123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119 |
- /*
- * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Format.h>
- #include <AK/StdLibExtras.h>
- #include <AK/String.h>
- #include <AK/Types.h>
- #include <Kernel/Interrupts/APIC.h>
- #include <Kernel/Process.h>
- #include <Kernel/Random.h>
- #include <Kernel/Sections.h>
- #include <Kernel/StdLib.h>
- #include <Kernel/Thread.h>
- #include <Kernel/VM/ProcessPagingScope.h>
- #include <Kernel/Arch/x86/CPUID.h>
- #include <Kernel/Arch/x86/Interrupts.h>
- #include <Kernel/Arch/x86/Processor.h>
- #include <Kernel/Arch/x86/ProcessorInfo.h>
- #include <Kernel/Arch/x86/SafeMem.h>
- #include <Kernel/Arch/x86/ScopedCritical.h>
- #include <Kernel/Arch/x86/TrapFrame.h>
- namespace Kernel {
- READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state;
- READONLY_AFTER_INIT static ProcessorContainer s_processors {};
- READONLY_AFTER_INIT Atomic<u32> Processor::g_total_processors;
- static volatile bool s_smp_enabled;
- static Atomic<ProcessorMessage*> s_message_pool;
- Atomic<u32> Processor::s_idle_cpu_mask { 0 };
- extern "C" void thread_context_first_enter(void);
- extern "C" void exit_kernel_thread(void);
- UNMAP_AFTER_INIT static void sse_init()
- {
- write_cr0((read_cr0() & 0xfffffffbu) | 0x2);
- write_cr4(read_cr4() | 0x600);
- }
- void exit_kernel_thread(void)
- {
- Thread::current()->exit();
- }
- UNMAP_AFTER_INIT void Processor::cpu_detect()
- {
- // NOTE: This is called during Processor::early_initialize, we cannot
- // safely log at this point because we don't have kmalloc
- // initialized yet!
- auto set_feature =
- [&](CPUFeature f) {
- m_features = static_cast<CPUFeature>(static_cast<u32>(m_features) | static_cast<u32>(f));
- };
- m_features = static_cast<CPUFeature>(0);
- CPUID processor_info(0x1);
- if (processor_info.edx() & (1 << 4))
- set_feature(CPUFeature::TSC);
- if (processor_info.edx() & (1 << 6))
- set_feature(CPUFeature::PAE);
- if (processor_info.edx() & (1 << 13))
- set_feature(CPUFeature::PGE);
- if (processor_info.edx() & (1 << 23))
- set_feature(CPUFeature::MMX);
- if (processor_info.edx() & (1 << 24))
- set_feature(CPUFeature::FXSR);
- if (processor_info.edx() & (1 << 25))
- set_feature(CPUFeature::SSE);
- if (processor_info.edx() & (1 << 26))
- set_feature(CPUFeature::SSE2);
- if (processor_info.ecx() & (1 << 0))
- set_feature(CPUFeature::SSE3);
- if (processor_info.ecx() & (1 << 9))
- set_feature(CPUFeature::SSSE3);
- if (processor_info.ecx() & (1 << 19))
- set_feature(CPUFeature::SSE4_1);
- if (processor_info.ecx() & (1 << 20))
- set_feature(CPUFeature::SSE4_2);
- if (processor_info.ecx() & (1 << 26))
- set_feature(CPUFeature::XSAVE);
- if (processor_info.ecx() & (1 << 28))
- set_feature(CPUFeature::AVX);
- if (processor_info.ecx() & (1 << 30))
- set_feature(CPUFeature::RDRAND);
- if (processor_info.edx() & (1 << 11)) {
- u32 stepping = processor_info.eax() & 0xf;
- u32 model = (processor_info.eax() >> 4) & 0xf;
- u32 family = (processor_info.eax() >> 8) & 0xf;
- if (!(family == 6 && model < 3 && stepping < 3))
- set_feature(CPUFeature::SEP);
- if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe))
- set_feature(CPUFeature::CONSTANT_TSC);
- }
- u32 max_extended_leaf = CPUID(0x80000000).eax();
- if (max_extended_leaf >= 0x80000001) {
- CPUID extended_processor_info(0x80000001);
- if (extended_processor_info.edx() & (1 << 20))
- set_feature(CPUFeature::NX);
- if (extended_processor_info.edx() & (1 << 27))
- set_feature(CPUFeature::RDTSCP);
- if (extended_processor_info.edx() & (1 << 11)) {
- // Only available in 64 bit mode
- set_feature(CPUFeature::SYSCALL);
- }
- }
- if (max_extended_leaf >= 0x80000007) {
- CPUID cpuid(0x80000007);
- if (cpuid.edx() & (1 << 8)) {
- set_feature(CPUFeature::CONSTANT_TSC);
- set_feature(CPUFeature::NONSTOP_TSC);
- }
- }
- if (max_extended_leaf >= 0x80000008) {
- // CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor.
