Thread.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Demangle.h>
  27. #include <AK/StringBuilder.h>
  28. #include <Kernel/Arch/i386/CPU.h>
  29. #include <Kernel/FileSystem/FileDescription.h>
  30. #include <Kernel/KSyms.h>
  31. #include <Kernel/Process.h>
  32. #include <Kernel/Profiling.h>
  33. #include <Kernel/Scheduler.h>
  34. #include <Kernel/Thread.h>
  35. #include <Kernel/ThreadTracer.h>
  36. #include <Kernel/TimerQueue.h>
  37. #include <Kernel/VM/MemoryManager.h>
  38. #include <Kernel/VM/PageDirectory.h>
  39. #include <Kernel/VM/ProcessPagingScope.h>
  40. #include <LibC/signal_numbers.h>
  41. #include <LibELF/Loader.h>
  42. //#define SIGNAL_DEBUG
  43. //#define THREAD_DEBUG
  44. namespace Kernel {
  45. HashTable<Thread*>& thread_table()
  46. {
  47. ASSERT_INTERRUPTS_DISABLED();
  48. static HashTable<Thread*>* table;
  49. if (!table)
  50. table = new HashTable<Thread*>;
  51. return *table;
  52. }
  53. Thread::Thread(Process& process)
  54. : m_process(process)
  55. , m_name(process.name())
  56. {
  57. if (m_process.m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel) == 0) {
  58. // First thread gets TID == PID
  59. m_tid = process.pid();
  60. } else {
  61. m_tid = Process::allocate_pid();
  62. }
  63. #ifdef THREAD_DEBUG
  64. dbg() << "Created new thread " << process.name() << "(" << process.pid() << ":" << m_tid << ")";
  65. #endif
  66. set_default_signal_dispositions();
  67. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  68. reset_fpu_state();
  69. memset(&m_tss, 0, sizeof(m_tss));
  70. m_tss.iomapbase = sizeof(TSS32);
  71. // Only IF is set when a process boots.
  72. m_tss.eflags = 0x0202;
  73. if (m_process.is_ring0()) {
  74. m_tss.cs = GDT_SELECTOR_CODE0;
  75. m_tss.ds = GDT_SELECTOR_DATA0;
  76. m_tss.es = GDT_SELECTOR_DATA0;
  77. m_tss.fs = GDT_SELECTOR_PROC;
  78. m_tss.ss = GDT_SELECTOR_DATA0;
  79. m_tss.gs = 0;
  80. } else {
  81. m_tss.cs = GDT_SELECTOR_CODE3 | 3;
  82. m_tss.ds = GDT_SELECTOR_DATA3 | 3;
  83. m_tss.es = GDT_SELECTOR_DATA3 | 3;
  84. m_tss.fs = GDT_SELECTOR_DATA3 | 3;
  85. m_tss.ss = GDT_SELECTOR_DATA3 | 3;
  86. m_tss.gs = GDT_SELECTOR_TLS | 3;
  87. }
  88. m_tss.cr3 = m_process.page_directory().cr3();
  89. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid), Region::Access::Read | Region::Access::Write, false, true);
  90. m_kernel_stack_region->set_stack(true);
  91. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  92. m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  93. if (m_process.is_ring0()) {
  94. m_tss.esp = m_tss.esp0 = m_kernel_stack_top;
  95. } else {
  96. // Ring 3 processes get a separate stack for ring 0.
  97. // The ring 3 stack will be assigned by exec().
