MemoryManager.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/VM/MemoryManager.h>
  9. //#define MM_DEBUG
  10. //#define PAGE_FAULT_DEBUG
  11. static MemoryManager* s_the;
  12. unsigned MemoryManager::s_user_physical_pages_in_existence;
  13. unsigned MemoryManager::s_super_physical_pages_in_existence;
  14. MemoryManager& MM
  15. {
  16. return *s_the;
  17. }
  18. MemoryManager::MemoryManager()
  19. {
  20. // FIXME: This is not the best way to do memory map detection.
  21. // Rewrite to use BIOS int 15,e820 once we have VM86 support.
  22. word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15);
  23. word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17);
  24. kprintf("%u kB base memory\n", base_memory);
  25. kprintf("%u kB extended memory\n", ext_memory);
  26. m_ram_size = ext_memory * 1024;
  27. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  28. m_page_table_zero = (dword*)0x6000;
  29. initialize_paging();
  30. kprintf("MM initialized.\n");
  31. }
  32. MemoryManager::~MemoryManager()
  33. {
  34. }
  35. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  36. {
  37. page_directory.m_directory_page = allocate_supervisor_physical_page();
  38. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  39. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  40. for (int i = 768; i < 1024; ++i)
  41. page_directory.entries()[i] = kernel_page_directory().entries()[i];
  42. }
  43. void MemoryManager::initialize_paging()
  44. {
  45. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  46. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  47. memset(m_page_table_zero, 0, PAGE_SIZE);
  48. #ifdef MM_DEBUG
  49. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  50. #endif
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Protect against null dereferences\n");
  53. #endif
  54. // Make null dereferences crash.
  55. map_protected(VirtualAddress(0), PAGE_SIZE);
  56. #ifdef MM_DEBUG
  57. dbgprintf("MM: Identity map bottom 4MB\n");
  58. #endif
  59. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  60. // Every process shares these mappings.
  61. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  62. // Basic memory map:
  63. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  64. // (last page before 1MB) Used by quickmap_page().
  65. // 1 MB -> 2 MB kmalloc_eternal() space.
  66. // 2 MB -> 3 MB kmalloc() space.
  67. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  68. // 4 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
  69. // 0xc0000000-0xffffffff Kernel-only linear address space
  70. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  71. m_free_supervisor_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), true));
  72. dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
  73. for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
  74. m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), false));
  75. m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
  76. #ifdef MM_DEBUG
  77. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  78. dbgprintf("MM: Installing page directory\n");
  79. #endif
  80. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  81. asm volatile(
  82. "movl %%cr0, %%eax\n"
  83. "orl $0x80000001, %%eax\n"
  84. "movl %%eax, %%cr0\n" ::
  85. : "%eax", "memory");
  86. #ifdef MM_DEBUG
  87. dbgprintf("MM: Paging initialized.\n");
  88. #endif
  89. }
  90. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  91. {
  92. ASSERT(!page_directory.m_physical_pages.contains(index));
  93. auto physical_page = allocate_supervisor_physical_page();
  94. if (!physical_page)
  95. return nullptr;
  96. page_directory.m_physical_pages.set(index, physical_page.copy_ref());
  97. return physical_page;
  98. }
  99. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  100. {
  101. InterruptDisabler disabler;
  102. // FIXME: ASSERT(vaddr is 4KB aligned);
  103. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  104. auto pte_address = vaddr.offset(offset);
  105. auto pte = ensure_pte(page_directory, pte_address);
  106. pte.set_physical_page_base(0);
  107. pte.set_user_allowed(false);
  108. pte.set_present(true);
  109. pte.set_writable(true);
  110. flush_tlb(pte_address);
  111. }
  112. }
  113. auto MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) -> PageTableEntry
  114. {
  115. ASSERT_INTERRUPTS_DISABLED();
  116. dword page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  117. dword page_table_index = (vaddr.get() >> 12) & 0x3ff;