- CPUID cpuid(0x80000008);
- m_physical_address_bit_width = cpuid.eax() & 0xff;
- } else {
- // For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.
- m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32;
- }
- CPUID extended_features(0x7);
- if (extended_features.ebx() & (1 << 20))
- set_feature(CPUFeature::SMAP);
- if (extended_features.ebx() & (1 << 7))
- set_feature(CPUFeature::SMEP);
- if (extended_features.ecx() & (1 << 2))
- set_feature(CPUFeature::UMIP);
- if (extended_features.ebx() & (1 << 18))
- set_feature(CPUFeature::RDSEED);
- }
- UNMAP_AFTER_INIT void Processor::cpu_setup()
- {
- // NOTE: This is called during Processor::early_initialize, we cannot
- // safely log at this point because we don't have kmalloc
- // initialized yet!
- cpu_detect();
- if (has_feature(CPUFeature::SSE)) {
- // enter_thread_context() assumes that if a x86 CPU supports SSE then it also supports FXSR.
- // SSE support without FXSR is an extremely unlikely scenario, so let's be pragmatic about it.
- VERIFY(has_feature(CPUFeature::FXSR));
- sse_init();
- }
- write_cr0(read_cr0() | 0x00010000);
- if (has_feature(CPUFeature::PGE)) {
- // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
- write_cr4(read_cr4() | 0x80);
- }
- if (has_feature(CPUFeature::NX)) {
- // Turn on IA32_EFER.NXE
- asm volatile(
- "movl $0xc0000080, %ecx\n"
- "rdmsr\n"
- "orl $0x800, %eax\n"
- "wrmsr\n");
- }
- if (has_feature(CPUFeature::SMEP)) {
- // Turn on CR4.SMEP
- write_cr4(read_cr4() | 0x100000);
- }
- if (has_feature(CPUFeature::SMAP)) {
- // Turn on CR4.SMAP
- write_cr4(read_cr4() | 0x200000);
- }
- if (has_feature(CPUFeature::UMIP)) {
- write_cr4(read_cr4() | 0x800);
- }
- if (has_feature(CPUFeature::TSC)) {
- write_cr4(read_cr4() | 0x4);
- }
- if (has_feature(CPUFeature::XSAVE)) {
- // Turn on CR4.OSXSAVE
- write_cr4(read_cr4() | 0x40000);
- // According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1."
- // Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves.
- write_xcr0(0x1);
- if (has_feature(CPUFeature::AVX)) {
- // Turn on SSE, AVX and x87 flags
- write_xcr0(read_xcr0() | 0x7);
- }
- }
- }
- String Processor::features_string() const
- {
- StringBuilder builder;
- auto feature_to_str =
- [](CPUFeature f) -> const char* {
- switch (f) {
- case CPUFeature::NX:
- return "nx";
- case CPUFeature::PAE:
- return "pae";
- case CPUFeature::PGE:
- return "pge";
- case CPUFeature::RDRAND:
- return "rdrand";
- case CPUFeature::RDSEED:
- return "rdseed";
- case CPUFeature::SMAP:
- return "smap";
- case CPUFeature::SMEP:
- return "smep";
- case CPUFeature::SSE:
- return "sse";
- case CPUFeature::TSC:
- return "tsc";
- case CPUFeature::RDTSCP:
- return "rdtscp";
- case CPUFeature::CONSTANT_TSC:
- return "constant_tsc";
- case CPUFeature::NONSTOP_TSC:
- return "nonstop_tsc";
- case CPUFeature::UMIP:
- return "umip";
- case CPUFeature::SEP:
- return "sep";
- case CPUFeature::SYSCALL:
- return "syscall";
- case CPUFeature::MMX:
- return "mmx";
- case CPUFeature::FXSR:
- return "fxsr";
- case CPUFeature::SSE2:
- return "sse2";
- case CPUFeature::SSE3:
- return "sse3";
- case CPUFeature::SSSE3:
- return "ssse3";
- case CPUFeature::SSE4_1:
- return "sse4.1";
- case CPUFeature::SSE4_2:
- return "sse4.2";
- case CPUFeature::XSAVE:
- return "xsave";
- case CPUFeature::AVX:
- return "avx";
- // no default statement here intentionally so that we get
- // a warning if a new feature is forgotten to be added here
- }
- // Shouldn't ever happen
- return "???";
- };
- bool first = true;
- for (u32 flag = 1; flag != 0; flag <<= 1) {
- if ((static_cast<u32>(m_features) & flag) != 0) {
- if (first)
- first = false;
- else
- builder.append(' ');
- auto str = feature_to_str(static_cast<CPUFeature>(flag));
- builder.append(str, strlen(str));
- }
- }
- return builder.build();
- }
- UNMAP_AFTER_INIT void Processor::early_initialize(u32 cpu)
- {