  98. m_tss.ss0 = GDT_SELECTOR_DATA0;
  99. m_tss.esp0 = m_kernel_stack_top;
  100. }
  101. if (m_process.pid() != 0) {
  102. InterruptDisabler disabler;
  103. thread_table().set(this);
  104. Scheduler::init_thread(*this);
  105. }
  106. }
  107. Thread::~Thread()
  108. {
  109. kfree_aligned(m_fpu_state);
  110. {
  111. InterruptDisabler disabler;
  112. thread_table().remove(this);
  113. }
  114. auto thread_cnt_before = m_process.m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  115. ASSERT(thread_cnt_before != 0);
  116. }
  117. void Thread::unblock()
  118. {
  119. m_blocker = nullptr;
  120. if (Thread::current() == this) {
  121. if (m_should_die)
  122. set_state(Thread::Dying);
  123. else
  124. set_state(Thread::Running);
  125. return;
  126. }
  127. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  128. if (m_should_die)
  129. set_state(Thread::Dying);
  130. else
  131. set_state(Thread::Runnable);
  132. }
  133. void Thread::set_should_die()
  134. {
  135. if (m_should_die) {
  136. #ifdef THREAD_DEBUG
  137. dbg() << *this << " Should already die";
  138. #endif
  139. return;
  140. }
  141. InterruptDisabler disabler;
  142. // Remember that we should die instead of returning to
  143. // the userspace.
  144. m_should_die = true;
  145. if (is_blocked()) {
  146. ASSERT(in_kernel());
  147. ASSERT(m_blocker != nullptr);
  148. // We're blocked in the kernel.
  149. m_blocker->set_interrupted_by_death();
  150. unblock();
  151. } else if (!in_kernel()) {
  152. // We're executing in userspace (and we're clearly
  153. // not the current thread). No need to unwind, so
  154. // set the state to dying right away. This also
  155. // makes sure we won't be scheduled anymore.
  156. set_state(Thread::State::Dying);
  157. }
  158. }
  159. void Thread::die_if_needed()
  160. {
  161. ASSERT(Thread::current() == this);
  162. if (!m_should_die)
  163. return;
  164. u32 prev_crit;
  165. unlock_process_if_locked(prev_crit);
  166. InterruptDisabler disabler;
  167. set_state(Thread::State::Dying);
  168. Scheduler::yield();
  169. }
  170. void Thread::yield_without_holding_big_lock()
  171. {
  172. u32 prev_crit;
  173. bool did_unlock = unlock_process_if_locked(prev_crit);
  174. Scheduler::yield();
  175. relock_process(did_unlock, prev_crit);
  176. }
  177. bool Thread::unlock_process_if_locked(u32& prev_crit)
  178. {
  179. auto& in_critical = Processor::current().in_critical();
  180. prev_crit = in_critical;
  181. in_critical = 0;
  182. return process().big_lock().force_unlock_if_locked();
  183. }
  184. void Thread::relock_process(bool did_unlock, u32 prev_crit)
  185. {
  186. if (did_unlock)
  187. process().big_lock().lock();
  188. ASSERT(!Processor::current().in_critical());
  189. Processor::current().in_critical() = prev_crit;
  190. }
  191. u64 Thread::sleep(u32 ticks)
  192. {
  193. ASSERT(state() == Thread::Running);
  194. u64 wakeup_time = g_uptime + ticks;
  195. auto ret = Thread::current()->block<Thread::SleepBlocker>(wakeup_time);
  196. if (wakeup_time > g_uptime) {
  197. ASSERT(ret != Thread::BlockResult::WokeNormally);
  198. }
  199. return wakeup_time;
  200. }
  201. u64 Thread::sleep_until(u64 wakeup_time)
  202. {
  203. ASSERT(state() == Thread::Running);
  204. auto ret = Thread::current()->block<Thread::SleepBlocker>(wakeup_time);
  205. if (wakeup_time > g_uptime)
  206. ASSERT(ret != Thread::BlockResult::WokeNormally);
  207. return wakeup_time;
  208. }
  209. const char* Thread::state_string() const
  210. {
  211. switch (state()) {
  212. case Thread::Invalid:
  213. return "Invalid";
  214. case Thread::Runnable:
  215. return "Runnable";
  216. case Thread::Running:
  217. return "Running";
  218. case Thread::Dying:
  219. return "Dying";
  220. case Thread::Dead:
  221. return "Dead";
  222. case Thread::Stopped:
  223. return "Stopped";
  224. case Thread::Skip1SchedulerPass:
  225. return "Skip1";
  226. case Thread::Skip0SchedulerPasses:
  227. return "Skip0";
  228. case Thread::Queued:
  229. return "Queued";
  230. case Thread::Blocked:
  231. ASSERT(m_blocker != nullptr);
  232. return m_blocker->state_string();
  233. }
  234. klog() << "Thread::state_string(): Invalid state: " << state();
  235. ASSERT_NOT_REACHED();
  236. return nullptr;
  237. }
  238. void Thread::finalize()
  239. {
  240. ASSERT(Thread::current() == g_finalizer);
  241. #ifdef THREAD_DEBUG
  242. dbg() << "Finalizing thread " << *this;
  243. #endif
  244. set_state(Thread::State::Dead);
  245. if (m_joiner) {
  246. ASSERT(m_joiner->m_joinee == this);
  247. static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_joinee_exit_value(m_exit_value);
  248. static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_interrupted_by_death();
  249. m_joiner->m_joinee = nullptr;
  250. // NOTE: We clear the joiner pointer here as well, to be tidy.
