 - i * 8)) & 0x000000ff;
  121. }
  122. // restore the data
  123. __builtin_memcpy(m_data_buffer, data, m_data_length);
  124. __builtin_memcpy(m_state, state, 20);
  125. return digest;
  126. }
  127. }
  128. }