- m_self = this;
- m_cpu = cpu;
- m_in_irq = 0;
- m_in_critical = 0;
- m_invoke_scheduler_async = false;
- m_scheduler_initialized = false;
- m_message_queue = nullptr;
- m_idle_thread = nullptr;
- m_current_thread = nullptr;
- m_scheduler_data = nullptr;
- m_mm_data = nullptr;
- m_info = nullptr;
- m_halt_requested = false;
- if (cpu == 0) {
- s_smp_enabled = false;
- g_total_processors.store(1u, AK::MemoryOrder::memory_order_release);
- } else {
- g_total_processors.fetch_add(1u, AK::MemoryOrder::memory_order_acq_rel);
- }
- deferred_call_pool_init();
- cpu_setup();
- gdt_init();
- VERIFY(is_initialized()); // sanity check
- VERIFY(¤t() == this); // sanity check
- }
- UNMAP_AFTER_INIT void Processor::initialize(u32 cpu)
- {
- VERIFY(m_self == this);
- VERIFY(¤t() == this); // sanity check
- dmesgln("CPU[{}]: Supported features: {}", id(), features_string());
- if (!has_feature(CPUFeature::RDRAND))
- dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", id());
- dmesgln("CPU[{}]: Physical address bit width: {}", id(), m_physical_address_bit_width);
- if (cpu == 0)
- idt_init();
- else
- flush_idt();
- if (cpu == 0) {
- VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0);
- asm volatile("fninit");
- if (has_feature(CPUFeature::FXSR))
- asm volatile("fxsave %0"
- : "=m"(s_clean_fpu_state));
- else
- asm volatile("fnsave %0"
- : "=m"(s_clean_fpu_state));
- }
- m_info = new ProcessorInfo(*this);
- {
- // We need to prevent races between APs starting up at the same time
- VERIFY(cpu < s_processors.size());
- s_processors[cpu] = this;
- }
- }
- void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high)
- {
- u16 i = (selector & 0xfffc) >> 3;
- u32 prev_gdt_length = m_gdt_length;
- if (i > m_gdt_length) {
- m_gdt_length = i + 1;
- VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0]));
- m_gdtr.limit = (m_gdt_length + 1) * 8 - 1;
- }
- m_gdt[i].low = low;
- m_gdt[i].high = high;
- // clear selectors we may have skipped
- while (i < prev_gdt_length) {
- m_gdt[i].low = 0;
- m_gdt[i].high = 0;
- i++;
- }
- }
- void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor)
- {
- write_raw_gdt_entry(selector, descriptor.low, descriptor.high);
- }
- Descriptor& Processor::get_gdt_entry(u16 selector)
- {
- u16 i = (selector & 0xfffc) >> 3;
- return *(Descriptor*)(&m_gdt[i]);
- }
- void Processor::flush_gdt()
- {
- m_gdtr.address = m_gdt;
- m_gdtr.limit = (m_gdt_length * 8) - 1;
- asm volatile("lgdt %0" ::"m"(m_gdtr)
- : "memory");
- }
- const DescriptorTablePointer& Processor::get_gdtr()
- {
- return m_gdtr;
- }
- Vector<FlatPtr> Processor::capture_stack_trace(Thread& thread, size_t max_frames)
- {
- FlatPtr frame_ptr = 0, eip = 0;
- Vector<FlatPtr, 32> stack_trace;
- auto walk_stack = [&](FlatPtr stack_ptr) {
- static constexpr size_t max_stack_frames = 4096;
- stack_trace.append(eip);
- size_t count = 1;
- while (stack_ptr && stack_trace.size() < max_stack_frames) {
- FlatPtr retaddr;
- count++;
- if (max_frames != 0 && count > max_frames)
- break;
- if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
- if (!copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]) || !retaddr)
- break;
- stack_trace.append(retaddr);
- if (!copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr))
- break;
- } else {
- void* fault_at;
- if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr)
- break;
- stack_trace.append(retaddr);
- if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at))
- break;
- }
- }
- };
- auto capture_current_thread = [&]() {
- frame_ptr = (FlatPtr)__builtin_frame_address(0);
- eip = (FlatPtr)__builtin_return_address(0);
- walk_stack(frame_ptr);
- };
- // Since the thread may be running on another processor, there
- // is a chance a context switch may happen while we're trying
- // to get it. It also won't be entirely accurate and merely
- // reflect the status at the last context switch.
