MathObject.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Function.h>
  8. #include <AK/Random.h>
  9. #include <LibJS/Runtime/GlobalObject.h>
  10. #include <LibJS/Runtime/MathObject.h>
  11. #include <math.h>
  12. namespace JS {
  13. MathObject::MathObject(GlobalObject& global_object)
  14. : Object(*global_object.object_prototype())
  15. {
  16. }
  17. void MathObject::initialize(GlobalObject& global_object)
  18. {
  19. auto& vm = this->vm();
  20. Object::initialize(global_object);
  21. u8 attr = Attribute::Writable | Attribute::Configurable;
  22. define_native_function(vm.names.abs, abs, 1, attr);
  23. define_native_function(vm.names.random, random, 0, attr);
  24. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  25. define_native_function(vm.names.floor, floor, 1, attr);
  26. define_native_function(vm.names.ceil, ceil, 1, attr);
  27. define_native_function(vm.names.round, round, 1, attr);
  28. define_native_function(vm.names.max, max, 2, attr);
  29. define_native_function(vm.names.min, min, 2, attr);
  30. define_native_function(vm.names.trunc, trunc, 1, attr);
  31. define_native_function(vm.names.sin, sin, 1, attr);
  32. define_native_function(vm.names.cos, cos, 1, attr);
  33. define_native_function(vm.names.tan, tan, 1, attr);
  34. define_native_function(vm.names.pow, pow, 2, attr);
  35. define_native_function(vm.names.exp, exp, 1, attr);
  36. define_native_function(vm.names.expm1, expm1, 1, attr);
  37. define_native_function(vm.names.sign, sign, 1, attr);
  38. define_native_function(vm.names.clz32, clz32, 1, attr);
  39. define_native_function(vm.names.acos, acos, 1, attr);
  40. define_native_function(vm.names.acosh, acosh, 1, attr);
  41. define_native_function(vm.names.asin, asin, 1, attr);
  42. define_native_function(vm.names.asinh, asinh, 1, attr);
  43. define_native_function(vm.names.atan, atan, 1, attr);
  44. define_native_function(vm.names.atanh, atanh, 1, attr);
  45. define_native_function(vm.names.log1p, log1p, 1, attr);
  46. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  47. define_native_function(vm.names.atan2, atan2, 2, attr);
  48. define_native_function(vm.names.fround, fround, 1, attr);
  49. define_native_function(vm.names.hypot, hypot, 2, attr);
  50. define_native_function(vm.names.imul, imul, 2, attr);
  51. define_native_function(vm.names.log, log, 1, attr);
  52. define_native_function(vm.names.log2, log2, 1, attr);
  53. define_native_function(vm.names.log10, log10, 1, attr);
  54. define_native_function(vm.names.sinh, sinh, 1, attr);
  55. define_native_function(vm.names.cosh, cosh, 1, attr);
  56. define_native_function(vm.names.tanh, tanh, 1, attr);
  57. define_property(vm.names.E, Value(M_E), 0);
  58. define_property(vm.names.LN2, Value(M_LN2), 0);
  59. define_property(vm.names.LN10, Value(M_LN10), 0);
  60. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  61. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  62. define_property(vm.names.PI, Value(M_PI), 0);
  63. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  64. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  65. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  66. }
  67. MathObject::~MathObject()
  68. {
  69. }
  70. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  71. {
  72. auto number = vm.argument(0).to_number(global_object);
  73. if (vm.exception())
  74. return {};
  75. if (number.is_nan())
  76. return js_nan();
  77. if (number.is_negative_zero())
  78. return Value(0);
  79. if (number.is_negative_infinity())
  80. return js_infinity();
  81. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  82. }
  83. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  84. {
  85. #ifdef __serenity__
  86. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  87. #else
  88. double r = (double)rand() / (double)RAND_MAX;
  89. #endif
  90. return Value(r);
  91. }
  92. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  93. {
  94. auto number = vm.argument(0).to_number(global_object);
  95. if (vm.exception())
  96. return {};
  97. if (number.is_nan())
  98. return js_nan();
  99. return Value(::sqrt(number.as_double()));
  100. }
  101. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  102. {
  103. auto number = vm.argument(0).to_number(global_object);
  104. if (vm.exception())
  105. return {};
  106. if (number.is_nan())
  107. return js_nan();
  108. return Value(::floor(number.as_double()));
  109. }
  110. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  111. {
  112. auto number = vm.argument(0).to_number(global_object);
  113. if (vm.exception())
  114. return {};
  115. if (number.is_nan())
  116. return js_nan();
  117. auto number_double = number.as_double();
  118. if (number_double < 0 && number_double > -1)
  119. return Value(-0.f);
  120. return Value(::ceil(number.as_double()));
  121. }
  122. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  123. {
  124. auto number = vm.argument(0).to_number(global_object);
  125. if (vm.exception())
  126. return {};
  127. if (number.is_nan())
  128. return js_nan();
  129. double intpart = 0;
  130. double frac = modf(number.as_double(), &intpart);
  131. if (intpart >= 0) {
  132. if (frac >= 0.5)
  133. intpart += 1.0;
  134. } else {
  135. if (frac < -0.5)
  136. intpart -= 1.0;
  137. }
  138. return Value(intpart);
  139. }
  140. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  141. {