  251. m_joiner = nullptr;
  252. }
  253. if (m_dump_backtrace_on_finalization)
  254. dbg() << backtrace_impl();
  255. }
  256. void Thread::finalize_dying_threads()
  257. {
  258. ASSERT(Thread::current() == g_finalizer);
  259. Vector<Thread*, 32> dying_threads;
  260. {
  261. InterruptDisabler disabler;
  262. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  263. dying_threads.append(&thread);
  264. return IterationDecision::Continue;
  265. });
  266. }
  267. for (auto* thread : dying_threads) {
  268. auto& process = thread->process();
  269. thread->finalize();
  270. delete thread;
  271. if (process.m_thread_count.load(AK::MemoryOrder::memory_order_consume) == 0)
  272. process.finalize();
  273. }
  274. }
  275. bool Thread::tick()
  276. {
  277. ++m_ticks;
  278. if (tss().cs & 3)
  279. ++m_process.m_ticks_in_user;
  280. else
  281. ++m_process.m_ticks_in_kernel;
  282. return --m_ticks_left;
  283. }
  284. void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
  285. {
  286. ASSERT(signal < 32);
  287. InterruptDisabler disabler;
  288. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  289. if (should_ignore_signal(signal)) {
  290. #ifdef SIGNAL_DEBUG
  291. dbg() << "Signal " << signal << " was ignored by " << process();
  292. #endif
  293. return;
  294. }
  295. #ifdef SIGNAL_DEBUG
  296. if (sender)
  297. dbg() << "Signal: " << *sender << " sent " << signal << " to " << process();
  298. else
  299. dbg() << "Signal: Kernel sent " << signal << " to " << process();
  300. #endif
  301. ScopedSpinLock lock(g_scheduler_lock);
  302. m_pending_signals |= 1 << (signal - 1);
  303. }
  304. // Certain exceptions, such as SIGSEGV and SIGILL, put a
  305. // thread into a state where the signal handler must be
  306. // invoked immediately, otherwise it will continue to fault.
  307. // This function should be used in an exception handler to
  308. // ensure that when the thread resumes, it's executing in
  309. // the appropriate signal handler.