- ScopedSpinLock lock(g_scheduler_lock);
- if (&thread == Processor::current_thread()) {
- VERIFY(thread.state() == Thread::Running);
- // Leave the scheduler lock. If we trigger page faults we may
- // need to be preempted. Since this is our own thread it won't
- // cause any problems as the stack won't change below this frame.
- lock.unlock();
- capture_current_thread();
- } else if (thread.is_active()) {
- VERIFY(thread.cpu() != Processor::id());
- // If this is the case, the thread is currently running
- // on another processor. We can't trust the kernel stack as
- // it may be changing at any time. We need to probably send
- // an IPI to that processor, have it walk the stack and wait
- // until it returns the data back to us
- auto& proc = Processor::current();
- smp_unicast(
- thread.cpu(),
- [&]() {
- dbgln("CPU[{}] getting stack for cpu #{}", Processor::id(), proc.get_id());
- ProcessPagingScope paging_scope(thread.process());
- VERIFY(&Processor::current() != &proc);
- VERIFY(&thread == Processor::current_thread());
- // NOTE: Because the other processor is still holding the
- // scheduler lock while waiting for this callback to finish,
- // the current thread on the target processor cannot change
- // TODO: What to do about page faults here? We might deadlock
- // because the other processor is still holding the
- // scheduler lock...
- capture_current_thread();
- },
- false);
- } else {
- switch (thread.state()) {
- case Thread::Running:
- VERIFY_NOT_REACHED(); // should have been handled above
- case Thread::Runnable:
- case Thread::Stopped:
- case Thread::Blocked:
- case Thread::Dying:
- case Thread::Dead: {
- // We need to retrieve ebp from what was last pushed to the kernel
- // stack. Before switching out of that thread, it switch_context
- // pushed the callee-saved registers, and the last of them happens
- // to be ebp.
- ProcessPagingScope paging_scope(thread.process());
- auto& tss = thread.tss();
- u32* stack_top;
- #if ARCH(I386)
- stack_top = reinterpret_cast<u32*>(tss.esp);
- #else
- (void)tss;
- TODO();
- #endif
- if (is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) {
- if (!copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0]))
- frame_ptr = 0;
- } else {
- void* fault_at;
- if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at))
- frame_ptr = 0;
- }
- #if ARCH(I386)
- eip = tss.eip;
- #else
- TODO();
- #endif
- // TODO: We need to leave the scheduler lock here, but we also
- // need to prevent the target thread from being run while
- // we walk the stack
- lock.unlock();
- walk_stack(frame_ptr);
- break;
- }
- default:
- dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string());
- break;
- }
- }
- return stack_trace;
- }
- ProcessorContainer& Processor::processors()
- {
- return s_processors;
- }
- Processor& Processor::by_id(u32 cpu)
- {
- // s_processors does not need to be protected by a lock of any kind.
