MathObject.cpp 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Interpreter.h>
  30. #include <LibJS/Runtime/GlobalObject.h>
  31. #include <LibJS/Runtime/MathObject.h>
  32. #include <math.h>
  33. namespace JS {
  34. MathObject::MathObject()
  35. : Object(interpreter().global_object().object_prototype())
  36. {
  37. u8 attr = Attribute::Writable | Attribute::Configurable;
  38. define_native_function("abs", abs, 1, attr);
  39. define_native_function("random", random, 0, attr);
  40. define_native_function("sqrt", sqrt, 1, attr);
  41. define_native_function("floor", floor, 1, attr);
  42. define_native_function("ceil", ceil, 1, attr);
  43. define_native_function("round", round, 1, attr);
  44. define_native_function("max", max, 2, attr);
  45. define_native_function("min", min, 2, attr);
  46. define_native_function("trunc", trunc, 1, attr);
  47. define_native_function("sin", sin, 1, attr);
  48. define_native_function("cos", cos, 1, attr);
  49. define_native_function("tan", tan, 1, attr);
  50. define_native_function("pow", pow, 2, attr);
  51. define_native_function("exp", exp, 1, attr);
  52. define_native_function("expm1", expm1, 1, attr);
  53. define_native_function("sign", sign, 1, attr);
  54. define_native_function("clz32", clz32, 1, attr);
  55. define_property("E", Value(M_E), 0);
  56. define_property("LN2", Value(M_LN2), 0);
  57. define_property("LN10", Value(M_LN10), 0);
  58. define_property("LOG2E", Value(log2(M_E)), 0);
  59. define_property("LOG10E", Value(log10(M_E)), 0);
  60. define_property("PI", Value(M_PI), 0);
  61. define_property("SQRT1_2", Value(M_SQRT1_2), 0);
  62. define_property("SQRT2", Value(M_SQRT2), 0);
  63. }
  64. MathObject::~MathObject()
  65. {
  66. }
  67. Value MathObject::abs(Interpreter& interpreter)
  68. {
  69. auto number = interpreter.argument(0).to_number(interpreter);
  70. if (interpreter.exception())
  71. return {};
  72. if (number.is_nan())
  73. return js_nan();
  74. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  75. }
  76. Value MathObject::random(Interpreter&)
  77. {
  78. #ifdef __serenity__
  79. double r = (double)arc4random() / (double)UINT32_MAX;
  80. #else
  81. double r = (double)rand() / (double)RAND_MAX;
  82. #endif
  83. return Value(r);
  84. }
  85. Value MathObject::sqrt(Interpreter& interpreter)
  86. {
  87. auto number = interpreter.argument(0).to_number(interpreter);
  88. if (interpreter.exception())
  89. return {};
  90. if (number.is_nan())
  91. return js_nan();
  92. return Value(::sqrt(number.as_double()));
  93. }
  94. Value MathObject::floor(Interpreter& interpreter)
  95. {
  96. auto number = interpreter.argument(0).to_number(interpreter);
  97. if (interpreter.exception())
  98. return {};
  99. if (number.is_nan())
  100. return js_nan();
  101. return Value(::floor(number.as_double()));
  102. }
  103. Value MathObject::ceil(Interpreter& interpreter)
  104. {
  105. auto number = interpreter.argument(0).to_number(interpreter);
  106. if (interpreter.exception())
  107. return {};
  108. if (number.is_nan())
  109. return js_nan();
  110. return Value(::ceil(number.as_double()));
  111. }
  112. Value MathObject::round(Interpreter& interpreter)
  113. {
  114. auto number = interpreter.argument(0).to_number(interpreter);
  115. if (interpreter.exception())
  116. return {};
  117. if (number.is_nan())
  118. return js_nan();
  119. return Value(::round(number.as_double()));
  120. }
  121. Value MathObject::max(Interpreter& interpreter)
  122. {
  123. if (!interpreter.argument_count())
  124. return js_negative_infinity();
  125. auto max = interpreter.argument(0).to_number(interpreter);