  118. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  119. if (!pde.is_present()) {
  120. #ifdef MM_DEBUG
  121. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, vaddr.get());
  122. #endif
  123. if (page_directory_index == 0) {
  124. ASSERT(&page_directory == m_kernel_page_directory);
  125. pde.set_page_table_base((dword)m_page_table_zero);
  126. pde.set_user_allowed(false);
  127. pde.set_present(true);
  128. pde.set_writable(true);
  129. } else {
  130. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  131. auto page_table = allocate_page_table(page_directory, page_directory_index);
  132. #ifdef MM_DEBUG
  133. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  134. &page_directory,
  135. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  136. page_directory.cr3(),
  137. page_directory_index,
  138. vaddr.get(),
  139. page_table->paddr().get());
  140. #endif
  141. pde.set_page_table_base(page_table->paddr().get());
  142. pde.set_user_allowed(true);
  143. pde.set_present(true);
  144. pde.set_writable(true);
  145. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  146. }
  147. }
  148. return PageTableEntry(&pde.page_table_base()[page_table_index]);
  149. }
  150. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  151. {
  152. InterruptDisabler disabler;
  153. // FIXME: ASSERT(linearAddress is 4KB aligned);
  154. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  155. auto pte_address = vaddr.offset(offset);
  156. auto pte = ensure_pte(kernel_page_directory(), pte_address);
  157. pte.set_physical_page_base(pte_address.get());
  158. pte.set_user_allowed(false);
  159. pte.set_present(false);
  160. pte.set_writable(false);
  161. flush_tlb(pte_address);
  162. }
  163. }
  164. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  165. {
  166. InterruptDisabler disabler;
  167. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  168. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  169. auto pte_address = vaddr.offset(offset);
  170. auto pte = ensure_pte(page_directory, pte_address);
  171. pte.set_physical_page_base(pte_address.get());
  172. pte.set_user_allowed(false);
  173. pte.set_present(true);
  174. pte.set_writable(true);
  175. page_directory.flush(pte_address);
  176. }
  177. }
  178. void MemoryManager::initialize()
  179. {
  180. s_the = new MemoryManager;
  181. }
  182. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  183. {
  184. ASSERT_INTERRUPTS_DISABLED();
  185. if (vaddr.get() >= 0xc0000000) {
  186. for (auto& region : MM.m_kernel_regions) {
  187. if (region->contains(vaddr))
  188. return region;
  189. }
  190. }
  191. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  192. for (auto& region : process.m_regions) {
  193. if (region->contains(vaddr))
  194. return region.ptr();
  195. }
  196. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
  197. return nullptr;
  198. }
  199. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  200. {
  201. if (vaddr.get() >= 0xc0000000) {
  202. for (auto& region : MM.m_kernel_regions) {
  203. if (region->contains(vaddr))
  204. return region;
  205. }
  206. }
  207. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  208. for (auto& region : process.m_regions) {
  209. if (region->contains(vaddr))
  210. return region.ptr();
  211. }
  212. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
  213. return nullptr;
  214. }
  215. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  216. {
  217. ASSERT_INTERRUPTS_DISABLED();
  218. auto& vmo = region.vmo();
  219. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  220. sti();
  221. LOCKER(vmo.m_paging_lock);
  222. cli();
  223. if (!vmo_page.is_null()) {
  224. #ifdef PAGE_FAULT_DEBUG
  225. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  226. #endif
  227. remap_region_page(region, page_index_in_region, true);
  228. return true;
  229. }
  230. auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
  231. #ifdef PAGE_FAULT_DEBUG
  232. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  233. #endif
  234. region.set_should_cow(page_index_in_region, false);
  235. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  236. remap_region_page(region, page_index_in_region, true);
  237. return true;
  238. }
  239. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  240. {
  241. ASSERT_INTERRUPTS_DISABLED();
  242. auto& vmo = region.vmo();
  243. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  244. #ifdef PAGE_FAULT_DEBUG
  245. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  246. #endif