- // It is populated early in the boot process, and the BSP is waiting
- // for all APs to finish, after which this array never gets modified
- // again, so it's safe to not protect access to it here
- auto& procs = processors();
- VERIFY(procs[cpu] != nullptr);
- VERIFY(procs.size() > cpu);
- return *procs[cpu];
- }
- void Processor::enter_trap(TrapFrame& trap, bool raise_irq)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(&Processor::current() == this);
- trap.prev_irq_level = m_in_irq;
- if (raise_irq)
- m_in_irq++;
- auto* current_thread = Processor::current_thread();
- if (current_thread) {
- auto& current_trap = current_thread->current_trap();
- trap.next_trap = current_trap;
- current_trap = &trap;
- // The cs register of this trap tells us where we will return back to
- current_thread->set_previous_mode(((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode);
- } else {
- trap.next_trap = nullptr;
- }
- }
- void Processor::exit_trap(TrapFrame& trap)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(&Processor::current() == this);
- VERIFY(m_in_irq >= trap.prev_irq_level);
- m_in_irq = trap.prev_irq_level;
- smp_process_pending_messages();
- if (!m_in_irq && !m_in_critical)
- check_invoke_scheduler();
- auto* current_thread = Processor::current_thread();
- if (current_thread) {
- auto& current_trap = current_thread->current_trap();
- current_trap = trap.next_trap;
- if (current_trap) {
- VERIFY(current_trap->regs);
- // If we have another higher level trap then we probably returned
- // from an interrupt or irq handler. The cs register of the
- // new/higher level trap tells us what the mode prior to it was
- current_thread->set_previous_mode(((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode);
- } else {
- // If we don't have a higher level trap then we're back in user mode.
- // Unless we're a kernel process, in which case we're always in kernel mode
- current_thread->set_previous_mode(current_thread->process().is_kernel_process() ? Thread::PreviousMode::KernelMode : Thread::PreviousMode::UserMode);
- }
- }
- }
- void Processor::check_invoke_scheduler()
- {
- VERIFY(!m_in_irq);
- VERIFY(!m_in_critical);
- if (m_invoke_scheduler_async && m_scheduler_initialized) {
- m_invoke_scheduler_async = false;
- Scheduler::invoke_async();
- }
- }
- void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
- {
- auto ptr = vaddr.as_ptr();
- while (page_count > 0) {
- // clang-format off
- asm volatile("invlpg %0"
- :
- : "m"(*ptr)
- : "memory");
- // clang-format on
- ptr += PAGE_SIZE;
- page_count--;
- }
- }
- void Processor::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
- {
- if (s_smp_enabled && (!is_user_address(vaddr) || Process::current()->thread_count() > 1))
- smp_broadcast_flush_tlb(page_directory, vaddr, page_count);
- else
- flush_tlb_local(vaddr, page_count);
- }
- void Processor::smp_return_to_pool(ProcessorMessage& msg)
- {
- ProcessorMessage* next = nullptr;
- do {
- msg.next = next;
- } while (s_message_pool.compare_exchange_strong(next, &msg, AK::MemoryOrder::memory_order_acq_rel));
- }
- ProcessorMessage& Processor::smp_get_from_pool()
- {
- ProcessorMessage* msg;
- // The assumption is that messages are never removed from the pool!
- for (;;) {
- msg = s_message_pool.load(AK::MemoryOrder::memory_order_consume);
- if (!msg) {
- if (!Processor::current().smp_process_pending_messages()) {
- // TODO: pause for a bit?
- }
- continue;
- }
- // If another processor were to use this message in the meanwhile,
- // "msg" is still valid (because it never gets freed). We'd detect
- // this because the expected value "msg" and pool would
- // no longer match, and the compare_exchange will fail. But accessing
- // "msg->next" is always safe here.
- if (s_message_pool.compare_exchange_strong(msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) {
- // We successfully "popped" this available message
- break;
- }
- }
- VERIFY(msg != nullptr);
- return *msg;
- }
- u32 Processor::smp_wake_n_idle_processors(u32 wake_count)
- {
- VERIFY(Processor::current().in_critical());
- VERIFY(wake_count > 0);
- if (!s_smp_enabled)
- return 0;
- // Wake at most N - 1 processors
- if (wake_count >= Processor::count()) {
- wake_count = Processor::count() - 1;
- VERIFY(wake_count > 0);
- }
- u32 current_id = Processor::current().id();
- u32 did_wake_count = 0;
- auto& apic = APIC::the();
- while (did_wake_count < wake_count) {
- // Try to get a set of idle CPUs and flip them to busy
- u32 idle_mask = s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id);
- u32 idle_count = __builtin_popcountl(idle_mask);
- if (idle_count == 0)
- break; // No (more) idle processor available
- u32 found_mask = 0;
- for (u32 i = 0; i < idle_count; i++) {
- u32 cpu = __builtin_ffsl(idle_mask) - 1;
- idle_mask &= ~(1u << cpu);
- found_mask |= 1u << cpu;
- }
- idle_mask = s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask;
- if (idle_mask == 0)
- continue; // All of them were flipped to busy, try again
- idle_count = __builtin_popcountl(idle_mask);
- for (u32 i = 0; i < idle_count; i++) {
- u32 cpu = __builtin_ffsl(idle_mask) - 1;
- idle_mask &= ~(1u << cpu);
- // Send an IPI to that CPU to wake it up. There is a possibility
- // someone else woke it up as well, or that it woke up due to
- // a timer interrupt. But we tried hard to avoid this...
