Thread.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. #include <Kernel/Thread.h>
  2. #include <Kernel/Scheduler.h>
  3. #include <Kernel/Process.h>
  4. #include <Kernel/FileSystem/FileDescriptor.h>
  5. #include <Kernel/VM/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. HashTable<Thread*>& thread_table()
  8. {
  9. ASSERT_INTERRUPTS_DISABLED();
  10. static HashTable<Thread*>* table;
  11. if (!table)
  12. table = new HashTable<Thread*>;
  13. return *table;
  14. }
  15. InlineLinkedList<Thread>* g_runnable_threads;
  16. InlineLinkedList<Thread>* g_nonrunnable_threads;
  17. static const dword default_kernel_stack_size = 16384;
  18. static const dword default_userspace_stack_size = 65536;
  19. Thread::Thread(Process& process)
  20. : m_process(process)
  21. , m_tid(process.m_next_tid++)
  22. {
  23. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  24. set_default_signal_dispositions();
  25. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  26. memset(&m_tss, 0, sizeof(m_tss));
  27. // Only IF is set when a process boots.
  28. m_tss.eflags = 0x0202;
  29. word cs, ds, ss;
  30. if (m_process.is_ring0()) {
  31. cs = 0x08;
  32. ds = 0x10;
  33. ss = 0x10;
  34. } else {
  35. cs = 0x1b;
  36. ds = 0x23;
  37. ss = 0x23;
  38. }
  39. m_tss.ds = ds;
  40. m_tss.es = ds;
  41. m_tss.fs = ds;
  42. m_tss.gs = ds;
  43. m_tss.ss = ss;
  44. m_tss.cs = cs;
  45. m_tss.cr3 = m_process.page_directory().cr3();
  46. if (m_process.is_ring0()) {
  47. // FIXME: This memory is leaked.
  48. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  49. m_kernel_stack_base = (dword)kmalloc_eternal(default_kernel_stack_size);
  50. m_tss.esp = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  51. } else {
  52. // Ring3 processes need a separate stack for Ring0.
  53. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  54. m_kernel_stack_base = m_kernel_stack_region->laddr().get();
  55. m_tss.ss0 = 0x10;
  56. m_tss.esp0 = m_kernel_stack_region->laddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  57. }
  58. // HACK: Ring2 SS in the TSS is the current PID.
  59. m_tss.ss2 = m_process.pid();
  60. m_far_ptr.offset = 0x98765432;
  61. if (m_process.pid() != 0) {
  62. InterruptDisabler disabler;
  63. thread_table().set(this);
  64. set_thread_list(g_nonrunnable_threads);
  65. }
  66. }
  67. Thread::~Thread()
  68. {
  69. dbgprintf("~Thread{%p}\n", this);
  70. kfree_aligned(m_fpu_state);
  71. {
  72. InterruptDisabler disabler;
  73. if (m_thread_list)
  74. m_thread_list->remove(this);
  75. thread_table().remove(this);
  76. }
  77. if (g_last_fpu_thread == this)
  78. g_last_fpu_thread = nullptr;
  79. if (selector())
  80. gdt_free_entry(selector());
  81. }
  82. void Thread::unblock()
  83. {
  84. m_blocked_descriptor = nullptr;
  85. if (current == this) {
  86. set_state(Thread::Running);
  87. return;
  88. }
  89. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  90. set_state(Thread::Runnable);
  91. }
  92. void Thread::snooze_until(Alarm& alarm)
  93. {
  94. m_snoozing_alarm = &alarm;
  95. block(Thread::BlockedSnoozing);
  96. Scheduler::yield();
  97. }
  98. void Thread::block(Thread::State new_state)
  99. {
  100. bool did_unlock = process().big_lock().unlock_if_locked();
  101. if (state() != Thread::Running) {
  102. kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
  103. }
  104. ASSERT(state() == Thread::Running);
  105. m_was_interrupted_while_blocked = false;
  106. set_state(new_state);
  107. Scheduler::yield();
  108. if (did_unlock)
  109. process().big_lock().lock();
  110. }
  111. void Thread::block(Thread::State new_state, FileDescriptor& descriptor)
  112. {
  113. m_blocked_descriptor = &descriptor;
  114. block(new_state);
  115. }
  116. void Thread::sleep(dword ticks)
  117. {
  118. ASSERT(state() == Thread::Running);
  119. current->set_wakeup_time(g_uptime + ticks);
  120. current->block(Thread::BlockedSleep);
  121. }
  122. const char* to_string(Thread::State state)
  123. {
  124. switch (state) {
  125. case Thread::Invalid: return "Invalid";
  126. case Thread::Runnable: return "Runnable";