  142. Vector<Value> coerced;
  143. for (size_t i = 0; i < vm.argument_count(); ++i) {
  144. auto number = vm.argument(i).to_number(global_object);
  145. if (vm.exception())
  146. return {};
  147. coerced.append(number);
  148. }
  149. auto highest = js_negative_infinity();
  150. for (auto& number : coerced) {
  151. if (number.is_nan())
  152. return js_nan();
  153. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  154. highest = number;
  155. }
  156. return highest;
  157. }
  158. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  159. {
  160. Vector<Value> coerced;
  161. for (size_t i = 0; i < vm.argument_count(); ++i) {
  162. auto number = vm.argument(i).to_number(global_object);
  163. if (vm.exception())
  164. return {};
  165. coerced.append(number);
  166. }
  167. auto lowest = js_infinity();
  168. for (auto& number : coerced) {
  169. if (number.is_nan())
  170. return js_nan();
  171. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  172. lowest = number;
  173. }
  174. return lowest;
  175. }
  176. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  177. {
  178. auto number = vm.argument(0).to_number(global_object);
  179. if (vm.exception())
  180. return {};
  181. if (number.is_nan())
  182. return js_nan();
  183. if (number.as_double() < 0)
  184. return MathObject::ceil(vm, global_object);
  185. return MathObject::floor(vm, global_object);
  186. }
  187. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  188. {
  189. auto number = vm.argument(0).to_number(global_object);
  190. if (vm.exception())
  191. return {};
  192. if (number.is_nan())
  193. return js_nan();
  194. return Value(::sin(number.as_double()));
  195. }
  196. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  197. {
  198. auto number = vm.argument(0).to_number(global_object);
  199. if (vm.exception())
  200. return {};
  201. if (number.is_nan())
  202. return js_nan();
  203. return Value(::cos(number.as_double()));
  204. }
  205. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  206. {
  207. auto number = vm.argument(0).to_number(global_object);
  208. if (vm.exception())
  209. return {};
  210. if (number.is_nan())
  211. return js_nan();
  212. return Value(::tan(number.as_double()));
  213. }
  214. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  215. {
  216. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  217. }
  218. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  219. {
  220. auto number = vm.argument(0).to_number(global_object);
  221. if (vm.exception())
  222. return {};
  223. if (number.is_nan())
  224. return js_nan();
  225. return Value(::exp(number.as_double()));
  226. }
  227. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  228. {
  229. auto number = vm.argument(0).to_number(global_object);
  230. if (vm.exception())
  231. return {};
  232. if (number.is_nan())
  233. return js_nan();
  234. return Value(::expm1(number.as_double()));
  235. }
  236. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  237. {
  238. auto number = vm.argument(0).to_number(global_object);
  239. if (vm.exception())
  240. return {};
  241. if (number.is_positive_zero())
  242. return Value(0);
  243. if (number.is_negative_zero())
  244. return Value(-0.0);
  245. if (number.as_double() > 0)
  246. return Value(1);
  247. if (number.as_double() < 0)
  248. return Value(-1);
  249. return js_nan();
  250. }
  251. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  252. {
  253. auto number = vm.argument(0).to_number(global_object);
  254. if (vm.exception())
  255. return {};
  256. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  257. return Value(32);
  258. return Value(__builtin_clz((unsigned)number.as_double()));
  259. }
  260. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  261. {
  262. auto number = vm.argument(0).to_number(global_object);
  263. if (vm.exception())
  264. return {};
  265. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  266. return js_nan();
  267. if (number.as_double() == 1)
  268. return Value(0);
  269. return Value(::acos(number.as_double()));
  270. }
  271. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  272. {
  273. auto number = vm.argument(0).to_number(global_object);
  274. if (vm.exception())
  275. return {};
  276. if (number.as_double() < 1)
  277. return js_nan();
  278. return Value(::acosh(number.as_double()));
  279. }
  280. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  281. {
  282. auto number = vm.argument(0).to_number(global_object);
  283. if (vm.exception())
  284. return {};
  285. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  286. return number;
  287. return Value(::asin(number.as_double()));
  288. }
  289. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  290. {
  291. auto number = vm.argument(0).to_number(global_object);
  292. if (vm.exception())
  293. return {};
  294. return Value(::asinh(number.as_double()));
  295. }
  296. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  297. {
  298. auto number = vm.argument(0).to_number(global_object);
  299. if (vm.exception())
  300. return {};
  301. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  302. return number;
  303. if (number.is_positive_infinity())
  304. return Value(M_PI_2);
  305. if (number.is_negative_infinity())
  306. return Value(-M_PI_2);