- apic.send_ipi(cpu);
- did_wake_count++;
- }
- }
- return did_wake_count;
- }
- UNMAP_AFTER_INIT void Processor::smp_enable()
- {
- size_t msg_pool_size = Processor::count() * 100u;
- size_t msg_entries_cnt = Processor::count();
- auto msgs = new ProcessorMessage[msg_pool_size];
- auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt];
- size_t msg_entry_i = 0;
- for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) {
- auto& msg = msgs[i];
- msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr;
- msg.per_proc_entries = &msg_entries[msg_entry_i];
- for (size_t k = 0; k < msg_entries_cnt; k++)
- msg_entries[msg_entry_i + k].msg = &msg;
- }
- s_message_pool.store(&msgs[0], AK::MemoryOrder::memory_order_release);
- // Start sending IPI messages
- s_smp_enabled = true;
- }
- void Processor::smp_cleanup_message(ProcessorMessage& msg)
- {
- switch (msg.type) {
- case ProcessorMessage::Callback:
- msg.callback_value().~Function();
- break;
- default:
- break;
- }
- }
- bool Processor::smp_process_pending_messages()
- {
- bool did_process = false;
- u32 prev_flags;
- enter_critical(prev_flags);
- if (auto pending_msgs = m_message_queue.exchange(nullptr, AK::MemoryOrder::memory_order_acq_rel)) {
- // We pulled the stack of pending messages in LIFO order, so we need to reverse the list first
- auto reverse_list =
- [](ProcessorMessageEntry* list) -> ProcessorMessageEntry* {
- ProcessorMessageEntry* rev_list = nullptr;
- while (list) {
- auto next = list->next;
- list->next = rev_list;
- rev_list = list;
- list = next;
- }
- return rev_list;
- };
- pending_msgs = reverse_list(pending_msgs);
- // now process in the right order
- ProcessorMessageEntry* next_msg;
- for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) {
- next_msg = cur_msg->next;
- auto msg = cur_msg->msg;
- dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", id(), VirtualAddress(msg));
- switch (msg->type) {
- case ProcessorMessage::Callback:
- msg->invoke_callback();
- break;
- case ProcessorMessage::FlushTlb:
- if (is_user_address(VirtualAddress(msg->flush_tlb.ptr))) {
- // We assume that we don't cross into kernel land!
- VERIFY(is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE));
- if (read_cr3() != msg->flush_tlb.page_directory->cr3()) {
- // This processor isn't using this page directory right now, we can ignore this request
- dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr));
- break;
- }
- }
- flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count);
- break;
- }
- bool is_async = msg->async; // Need to cache this value *before* dropping the ref count!
- auto prev_refs = msg->refs.fetch_sub(1u, AK::MemoryOrder::memory_order_acq_rel);
- VERIFY(prev_refs != 0);
- if (prev_refs == 1) {
- // All processors handled this. If this is an async message,
- // we need to clean it up and return it to the pool
- if (is_async) {
- smp_cleanup_message(*msg);
- smp_return_to_pool(*msg);
- }
- }
- if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed))
- halt_this();
- }
- did_process = true;
- } else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) {
- halt_this();
- }
- leave_critical(prev_flags);
- return did_process;
- }
- bool Processor::smp_queue_message(ProcessorMessage& msg)
- {
- // Note that it's quite possible that the other processor may pop
- // the queue at any given time. We rely on the fact that the messages
- // are pooled and never get freed!
