123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- /*
- * Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #pragma once
- #include <LibCrypto/BigInt/UnsignedBigInteger.h>
- //#define NT_DEBUG
- namespace Crypto {
- namespace NumberTheory {
- static auto ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b) -> UnsignedBigInteger
- {
- if (b == 1)
- return { 1 };
- auto a = a_;
- auto u = a;
- if (a.words()[0] % 2 == 0)
- u = u.add(b);
- auto v = b;
- auto x = UnsignedBigInteger { 0 };
- auto d = b.sub(1);
- while (!(v == 1)) {
- while (v < u) {
- u = u.sub(v);
- d = d.add(x);
- while (u.words()[0] % 2 == 0) {
- if (d.words()[0] % 2 == 1) {
- d = d.add(b);
- }
- u = u.divide(2).quotient;
- d = d.divide(2).quotient;
- }
- }
- v = v.sub(u);
- x = x.add(d);
- while (v.words()[0] % 2 == 0) {
- if (x.words()[0] % 2 == 1) {
- x = x.add(b);
- }
- v = v.divide(2).quotient;
- x = x.divide(2).quotient;
- }
- }
- return x.divide(b).remainder;
- }
- static auto ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m) -> UnsignedBigInteger
- {
- if (m == 1)
- return 0;
- UnsignedBigInteger ep { e };
- UnsignedBigInteger base { b };
- UnsignedBigInteger exp { 1 };
- while (!(ep < 1)) {
- #ifdef NT_DEBUG
- dbg() << ep.to_base10();
- #endif
- if (ep.words()[0] % 2 == 1) {
- exp = exp.multiply(base).divide(m).remainder;
- }
- ep = ep.divide(2).quotient;
- base = base.multiply(base).divide(m).remainder;
- }
- return exp;
- }
- static auto GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b) -> UnsignedBigInteger
- {
- UnsignedBigInteger a_ { a }, b_ { b };
- for (;;) {
- if (a_ == 0)
- return b_;
- b_ = b_.divide(a_).remainder;
- if (b_ == 0)
- return a_;
- a_ = a_.divide(b_).remainder;
- }
- }
- static auto LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b) -> UnsignedBigInteger
- {
- auto temp = GCD(a, b);
- auto div = a.divide(temp);
- #ifdef NT_DEBUG
- dbg() << "quot: " << div.quotient << " rem: " << div.remainder;
- #endif
- return temp == 0 ? 0 : (a.divide(temp).quotient.multiply(b));
- }
- template <size_t test_count>
- static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, test_count>& tests)
- {
- auto prev = n.sub({ 1 });
- auto b = prev;
- auto r = 0;
- auto div_result = b.divide(2);
- while (div_result.quotient == 0) {
- div_result = b.divide(2);
- b = div_result.quotient;
- ++r;
- }
- for (size_t i = 0; i < tests.size(); ++i) {
- auto return_ = true;
- if (n < tests[i])
- continue;
- auto x = ModularPower(tests[i], b, n);
- if (x == 1 || x == prev)
- continue;
- for (auto d = r - 1; d != 0; --d) {
- x = ModularPower(x, 2, n);
- if (x == 1)
- return false;
- if (x == prev) {
- return_ = false;
- break;
- }
- }
- if (return_)
- return false;
- }
- return true;
- }
- static UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max)
- {
- ASSERT(min < max);
- auto range = max.minus(min);
- UnsignedBigInteger base;
- // FIXME: Need a cryptographically secure rng
- auto size = range.trimmed_length() * sizeof(u32);
- u8 buf[size];
- arc4random_buf(buf, size);
- Vector<u32> vec;
- for (size_t i = 0; i < size / sizeof(u32); ++i) {
- vec.append(*(u32*)buf + i);
- }
- UnsignedBigInteger offset { move(vec) };
- return offset.add(min);
- }
- static bool is_probably_prime(const UnsignedBigInteger& p)
- {
- if (p == 2 || p == 3 || p == 5)
- return true;
- if (p < 49)
- return true;
- Vector<UnsignedBigInteger, 256> tests;
- UnsignedBigInteger seven { 7 };
- for (size_t i = 0; i < tests.size(); ++i)
- tests.append(random_number(seven, p.sub(2)));
- return MR_primality_test(p, tests);
- }
- static UnsignedBigInteger random_big_prime(size_t bits)
- {
- ASSERT(bits >= 33);
- UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
- UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).sub(1);
- for (;;) {
- auto p = random_number(min, max);
- if (is_probably_prime(p))
- return p;
- }
- }
- }
- }
|