  307. return Value(::atan(number.as_double()));
  308. }
  309. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  310. {
  311. auto number = vm.argument(0).to_number(global_object);
  312. if (vm.exception())
  313. return {};
  314. if (number.as_double() > 1 || number.as_double() < -1)
  315. return js_nan();
  316. return Value(::atanh(number.as_double()));
  317. }
  318. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  319. {
  320. auto number = vm.argument(0).to_number(global_object);
  321. if (vm.exception())
  322. return {};
  323. if (number.as_double() < -1)
  324. return js_nan();
  325. return Value(::log1p(number.as_double()));
  326. }
  327. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  328. {
  329. auto number = vm.argument(0).to_number(global_object);
  330. if (vm.exception())
  331. return {};
  332. return Value(::cbrt(number.as_double()));
  333. }
  334. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  335. {
  336. auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
  337. auto pi_4 = M_PI_2 / 2;
  338. auto three_pi_4 = pi_4 + M_PI_2;
  339. if (vm.exception())
  340. return {};
  341. if (x.is_positive_zero()) {
  342. if (y.is_positive_zero() || y.is_negative_zero())
  343. return y;
  344. else
  345. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  346. }
  347. if (x.is_negative_zero()) {
  348. if (y.is_positive_zero())
  349. return Value(M_PI);
  350. else if (y.is_negative_zero())
  351. return Value(-M_PI);
  352. else
  353. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  354. }
  355. if (x.is_positive_infinity()) {
  356. if (y.is_infinity())
  357. return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
  358. else
  359. return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
  360. }
  361. if (x.is_negative_infinity()) {
  362. if (y.is_infinity())
  363. return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
  364. else
  365. return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
  366. }
  367. if (y.is_infinity())
  368. return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
  369. if (y.is_positive_zero())
  370. return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
  371. if (y.is_negative_zero())
  372. return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
  373. return Value(::atan2(y.as_double(), x.as_double()));
  374. }
  375. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  376. {
  377. auto number = vm.argument(0).to_number(global_object);
  378. if (vm.exception())
  379. return {};
  380. if (number.is_nan())
  381. return js_nan();
  382. return Value((float)number.as_double());
  383. }
  384. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  385. {
  386. if (!vm.argument_count())
  387. return Value(0);
  388. auto hypot = vm.argument(0).to_number(global_object);
  389. if (vm.exception())
  390. return {};
  391. hypot = Value(hypot.as_double() * hypot.as_double());
  392. for (size_t i = 1; i < vm.argument_count(); ++i) {
  393. auto cur = vm.argument(i).to_number(global_object);
  394. if (vm.exception())
  395. return {};
  396. hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
  397. }
  398. return Value(::sqrt(hypot.as_double()));
  399. }
  400. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  401. {
  402. auto a = vm.argument(0).to_u32(global_object);
  403. if (vm.exception())
  404. return {};
  405. auto b = vm.argument(1).to_u32(global_object);
  406. if (vm.exception())
  407. return {};
  408. return Value(static_cast<i32>(a * b));
  409. }
  410. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  411. {
  412. auto number = vm.argument(0).to_number(global_object);
  413. if (vm.exception())
  414. return {};
  415. if (number.as_double() < 0)
  416. return js_nan();
  417. return Value(::log(number.as_double()));
  418. }
  419. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  420. {
  421. auto number = vm.argument(0).to_number(global_object);
  422. if (vm.exception())
  423. return {};
  424. if (number.as_double() < 0)
  425. return js_nan();
  426. return Value(::log2(number.as_double()));
  427. }
  428. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  429. {
  430. auto number = vm.argument(0).to_number(global_object);
  431. if (vm.exception())
  432. return {};
  433. if (number.as_double() < 0)
  434. return js_nan();
  435. return Value(::log10(number.as_double()));
  436. }
  437. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  438. {
  439. auto number = vm.argument(0).to_number(global_object);
  440. if (vm.exception())
  441. return {};
  442. if (number.is_nan())
  443. return js_nan();
  444. return Value(::sinh(number.as_double()));
  445. }
  446. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  447. {
  448. auto number = vm.argument(0).to_number(global_object);
  449. if (vm.exception())
  450. return {};
  451. if (number.is_nan())
  452. return js_nan();
  453. return Value(::cosh(number.as_double()));
  454. }
  455. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  456. {
  457. auto number = vm.argument(0).to_number(global_object);
  458. if (vm.exception())
  459. return {};
  460. if (number.is_nan())
  461. return js_nan();
  462. if (number.is_positive_infinity())
  463. return Value(1);
  464. if (number.is_negative_infinity())
  465. return Value(-1);
  466. return Value(::tanh(number.as_double()));
  467. }
  468. }