- auto& msg_entry = msg.per_proc_entries[id()];
- VERIFY(msg_entry.msg == &msg);
- ProcessorMessageEntry* next = nullptr;
- do {
- msg_entry.next = next;
- } while (m_message_queue.compare_exchange_strong(next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel));
- return next == nullptr;
- }
- void Processor::smp_broadcast_message(ProcessorMessage& msg)
- {
- auto& cur_proc = Processor::current();
- dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), count(), VirtualAddress(&cur_proc));
- msg.refs.store(count() - 1, AK::MemoryOrder::memory_order_release);
- VERIFY(msg.refs > 0);
- bool need_broadcast = false;
- for_each(
- [&](Processor& proc) {
- if (&proc != &cur_proc) {
- if (proc.smp_queue_message(msg))
- need_broadcast = true;
- }
- });
- // Now trigger an IPI on all other APs (unless all targets already had messages queued)
- if (need_broadcast)
- APIC::the().broadcast_ipi();
- }
- void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg)
- {
- auto& cur_proc = Processor::current();
- VERIFY(!msg.async);
- // If synchronous then we must cleanup and return the message back
- // to the pool. Otherwise, the last processor to complete it will return it
- while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
- // TODO: pause for a bit?
- // We need to process any messages that may have been sent to
- // us while we're waiting. This also checks if another processor
- // may have requested us to halt.
- cur_proc.smp_process_pending_messages();
- }
- smp_cleanup_message(msg);
- smp_return_to_pool(msg);
- }
- void Processor::smp_broadcast(Function<void()> callback, bool async)
- {
- auto& msg = smp_get_from_pool();
- msg.async = async;
- msg.type = ProcessorMessage::Callback;
- new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
- smp_broadcast_message(msg);
- if (!async)
- smp_broadcast_wait_sync(msg);
- }
- void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async)
- {
- auto& cur_proc = Processor::current();
- VERIFY(cpu != cur_proc.get_id());
- auto& target_proc = processors()[cpu];
- msg.async = async;
- dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_proc));
- msg.refs.store(1u, AK::MemoryOrder::memory_order_release);
- if (target_proc->smp_queue_message(msg)) {
- APIC::the().send_ipi(cpu);
- }
- if (!async) {
- // If synchronous then we must cleanup and return the message back
- // to the pool. Otherwise, the last processor to complete it will return it
- while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
- // TODO: pause for a bit?
- // We need to process any messages that may have been sent to
- // us while we're waiting. This also checks if another processor
- // may have requested us to halt.
- cur_proc.smp_process_pending_messages();
- }
- smp_cleanup_message(msg);
- smp_return_to_pool(msg);
- }
- }
- void Processor::smp_unicast(u32 cpu, Function<void()> callback, bool async)
- {
- auto& msg = smp_get_from_pool();
- msg.type = ProcessorMessage::Callback;
- new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
- smp_unicast_message(cpu, msg, async);
- }
- void Processor::smp_broadcast_flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
- {
- auto& msg = smp_get_from_pool();
- msg.async = false;
- msg.type = ProcessorMessage::FlushTlb;
- msg.flush_tlb.page_directory = page_directory;
- msg.flush_tlb.ptr = vaddr.as_ptr();
- msg.flush_tlb.page_count = page_count;
- smp_broadcast_message(msg);
- // While the other processors handle this request, we'll flush ours
- flush_tlb_local(vaddr, page_count);
- // Now wait until everybody is done as well
- smp_broadcast_wait_sync(msg);
- }
- void Processor::smp_broadcast_halt()
- {
- // We don't want to use a message, because this could have been triggered
- // by being out of memory and we might not be able to get a message
- for_each(
- [&](Processor& proc) {
- proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release);
- });
- // Now trigger an IPI on all other APs
- APIC::the().broadcast_ipi();
- }
- void Processor::Processor::halt()
- {
- if (s_smp_enabled)
- smp_broadcast_halt();
- halt_this();
- }
- UNMAP_AFTER_INIT void Processor::deferred_call_pool_init()
- {
- size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]);
- for (size_t i = 0; i < pool_count; i++) {
- auto& entry = m_deferred_call_pool[i];
- entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr;
- new (entry.handler_storage) DeferredCallEntry::HandlerFunction;
- entry.was_allocated = false;
- }