  126. if (interpreter.exception())
  127. return {};
  128. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  129. auto cur = interpreter.argument(i).to_number(interpreter);
  130. if (interpreter.exception())
  131. return {};
  132. max = Value(cur.as_double() > max.as_double() ? cur : max);
  133. }
  134. return max;
  135. }
  136. Value MathObject::min(Interpreter& interpreter)
  137. {
  138. if (!interpreter.argument_count())
  139. return js_infinity();
  140. auto min = interpreter.argument(0).to_number(interpreter);
  141. if (interpreter.exception())
  142. return {};
  143. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  144. auto cur = interpreter.argument(i).to_number(interpreter);
  145. if (interpreter.exception())
  146. return {};
  147. min = Value(cur.as_double() < min.as_double() ? cur : min);
  148. }
  149. return min;
  150. }
  151. Value MathObject::trunc(Interpreter& interpreter)
  152. {
  153. auto number = interpreter.argument(0).to_number(interpreter);
  154. if (interpreter.exception())
  155. return {};
  156. if (number.is_nan())
  157. return js_nan();
  158. if (number.as_double() < 0)
  159. return MathObject::ceil(interpreter);
  160. return MathObject::floor(interpreter);
  161. }
  162. Value MathObject::sin(Interpreter& interpreter)
  163. {
  164. auto number = interpreter.argument(0).to_number(interpreter);
  165. if (interpreter.exception())
  166. return {};
  167. if (number.is_nan())
  168. return js_nan();
  169. return Value(::sin(number.as_double()));
  170. }
  171. Value MathObject::cos(Interpreter& interpreter)
  172. {
  173. auto number = interpreter.argument(0).to_number(interpreter);
  174. if (interpreter.exception())
  175. return {};
  176. if (number.is_nan())
  177. return js_nan();
  178. return Value(::cos(number.as_double()));
  179. }
  180. Value MathObject::tan(Interpreter& interpreter)
  181. {
  182. auto number = interpreter.argument(0).to_number(interpreter);
  183. if (interpreter.exception())
  184. return {};
  185. if (number.is_nan())
  186. return js_nan();
  187. return Value(::tan(number.as_double()));
  188. }
  189. Value MathObject::pow(Interpreter& interpreter)
  190. {
  191. return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
  192. }
  193. Value MathObject::exp(Interpreter& interpreter)
  194. {
  195. auto number = interpreter.argument(0).to_number(interpreter);
  196. if (interpreter.exception())
  197. return {};
  198. if (number.is_nan())
  199. return js_nan();
  200. return Value(::pow(M_E, number.as_double()));
  201. }
  202. Value MathObject::expm1(Interpreter& interpreter)
  203. {
  204. auto number = interpreter.argument(0).to_number(interpreter);
  205. if (interpreter.exception())
  206. return {};
  207. if (number.is_nan())
  208. return js_nan();
  209. return Value(::pow(M_E, number.as_double()) - 1);
  210. }
  211. Value MathObject::sign(Interpreter& interpreter)
  212. {
  213. auto number = interpreter.argument(0).to_number(interpreter);
  214. if (interpreter.exception())
  215. return {};
  216. if (number.is_positive_zero())
  217. return Value(0);
  218. if (number.is_negative_zero())
  219. return Value(-0.0);
  220. if (number.as_double() > 0)
  221. return Value(1);
  222. if (number.as_double() < 0)
  223. return Value(-1);
  224. return js_nan();
  225. }
  226. Value MathObject::clz32(Interpreter& interpreter)
  227. {
  228. auto number = interpreter.argument(0).to_number(interpreter);
  229. if (interpreter.exception())
  230. return {};
  231. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  232. return Value(32);
  233. return Value(__builtin_clz((unsigned)number.as_double()));
  234. }
  235. }