  127. case Thread::Running: return "Running";
  128. case Thread::Dying: return "Dying";
  129. case Thread::Dead: return "Dead";
  130. case Thread::Stopped: return "Stopped";
  131. case Thread::Skip1SchedulerPass: return "Skip1";
  132. case Thread::Skip0SchedulerPasses: return "Skip0";
  133. case Thread::BlockedSleep: return "Sleep";
  134. case Thread::BlockedWait: return "Wait";
  135. case Thread::BlockedRead: return "Read";
  136. case Thread::BlockedWrite: return "Write";
  137. case Thread::BlockedSignal: return "Signal";
  138. case Thread::BlockedSelect: return "Select";
  139. case Thread::BlockedLurking: return "Lurking";
  140. case Thread::BlockedConnect: return "Connect";
  141. case Thread::BlockedReceive: return "Receive";
  142. case Thread::BlockedSnoozing: return "Snoozing";
  143. }
  144. kprintf("to_string(Thread::State): Invalid state: %u\n", state);
  145. ASSERT_NOT_REACHED();
  146. return nullptr;
  147. }
  148. void Thread::finalize()
  149. {
  150. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  151. set_state(Thread::State::Dead);
  152. m_blocked_descriptor = nullptr;
  153. if (this == &m_process.main_thread())
  154. m_process.finalize();
  155. }
  156. void Thread::finalize_dying_threads()
  157. {
  158. Vector<Thread*, 32> dying_threads;
  159. {
  160. InterruptDisabler disabler;
  161. for_each_in_state(Thread::State::Dying, [&] (Thread& thread) {
  162. dying_threads.append(&thread);
  163. });
  164. }
  165. for (auto* thread : dying_threads)
  166. thread->finalize();
  167. }
  168. bool Thread::tick()
  169. {
  170. ++m_ticks;
  171. if (tss().cs & 3)
  172. ++m_process.m_ticks_in_user;
  173. else
  174. ++m_process.m_ticks_in_kernel;
  175. return --m_ticks_left;
  176. }
  177. void Thread::send_signal(byte signal, Process* sender)
  178. {
  179. ASSERT(signal < 32);
  180. if (sender)
  181. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  182. else
  183. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  184. InterruptDisabler disabler;
  185. m_pending_signals |= 1 << signal;
  186. }
  187. bool Thread::has_unmasked_pending_signals() const
  188. {
  189. return m_pending_signals & ~m_signal_mask;
  190. }
  191. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  192. {
  193. ASSERT_INTERRUPTS_DISABLED();
  194. dword signal_candidates = m_pending_signals & ~m_signal_mask;
  195. ASSERT(signal_candidates);
  196. byte signal = 0;
  197. for (; signal < 32; ++signal) {
  198. if (signal_candidates & (1 << signal)) {
  199. break;
  200. }
  201. }
  202. return dispatch_signal(signal);
  203. }
  204. enum class DefaultSignalAction {
  205. Terminate,
  206. Ignore,
  207. DumpCore,
  208. Stop,
  209. Continue,
  210. };
  211. DefaultSignalAction default_signal_action(byte signal)
  212. {
  213. ASSERT(signal && signal < NSIG);
  214. switch (signal) {
  215. case SIGHUP:
  216. case SIGINT:
  217. case SIGKILL:
  218. case SIGPIPE:
  219. case SIGALRM:
  220. case SIGUSR1:
  221. case SIGUSR2:
  222. case SIGVTALRM:
  223. case SIGSTKFLT:
  224. case SIGIO:
  225. case SIGPROF:
  226. case SIGTERM:
  227. case SIGPWR:
  228. return DefaultSignalAction::Terminate;
  229. case SIGCHLD:
  230. case SIGURG:
  231. case SIGWINCH:
  232. return DefaultSignalAction::Ignore;
  233. case SIGQUIT:
  234. case SIGILL:
  235. case SIGTRAP:
  236. case SIGABRT:
  237. case SIGBUS:
  238. case SIGFPE:
  239. case SIGSEGV:
  240. case SIGXCPU:
  241. case SIGXFSZ:
  242. case SIGSYS:
  243. return DefaultSignalAction::DumpCore;
  244. case SIGCONT:
  245. return DefaultSignalAction::Continue;
  246. case SIGSTOP:
  247. case SIGTSTP:
  248. case SIGTTIN:
  249. case SIGTTOU:
  250. return DefaultSignalAction::Stop;
  251. }
  252. ASSERT_NOT_REACHED();
  253. }
  254. ShouldUnblockThread Thread::dispatch_signal(byte signal)
  255. {
  256. ASSERT_INTERRUPTS_DISABLED();
  257. ASSERT(signal < 32);
  258. #ifdef SIGNAL_DEBUG
  259. kprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  260. #endif
  261. auto& action = m_signal_action_data[signal];
  262. // FIXME: Implement SA_SIGINFO signal handlers.