- m_pending_deferred_calls = nullptr;
- m_free_deferred_call_pool_entry = &m_deferred_call_pool[0];
- }
- void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry)
- {
- VERIFY(m_in_critical);
- VERIFY(!entry->was_allocated);
- entry->handler_value() = {};
- entry->next = m_free_deferred_call_pool_entry;
- m_free_deferred_call_pool_entry = entry;
- }
- DeferredCallEntry* Processor::deferred_call_get_free()
- {
- VERIFY(m_in_critical);
- if (m_free_deferred_call_pool_entry) {
- // Fast path, we have an entry in our pool
- auto* entry = m_free_deferred_call_pool_entry;
- m_free_deferred_call_pool_entry = entry->next;
- VERIFY(!entry->was_allocated);
- return entry;
- }
- auto* entry = new DeferredCallEntry;
- new (entry->handler_storage) DeferredCallEntry::HandlerFunction;
- entry->was_allocated = true;
- return entry;
- }
- void Processor::deferred_call_execute_pending()
- {
- VERIFY(m_in_critical);
- if (!m_pending_deferred_calls)
- return;
- auto* pending_list = m_pending_deferred_calls;
- m_pending_deferred_calls = nullptr;
- // We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first
- auto reverse_list =
- [](DeferredCallEntry* list) -> DeferredCallEntry* {
- DeferredCallEntry* rev_list = nullptr;
- while (list) {
- auto next = list->next;
- list->next = rev_list;
- rev_list = list;
- list = next;
- }
- return rev_list;
- };
- pending_list = reverse_list(pending_list);
- do {
- pending_list->invoke_handler();
- // Return the entry back to the pool, or free it
- auto* next = pending_list->next;
- if (pending_list->was_allocated) {
- pending_list->handler_value().~Function();
- delete pending_list;
- } else
- deferred_call_return_to_pool(pending_list);
- pending_list = next;
- } while (pending_list);
- }
- void Processor::deferred_call_queue_entry(DeferredCallEntry* entry)
- {
- VERIFY(m_in_critical);
- entry->next = m_pending_deferred_calls;
- m_pending_deferred_calls = entry;
- }
- void Processor::deferred_call_queue(Function<void()> callback)
- {
- // NOTE: If we are called outside of a critical section and outside
- // of an irq handler, the function will be executed before we return!
- ScopedCritical critical;
- auto& cur_proc = Processor::current();
- auto* entry = cur_proc.deferred_call_get_free();
- entry->handler_value() = move(callback);
- cur_proc.deferred_call_queue_entry(entry);
- }
- UNMAP_AFTER_INIT void Processor::gdt_init()
- {
- m_gdt_length = 0;
- m_gdtr.address = nullptr;
- m_gdtr.limit = 0;
- write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000);
- write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0
- write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0
- write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3
- write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3
- Descriptor tls_descriptor {};
- tls_descriptor.low = tls_descriptor.high = 0;
- tls_descriptor.dpl = 3;
- tls_descriptor.segment_present = 1;
- tls_descriptor.granularity = 0;
- tls_descriptor.operation_size64 = 0;
- tls_descriptor.operation_size32 = 1;
- tls_descriptor.descriptor_type = 1;
- tls_descriptor.type = 2;
- write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3
- Descriptor fs_descriptor {};
- fs_descriptor.set_base(VirtualAddress { this });
- fs_descriptor.set_limit(sizeof(Processor));
- fs_descriptor.dpl = 0;
- fs_descriptor.segment_present = 1;
- fs_descriptor.granularity = 0;
- fs_descriptor.operation_size64 = 0;
- fs_descriptor.operation_size32 = 1;
- fs_descriptor.descriptor_type = 1;
- fs_descriptor.type = 2;
- write_gdt_entry(GDT_SELECTOR_PROC, fs_descriptor); // fs0
- Descriptor tss_descriptor {};
- tss_descriptor.set_base(VirtualAddress { &m_tss });
- tss_descriptor.set_limit(sizeof(TSS32));
- tss_descriptor.dpl = 0;
- tss_descriptor.segment_present = 1;
- tss_descriptor.granularity = 0;
- tss_descriptor.operation_size64 = 0;
- tss_descriptor.operation_size32 = 1;
- tss_descriptor.descriptor_type = 0;
- tss_descriptor.type = 9;
- write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss
- flush_gdt();
- load_task_register(GDT_SELECTOR_TSS);
- asm volatile(
- "mov %%ax, %%ds\n"
- "mov %%ax, %%es\n"
- "mov %%ax, %%gs\n"
- "mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0)
- : "memory");
- set_fs(GDT_SELECTOR_PROC);
- #if ARCH(I386)
- // Make sure CS points to the kernel code descriptor.
- // clang-format off
- asm volatile(
- "ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n"
- "sanity:\n");
- // clang-format on
- #endif
- }
- }
|