  310. void Thread::send_urgent_signal_to_self(u8 signal)
  311. {
  312. ASSERT(Thread::current() == this);
  313. ScopedSpinLock lock(g_scheduler_lock);
  314. if (dispatch_signal(signal) == ShouldUnblockThread::No)
  315. Scheduler::yield();
  316. }
  317. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  318. {
  319. ASSERT_INTERRUPTS_DISABLED();
  320. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  321. ASSERT(signal_candidates);
  322. u8 signal = 1;
  323. for (; signal < 32; ++signal) {
  324. if (signal_candidates & (1 << (signal - 1))) {
  325. break;
  326. }
  327. }
  328. return dispatch_signal(signal);
  329. }
  330. enum class DefaultSignalAction {
  331. Terminate,
  332. Ignore,
  333. DumpCore,
  334. Stop,
  335. Continue,
  336. };
  337. DefaultSignalAction default_signal_action(u8 signal)
  338. {
  339. ASSERT(signal && signal < NSIG);
  340. switch (signal) {
  341. case SIGHUP:
  342. case SIGINT:
  343. case SIGKILL:
  344. case SIGPIPE:
  345. case SIGALRM:
  346. case SIGUSR1:
  347. case SIGUSR2:
  348. case SIGVTALRM:
  349. case SIGSTKFLT:
  350. case SIGIO:
  351. case SIGPROF:
  352. case SIGTERM:
  353. case SIGPWR:
  354. return DefaultSignalAction::Terminate;
  355. case SIGCHLD:
  356. case SIGURG:
  357. case SIGWINCH:
  358. return DefaultSignalAction::Ignore;
  359. case SIGQUIT:
  360. case SIGILL:
  361. case SIGTRAP:
  362. case SIGABRT:
  363. case SIGBUS:
  364. case SIGFPE:
  365. case SIGSEGV:
  366. case SIGXCPU:
  367. case SIGXFSZ:
  368. case SIGSYS:
  369. return DefaultSignalAction::DumpCore;
  370. case SIGCONT:
  371. return DefaultSignalAction::Continue;
  372. case SIGSTOP:
  373. case SIGTSTP:
  374. case SIGTTIN:
  375. case SIGTTOU:
  376. return DefaultSignalAction::Stop;
  377. }
  378. ASSERT_NOT_REACHED();
  379. }
  380. bool Thread::should_ignore_signal(u8 signal) const
  381. {
  382. ASSERT(signal < 32);
  383. auto& action = m_signal_action_data[signal];
  384. if (action.handler_or_sigaction.is_null())
  385. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  386. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  387. return true;
  388. return false;
  389. }
  390. bool Thread::has_signal_handler(u8 signal) const
  391. {
  392. ASSERT(signal < 32);
  393. auto& action = m_signal_action_data[signal];
  394. return !action.handler_or_sigaction.is_null();
  395. }
  396. static void push_value_on_user_stack(u32* stack, u32 data)
  397. {
  398. *stack -= 4;
  399. copy_to_user((u32*)*stack, &data);
  400. }
  401. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  402. {
  403. ASSERT_INTERRUPTS_DISABLED();
  404. ASSERT(g_scheduler_lock.is_locked());
  405. ASSERT(signal > 0 && signal <= 32);
  406. ASSERT(!process().is_ring0());
  407. #ifdef SIGNAL_DEBUG
  408. klog() << "dispatch_signal <- " << signal;
  409. #endif
  410. auto& action = m_signal_action_data[signal];
  411. // FIXME: Implement SA_SIGINFO signal handlers.
  412. ASSERT(!(action.flags & SA_SIGINFO));
  413. // Mark this signal as handled.
  414. m_pending_signals &= ~(1 << (signal - 1));
  415. if (signal == SIGSTOP) {
  416. if (!is_stopped()) {
  417. m_stop_signal = SIGSTOP;
  418. set_state(State::Stopped);
  419. }
  420. return ShouldUnblockThread::No;
  421. }
  422. if (signal == SIGCONT && is_stopped()) {
  423. ASSERT(m_stop_state != State::Invalid);
  424. set_state(m_stop_state);
  425. m_stop_state = State::Invalid;
  426. // make sure SemiPermanentBlocker is unblocked
  427. if (m_state != Thread::Runnable && m_state != Thread::Running
  428. && m_blocker && m_blocker->is_reason_signal())
  429. unblock();
  430. }
  431. else {
  432. auto* thread_tracer = tracer();
  433. if (thread_tracer != nullptr) {