  263. ASSERT(!(action.flags & SA_SIGINFO));
  264. // Mark this signal as handled.
  265. m_pending_signals &= ~(1 << signal);
  266. if (signal == SIGSTOP) {
  267. set_state(Stopped);
  268. return ShouldUnblockThread::No;
  269. }
  270. if (signal == SIGCONT && state() == Stopped)
  271. set_state(Runnable);
  272. auto handler_laddr = action.handler_or_sigaction;
  273. if (handler_laddr.is_null()) {
  274. switch (default_signal_action(signal)) {
  275. case DefaultSignalAction::Stop:
  276. set_state(Stopped);
  277. return ShouldUnblockThread::No;
  278. case DefaultSignalAction::DumpCore:
  279. case DefaultSignalAction::Terminate:
  280. m_process.terminate_due_to_signal(signal);
  281. return ShouldUnblockThread::No;
  282. case DefaultSignalAction::Ignore:
  283. return ShouldUnblockThread::No;
  284. case DefaultSignalAction::Continue:
  285. return ShouldUnblockThread::Yes;
  286. }
  287. ASSERT_NOT_REACHED();
  288. }
  289. if (handler_laddr.as_ptr() == SIG_IGN) {
  290. #ifdef SIGNAL_DEBUG
  291. kprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
  292. #endif
  293. return ShouldUnblockThread::Yes;
  294. }
  295. dword old_signal_mask = m_signal_mask;
  296. dword new_signal_mask = action.mask;
  297. if (action.flags & SA_NODEFER)
  298. new_signal_mask &= ~(1 << signal);
  299. else
  300. new_signal_mask |= 1 << signal;
  301. m_signal_mask |= new_signal_mask;
  302. Scheduler::prepare_to_modify_tss(*this);
  303. word ret_cs = m_tss.cs;
  304. dword ret_eip = m_tss.eip;
  305. dword ret_eflags = m_tss.eflags;
  306. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  307. ProcessPagingScope paging_scope(m_process);
  308. m_process.create_signal_trampolines_if_needed();
  309. if (interrupting_in_kernel) {
  310. #ifdef SIGNAL_DEBUG
  311. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  312. #endif
  313. ASSERT(is_blocked());
  314. m_tss_to_resume_kernel = make<TSS32>(m_tss);
  315. #ifdef SIGNAL_DEBUG
  316. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3);
  317. #endif
  318. if (!m_signal_stack_user_region) {
  319. m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
  320. ASSERT(m_signal_stack_user_region);
  321. }
  322. if (!m_kernel_stack_for_signal_handler_region)
  323. m_kernel_stack_for_signal_handler_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Signal Stack (Thread %d)", m_tid));
  324. m_tss.ss = 0x23;
  325. m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get();
  326. m_tss.ss0 = 0x10;
  327. m_tss.esp0 = m_kernel_stack_for_signal_handler_region->laddr().offset(default_kernel_stack_size).get();
  328. push_value_on_stack(0);
  329. } else {
  330. push_value_on_stack(ret_eip);
  331. push_value_on_stack(ret_eflags);
  332. // PUSHA
  333. dword old_esp = m_tss.esp;
  334. push_value_on_stack(m_tss.eax);
  335. push_value_on_stack(m_tss.ecx);
  336. push_value_on_stack(m_tss.edx);
  337. push_value_on_stack(m_tss.ebx);
  338. push_value_on_stack(old_esp);
  339. push_value_on_stack(m_tss.ebp);
  340. push_value_on_stack(m_tss.esi);
  341. push_value_on_stack(m_tss.edi);
  342. // Align the stack.
  343. m_tss.esp -= 12;
  344. }
  345. // PUSH old_signal_mask
  346. push_value_on_stack(old_signal_mask);
  347. m_tss.cs = 0x1b;
  348. m_tss.ds = 0x23;
  349. m_tss.es = 0x23;
  350. m_tss.fs = 0x23;
  351. m_tss.gs = 0x23;
  352. m_tss.eip = handler_laddr.get();
  353. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  354. push_value_on_stack(signal);
  355. if (interrupting_in_kernel)
  356. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  357. else
  358. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  359. ASSERT((m_tss.esp % 16) == 0);
  360. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  361. set_state(Skip1SchedulerPass);
  362. #ifdef SIGNAL_DEBUG
  363. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  364. #endif
  365. return ShouldUnblockThread::Yes;
  366. }
  367. void Thread::set_default_signal_dispositions()
  368. {
  369. // FIXME: Set up all the right default actions. See signal(7).