  247. region.set_should_cow(page_index_in_region, false);
  248. remap_region_page(region, page_index_in_region, true);
  249. return true;
  250. }
  251. #ifdef PAGE_FAULT_DEBUG
  252. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  253. #endif
  254. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  255. auto physical_page = allocate_physical_page(ShouldZeroFill::No);
  256. byte* dest_ptr = quickmap_page(*physical_page);
  257. const byte* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  258. #ifdef PAGE_FAULT_DEBUG
  259. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  260. #endif
  261. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  262. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  263. unquickmap_page();
  264. region.set_should_cow(page_index_in_region, false);
  265. remap_region_page(region, page_index_in_region, true);
  266. return true;
  267. }
  268. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  269. {
  270. ASSERT(region.page_directory());
  271. auto& vmo = region.vmo();
  272. ASSERT(!vmo.is_anonymous());
  273. ASSERT(vmo.inode());
  274. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  275. InterruptFlagSaver saver;
  276. sti();
  277. LOCKER(vmo.m_paging_lock);
  278. cli();
  279. if (!vmo_page.is_null()) {
  280. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  281. remap_region_page(region, page_index_in_region, true);
  282. return true;
  283. }
  284. #ifdef MM_DEBUG
  285. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  286. #endif
  287. sti();
  288. byte page_buffer[PAGE_SIZE];
  289. auto& inode = *vmo.inode();
  290. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
  291. if (nread < 0) {
  292. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  293. return false;
  294. }
  295. if (nread < PAGE_SIZE) {
  296. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  297. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  298. }
  299. cli();
  300. vmo_page = allocate_physical_page(ShouldZeroFill::No);
  301. if (vmo_page.is_null()) {
  302. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  303. return false;
  304. }
  305. remap_region_page(region, page_index_in_region, true);
  306. byte* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  307. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  308. return true;
  309. }
  310. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  311. {
  312. ASSERT_INTERRUPTS_DISABLED();
  313. ASSERT(current);
  314. #ifdef PAGE_FAULT_DEBUG
  315. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.vaddr().get());
  316. #endif
  317. ASSERT(fault.vaddr() != m_quickmap_addr);
  318. auto* region = region_from_vaddr(current->process(), fault.vaddr());
  319. if (!region) {
  320. kprintf("NP(error) fault at invalid address L%x\n", fault.vaddr().get());
  321. return PageFaultResponse::ShouldCrash;
  322. }
  323. auto page_index_in_region = region->page_index_from_address(fault.vaddr());
  324. if (fault.is_not_present()) {
  325. if (region->vmo().inode()) {
  326. #ifdef PAGE_FAULT_DEBUG
  327. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  328. #endif
  329. page_in_from_inode(*region, page_index_in_region);
  330. return PageFaultResponse::Continue;
  331. } else {
  332. #ifdef PAGE_FAULT_DEBUG
  333. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  334. #endif
  335. zero_page(*region, page_index_in_region);
  336. return PageFaultResponse::Continue;
  337. }
  338. } else if (fault.is_protection_violation()) {
  339. if (region->should_cow(page_index_in_region)) {
  340. #ifdef PAGE_FAULT_DEBUG
  341. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  342. #endif
  343. bool success = copy_on_write(*region, page_index_in_region);
  344. ASSERT(success);
  345. return PageFaultResponse::Continue;
  346. }
  347. kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.vaddr().get());
  348. } else {
  349. ASSERT_NOT_REACHED();
  350. }
  351. return PageFaultResponse::ShouldCrash;
  352. }
  353. RetainPtr<Region> MemoryManager::allocate_kernel_region(size_t size, String&& name)
  354. {
  355. InterruptDisabler disabler;
  356. ASSERT(!(size % PAGE_SIZE));
  357. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  358. ASSERT(range.is_valid());
  359. auto region = adopt(*new Region(range, move(name), PROT_READ | PROT_WRITE | PROT_EXEC, false));
  360. MM.map_region_at_address(*m_kernel_page_directory, *region, range.base(), false);
  361. // FIXME: It would be cool if these could zero-fill on demand instead.