  434. // when a thread is traced, it should be stopped whenever it receives a signal
  435. // the tracer is notified of this by using waitpid()
  436. // only "pending signals" from the tracer are sent to the tracee
  437. if (!thread_tracer->has_pending_signal(signal)) {
  438. m_stop_signal = signal;
  439. // make sure SemiPermanentBlocker is unblocked
  440. if (m_blocker && m_blocker->is_reason_signal())
  441. unblock();
  442. set_state(Stopped);
  443. return ShouldUnblockThread::No;
  444. }
  445. thread_tracer->unset_signal(signal);
  446. }
  447. }
  448. auto handler_vaddr = action.handler_or_sigaction;
  449. if (handler_vaddr.is_null()) {
  450. switch (default_signal_action(signal)) {
  451. case DefaultSignalAction::Stop:
  452. m_stop_signal = signal;
  453. set_state(Stopped);
  454. return ShouldUnblockThread::No;
  455. case DefaultSignalAction::DumpCore:
  456. process().for_each_thread([](auto& thread) {
  457. thread.set_dump_backtrace_on_finalization();
  458. return IterationDecision::Continue;
  459. });
  460. [[fallthrough]];
  461. case DefaultSignalAction::Terminate:
  462. m_process.terminate_due_to_signal(signal);
  463. return ShouldUnblockThread::No;
  464. case DefaultSignalAction::Ignore:
  465. ASSERT_NOT_REACHED();
  466. case DefaultSignalAction::Continue:
  467. return ShouldUnblockThread::Yes;
  468. }
  469. ASSERT_NOT_REACHED();
  470. }
  471. if (handler_vaddr.as_ptr() == SIG_IGN) {
  472. #ifdef SIGNAL_DEBUG
  473. klog() << "ignored signal " << signal;
  474. #endif
  475. return ShouldUnblockThread::Yes;
  476. }
  477. ProcessPagingScope paging_scope(m_process);
  478. u32 old_signal_mask = m_signal_mask;
  479. u32 new_signal_mask = action.mask;
  480. if (action.flags & SA_NODEFER)
  481. new_signal_mask &= ~(1 << (signal - 1));
  482. else
  483. new_signal_mask |= 1 << (signal - 1);
  484. m_signal_mask |= new_signal_mask;
  485. auto setup_stack = [&]<typename ThreadState>(ThreadState state, u32* stack) {
  486. u32 old_esp = *stack;
  487. u32 ret_eip = state.eip;
  488. u32 ret_eflags = state.eflags;
  489. #ifdef SIGNAL_DEBUG
  490. klog() << "signal: setting up user stack to return to eip: " << String::format("%p", ret_eip) << " esp: " << String::format("%p", old_esp);
  491. #endif
  492. // Align the stack to 16 bytes.
  493. // Note that we push 56 bytes (4 * 14) on to the stack,
  494. // so we need to account for this here.
  495. u32 stack_alignment = (*stack - 56) % 16;
  496. *stack -= stack_alignment;
  497. push_value_on_user_stack(stack, ret_eflags);
  498. push_value_on_user_stack(stack, ret_eip);
  499. push_value_on_user_stack(stack, state.eax);
  500. push_value_on_user_stack(stack, state.ecx);
  501. push_value_on_user_stack(stack, state.edx);
  502. push_value_on_user_stack(stack, state.ebx);
  503. push_value_on_user_stack(stack, old_esp);
  504. push_value_on_user_stack(stack, state.ebp);
  505. push_value_on_user_stack(stack, state.esi);
  506. push_value_on_user_stack(stack, state.edi);
  507. // PUSH old_signal_mask
  508. push_value_on_user_stack(stack, old_signal_mask);
  509. push_value_on_user_stack(stack, signal);
  510. push_value_on_user_stack(stack, handler_vaddr.get());
  511. push_value_on_user_stack(stack, 0); //push fake return address
  512. ASSERT((*stack % 16) == 0);
  513. };
  514. // We now place the thread state on the userspace stack.
  515. // Note that when we are in the kernel (ie. blocking) we cannot use the
  516. // tss, as that will contain kernel state; instead, we use a RegisterState.
  517. // Conversely, when the thread isn't blocking the RegisterState may not be
  518. // valid (fork, exec etc) but the tss will, so we use that instead.