  370. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  371. m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  372. m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  373. }
  374. void Thread::push_value_on_stack(dword value)
  375. {
  376. m_tss.esp -= 4;
  377. dword* stack_ptr = (dword*)m_tss.esp;
  378. *stack_ptr = value;
  379. }
  380. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  381. {
  382. auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Stack (Main thread)");
  383. ASSERT(region);
  384. m_tss.esp = region->laddr().offset(default_userspace_stack_size).get();
  385. char* stack_base = (char*)region->laddr().get();
  386. int argc = arguments.size();
  387. char** argv = (char**)stack_base;
  388. char** env = argv + arguments.size() + 1;
  389. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  390. size_t total_blob_size = 0;
  391. for (auto& a : arguments)
  392. total_blob_size += a.length() + 1;
  393. for (auto& e : environment)
  394. total_blob_size += e.length() + 1;
  395. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  396. // FIXME: It would be better if this didn't make us panic.
  397. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  398. for (int i = 0; i < arguments.size(); ++i) {
  399. argv[i] = bufptr;
  400. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  401. bufptr += arguments[i].length();
  402. *(bufptr++) = '\0';
  403. }
  404. argv[arguments.size()] = nullptr;
  405. for (int i = 0; i < environment.size(); ++i) {
  406. env[i] = bufptr;
  407. memcpy(bufptr, environment[i].characters(), environment[i].length());
  408. bufptr += environment[i].length();
  409. *(bufptr++) = '\0';
  410. }
  411. env[environment.size()] = nullptr;
  412. // NOTE: The stack needs to be 16-byte aligned.
  413. push_value_on_stack((dword)env);
  414. push_value_on_stack((dword)argv);
  415. push_value_on_stack((dword)argc);
  416. push_value_on_stack(0);
  417. }
  418. void Thread::make_userspace_stack_for_secondary_thread(void *argument)
  419. {
  420. auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  421. ASSERT(region);
  422. m_tss.esp = region->laddr().offset(default_userspace_stack_size).get();
  423. // NOTE: The stack needs to be 16-byte aligned.
  424. push_value_on_stack((dword)argument);
  425. push_value_on_stack(0);
  426. }
  427. Thread* Thread::clone(Process& process)
  428. {
  429. auto* clone = new Thread(process);
  430. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  431. clone->m_signal_mask = m_signal_mask;
  432. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  433. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  434. clone->m_has_used_fpu = m_has_used_fpu;
  435. return clone;
  436. }
  437. KResult Thread::wait_for_connect(FileDescriptor& descriptor)
  438. {
  439. ASSERT(descriptor.is_socket());
  440. auto& socket = *descriptor.socket();
  441. if (socket.is_connected())
  442. return KSuccess;
  443. block(Thread::State::BlockedConnect, descriptor);
  444. Scheduler::yield();
  445. if (!socket.is_connected())
  446. return KResult(-ECONNREFUSED);
  447. return KSuccess;
  448. }
  449. void Thread::initialize()
  450. {
  451. g_runnable_threads = new InlineLinkedList<Thread>;
  452. g_nonrunnable_threads = new InlineLinkedList<Thread>;
  453. Scheduler::initialize();
  454. }
  455. Vector<Thread*> Thread::all_threads()
  456. {
  457. Vector<Thread*> threads;
  458. InterruptDisabler disabler;
  459. threads.ensure_capacity(thread_table().size());
  460. for (auto* thread : thread_table())
  461. threads.unchecked_append(thread);
  462. return threads;
  463. }
  464. bool Thread::is_thread(void* ptr)
  465. {
  466. ASSERT_INTERRUPTS_DISABLED();
  467. return thread_table().contains((Thread*)ptr);
  468. }
  469. void Thread::set_thread_list(InlineLinkedList<Thread>* thread_list)
  470. {
  471. ASSERT(pid() != 0);
  472. if (m_thread_list == thread_list)
  473. return;
  474. if (m_thread_list)
  475. m_thread_list->remove(this);
  476. if (thread_list)
  477. thread_list->append(this);
  478. m_thread_list = thread_list;
  479. }
  480. void Thread::set_state(State new_state)
  481. {
  482. m_state = new_state;
  483. if (m_process.pid() != 0)
  484. set_thread_list(thread_list_for_state(new_state));
  485. }