  519. if (!in_kernel()) {
  520. u32* stack = &m_tss.esp;
  521. setup_stack(m_tss, stack);
  522. m_tss.cs = GDT_SELECTOR_CODE3 | 3;
  523. m_tss.ds = GDT_SELECTOR_DATA3 | 3;
  524. m_tss.es = GDT_SELECTOR_DATA3 | 3;
  525. m_tss.fs = GDT_SELECTOR_DATA3 | 3;
  526. m_tss.gs = GDT_SELECTOR_TLS | 3;
  527. m_tss.eip = g_return_to_ring3_from_signal_trampoline.get();
  528. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  529. set_state(Skip1SchedulerPass);
  530. } else {
  531. auto& regs = get_register_dump_from_stack();
  532. u32* stack = &regs.userspace_esp;
  533. setup_stack(regs, stack);
  534. regs.eip = g_return_to_ring3_from_signal_trampoline.get();
  535. }
  536. #ifdef SIGNAL_DEBUG
  537. klog() << "signal: Okay, {" << state_string() << "} has been primed with signal handler " << String::format("%w", m_tss.cs) << ":" << String::format("%x", m_tss.eip);
  538. #endif
  539. return ShouldUnblockThread::Yes;
  540. }
  541. void Thread::set_default_signal_dispositions()
  542. {
  543. // FIXME: Set up all the right default actions. See signal(7).
  544. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  545. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress(SIG_IGN);
  546. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress(SIG_IGN);
  547. }
  548. void Thread::push_value_on_stack(FlatPtr value)
  549. {
  550. m_tss.esp -= 4;
  551. FlatPtr* stack_ptr = (FlatPtr*)m_tss.esp;
  552. copy_to_user(stack_ptr, &value);
  553. }
  554. RegisterState& Thread::get_register_dump_from_stack()
  555. {
  556. // The userspace registers should be stored at the top of the stack
  557. // We have to subtract 2 because the processor decrements the kernel
  558. // stack before pushing the args.
  559. return *(RegisterState*)(kernel_stack_top() - sizeof(RegisterState));
  560. }
  561. u32 Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  562. {
  563. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
  564. ASSERT(region);
  565. region->set_stack(true);
  566. u32 new_esp = region->vaddr().offset(default_userspace_stack_size).get();
  567. // FIXME: This is weird, we put the argument contents at the base of the stack,
  568. // and the argument pointers at the top? Why?
  569. char* stack_base = (char*)region->vaddr().get();
  570. int argc = arguments.size();
  571. char** argv = (char**)stack_base;
  572. char** env = argv + arguments.size() + 1;
  573. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  574. SmapDisabler disabler;
  575. for (size_t i = 0; i < arguments.size(); ++i) {
  576. argv[i] = bufptr;
  577. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  578. bufptr += arguments[i].length();
  579. *(bufptr++) = '\0';
  580. }
  581. argv[arguments.size()] = nullptr;
  582. for (size_t i = 0; i < environment.size(); ++i) {
  583. env[i] = bufptr;
  584. memcpy(bufptr, environment[i].characters(), environment[i].length());
  585. bufptr += environment[i].length();
  586. *(bufptr++) = '\0';
  587. }
  588. env[environment.size()] = nullptr;
  589. auto push_on_new_stack = [&new_esp](u32 value) {
  590. new_esp -= 4;
  591. u32* stack_ptr = (u32*)new_esp;
  592. *stack_ptr = value;
  593. };
  594. // NOTE: The stack needs to be 16-byte aligned.
  595. push_on_new_stack((FlatPtr)env);
  596. push_on_new_stack((FlatPtr)argv);
  597. push_on_new_stack((FlatPtr)argc);
  598. push_on_new_stack(0);
  599. return new_esp;
  600. }
  601. Thread* Thread::clone(Process& process)
  602. {
  603. auto* clone = new Thread(process);
  604. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  605. clone->m_signal_mask = m_signal_mask;
  606. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  607. clone->m_thread_specific_data = m_thread_specific_data;
  608. clone->m_thread_specific_region_size = m_thread_specific_region_size;
  609. return clone;
  610. }
  611. Vector<Thread*> Thread::all_threads()
  612. {
  613. Vector<Thread*> threads;
  614. InterruptDisabler disabler;
  615. threads.ensure_capacity(thread_table().size());
  616. for (auto* thread : thread_table())
  617. threads.unchecked_append(thread);
  618. return threads;
  619. }
  620. bool Thread::is_thread(void* ptr)
  621. {
  622. ASSERT_INTERRUPTS_DISABLED();
  623. return thread_table().contains((Thread*)ptr);
  624. }
  625. void Thread::set_state(State new_state)
  626. {
  627. ScopedSpinLock lock(g_scheduler_lock);
  628. if (new_state == m_state)
  629. return;
  630. if (new_state == Blocked) {
  631. // we should always have a Blocker while blocked
  632. ASSERT(m_blocker != nullptr);
  633. }
  634. if (new_state == Stopped) {
  635. m_stop_state = m_state;
  636. }
  637. m_state = new_state;
  638. #ifdef THREAD_DEBUG
  639. dbg() << "Set Thread " << VirtualAddress(this) << " " << *this << " state to " << state_string();
  640. #endif
  641. if (m_process.pid() != 0) {
  642. Scheduler::update_state_for_thread(*this);
  643. }
  644. if (new_state == Dying)
  645. notify_finalizer();
  646. }
  647. void Thread::notify_finalizer()
  648. {
  649. g_finalizer_has_work.store(true, AK::MemoryOrder::memory_order_release);
  650. g_finalizer_wait_queue->wake_all();
  651. }
  652. String Thread::backtrace(ProcessInspectionHandle&)
  653. {
  654. return backtrace_impl();
  655. }
  656. struct RecognizedSymbol {
  657. u32 address;
  658. const KernelSymbol* symbol { nullptr };
  659. };
  660. static bool symbolicate(const RecognizedSymbol& symbol, const Process& process, StringBuilder& builder, Process::ELFBundle* elf_bundle)
  661. {
  662. if (!symbol.address)
  663. return false;
  664. bool mask_kernel_addresses = !process.is_superuser();
  665. if (!symbol.symbol) {
  666. if (!is_user_address(VirtualAddress(symbol.address))) {
  667. builder.append("0xdeadc0de\n");
  668. } else {
  669. if (elf_bundle && elf_bundle->elf_loader->has_symbols())
  670. builder.appendf("%p %s\n", symbol.address, elf_bundle->elf_loader->symbolicate(symbol.address).characters());
  671. else
  672. builder.appendf("%p\n", symbol.address);
  673. }
  674. return true;
  675. }
  676. unsigned offset = symbol.address - symbol.symbol->address;
  677. if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
  678. builder.appendf("%p\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address);
  679. } else {
  680. builder.appendf("%p %s +%u\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address, demangle(symbol.symbol->name).characters(), offset);
  681. }
  682. return true;
  683. }
  684. String Thread::backtrace_impl()
  685. {
  686. Vector<RecognizedSymbol, 128> recognized_symbols;
  687. auto& process = const_cast<Process&>(this->process());
  688. auto elf_bundle = process.elf_bundle();
  689. ProcessPagingScope paging_scope(process);
  690. // To prevent a context switch involving this thread, which may happen
  691. // on another processor, we need to acquire the scheduler lock while
  692. // walking the stack
  693. {
  694. ScopedSpinLock lock(g_scheduler_lock);
  695. FlatPtr stack_ptr, eip;
  696. if (Processor::get_context_frame_ptr(*this, stack_ptr, eip)) {
  697. recognized_symbols.append({ eip, symbolicate_kernel_address(eip) });
  698. for (;;) {
  699. if (!process.validate_read_from_kernel(VirtualAddress(stack_ptr), sizeof(void*) * 2))
  700. break;
  701. FlatPtr retaddr;
  702. if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
  703. copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]);
  704. recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
  705. copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr);
  706. } else {
  707. memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr));
  708. recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
  709. memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr));
  710. }
  711. }
  712. }
  713. }
  714. StringBuilder builder;
  715. for (auto& symbol : recognized_symbols) {
  716. if (!symbolicate(symbol, process, builder, elf_bundle.ptr()))
  717. break;
  718. }
  719. return builder.to_string();
  720. }
  721. Vector<FlatPtr> Thread::raw_backtrace(FlatPtr ebp, FlatPtr eip) const
  722. {
  723. InterruptDisabler disabler;
  724. auto& process = const_cast<Process&>(this->process());
  725. ProcessPagingScope paging_scope(process);
  726. Vector<FlatPtr, Profiling::max_stack_frame_count> backtrace;
  727. backtrace.append(eip);
  728. for (FlatPtr* stack_ptr = (FlatPtr*)ebp; process.validate_read_from_kernel(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2) && MM.can_read_without_faulting(process, VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2); stack_ptr = (FlatPtr*)*stack_ptr) {
  729. FlatPtr retaddr = stack_ptr[1];
  730. backtrace.append(retaddr);
  731. if (backtrace.size() == Profiling::max_stack_frame_count)
  732. break;
  733. }
  734. return backtrace;
  735. }
  736. void Thread::make_thread_specific_region(Badge<Process>)
  737. {
  738. size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
  739. m_thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
  740. auto* region = process().allocate_region({}, m_thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
  741. SmapDisabler disabler;
  742. auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
  743. auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
  744. m_thread_specific_data = VirtualAddress(thread_specific_data);
  745. thread_specific_data->self = thread_specific_data;
  746. if (process().m_master_tls_size)
  747. memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
  748. }
  749. const LogStream& operator<<(const LogStream& stream, const Thread& value)
  750. {
  751. return stream << value.process().name() << "(" << value.pid() << ":" << value.tid() << ")";
  752. }
  753. Thread::BlockResult Thread::wait_on(WaitQueue& queue, const char* reason, timeval* timeout, Atomic<bool>* lock, Thread* beneficiary)
  754. {
  755. TimerId timer_id {};
  756. u32 prev_crit;
  757. bool did_unlock;
  758. {
  759. InterruptDisabler disable;
  760. did_unlock = unlock_process_if_locked(prev_crit);
  761. if (lock)
  762. *lock = false;
  763. set_state(State::Queued);
  764. m_wait_reason = reason;
  765. queue.enqueue(*Thread::current());
  766. if (timeout) {
  767. timer_id = TimerQueue::the().add_timer(*timeout, [&]() {
  768. wake_from_queue();
  769. });
  770. }
  771. // Yield and wait for the queue to wake us up again.
  772. if (beneficiary)
  773. Scheduler::donate_to(beneficiary, reason);
  774. else
  775. Scheduler::yield();
  776. }
  777. if (!are_interrupts_enabled())
  778. sti();
  779. // We've unblocked, relock the process if needed and carry on.
  780. relock_process(did_unlock, prev_crit);
  781. BlockResult result = m_wait_queue_node.is_in_list() ? BlockResult::InterruptedByTimeout : BlockResult::WokeNormally;
  782. // Make sure we cancel the timer if woke normally.
  783. if (timeout && result == BlockResult::WokeNormally)
  784. TimerQueue::the().cancel_timer(timer_id);
  785. return result;
  786. }
  787. void Thread::wake_from_queue()
  788. {
  789. ScopedSpinLock lock(g_scheduler_lock);
  790. ASSERT(state() == State::Queued);
  791. m_wait_reason = nullptr;
  792. if (this != Thread::current())
  793. set_state(State::Runnable);
  794. else
  795. set_state(State::Running);
  796. }
  797. Thread* Thread::from_tid(int tid)
  798. {
  799. InterruptDisabler disabler;
  800. Thread* found_thread = nullptr;
  801. Thread::for_each([&](auto& thread) {
  802. if (thread.tid() == tid) {
  803. found_thread = &thread;
  804. return IterationDecision::Break;
  805. }
  806. return IterationDecision::Continue;
  807. });
  808. return found_thread;
  809. }
  810. void Thread::reset_fpu_state()
  811. {
  812. memcpy(m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState));
  813. }
  814. void Thread::start_tracing_from(pid_t tracer)
  815. {
  816. m_tracer = ThreadTracer::create(tracer);
  817. }
  818. void Thread::stop_tracing()
  819. {
  820. m_tracer = nullptr;
  821. }
  822. void Thread::tracer_trap(const RegisterState& regs)
  823. {
  824. ASSERT(m_tracer.ptr());
  825. m_tracer->set_regs(regs);
  826. send_urgent_signal_to_self(SIGTRAP);
  827. }
  828. const Thread::Blocker& Thread::blocker() const
  829. {
  830. ASSERT(m_blocker);
  831. return *m_blocker;
  832. }
  833. }