  362. region->commit();
  363. return region;
  364. }
  365. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
  366. {
  367. InterruptDisabler disabler;
  368. if (1 > m_free_physical_pages.size()) {
  369. kprintf("FUCK! No physical pages available.\n");
  370. ASSERT_NOT_REACHED();
  371. return {};
  372. }
  373. #ifdef MM_DEBUG
  374. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  375. #endif
  376. auto physical_page = m_free_physical_pages.take_last();
  377. if (should_zero_fill == ShouldZeroFill::Yes) {
  378. auto* ptr = (dword*)quickmap_page(*physical_page);
  379. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  380. unquickmap_page();
  381. }
  382. return physical_page;
  383. }
  384. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  385. {
  386. InterruptDisabler disabler;
  387. if (1 > m_free_supervisor_physical_pages.size()) {
  388. kprintf("FUCK! No physical pages available.\n");
  389. ASSERT_NOT_REACHED();
  390. return {};
  391. }
  392. #ifdef MM_DEBUG
  393. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  394. #endif
  395. auto physical_page = m_free_supervisor_physical_pages.take_last();
  396. fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  397. return physical_page;
  398. }
  399. void MemoryManager::enter_process_paging_scope(Process& process)
  400. {
  401. ASSERT(current);
  402. InterruptDisabler disabler;
  403. current->tss().cr3 = process.page_directory().cr3();
  404. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  405. : "memory");
  406. }
  407. void MemoryManager::flush_entire_tlb()
  408. {
  409. asm volatile(
  410. "mov %%cr3, %%eax\n"
  411. "mov %%eax, %%cr3\n" ::
  412. : "%eax", "memory");
  413. }
  414. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  415. {
  416. asm volatile("invlpg %0"
  417. :
  418. : "m"(*(char*)vaddr.get())
  419. : "memory");
  420. }
  421. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
  422. {
  423. auto pte = ensure_pte(kernel_page_directory(), vaddr);
  424. pte.set_physical_page_base(paddr.get());
  425. pte.set_present(true);
  426. pte.set_writable(true);
  427. pte.set_user_allowed(false);
  428. flush_tlb(vaddr);
  429. }
  430. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  431. {
  432. ASSERT_INTERRUPTS_DISABLED();
  433. ASSERT(!m_quickmap_in_use);
  434. m_quickmap_in_use = true;
  435. auto page_vaddr = m_quickmap_addr;
  436. auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
  437. pte.set_physical_page_base(physical_page.paddr().get());
  438. pte.set_present(true);
  439. pte.set_writable(true);
  440. pte.set_user_allowed(false);
  441. flush_tlb(page_vaddr);
  442. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  443. #ifdef MM_DEBUG
  444. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
  445. #endif
  446. return page_vaddr.as_ptr();
  447. }
  448. void MemoryManager::unquickmap_page()
  449. {
  450. ASSERT_INTERRUPTS_DISABLED();
  451. ASSERT(m_quickmap_in_use);
  452. auto page_vaddr = m_quickmap_addr;
  453. auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
  454. #ifdef MM_DEBUG
  455. auto old_physical_address = pte.physical_page_base();
  456. #endif
  457. pte.set_physical_page_base(0);
  458. pte.set_present(false);
  459. pte.set_writable(false);
  460. flush_tlb(page_vaddr);
  461. #ifdef MM_DEBUG
  462. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_vaddr, old_physical_address);
  463. #endif
  464. m_quickmap_in_use = false;
  465. }
  466. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  467. {
  468. ASSERT(region.page_directory());
  469. InterruptDisabler disabler;
  470. auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
  471. auto pte = ensure_pte(*region.page_directory(), page_vaddr);
  472. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  473. ASSERT(physical_page);
  474. pte.set_physical_page_base(physical_page->paddr().get());
  475. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  476. if (region.should_cow(page_index_in_region))
  477. pte.set_writable(false);
  478. else
  479. pte.set_writable(region.is_writable());
  480. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  481. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  482. pte.set_user_allowed(user_allowed);
  483. region.page_directory()->flush(page_vaddr);
  484. #ifdef MM_DEBUG
  485. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
  486. #endif
  487. }
  488. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  489. {
  490. InterruptDisabler disabler;
  491. ASSERT(region.page_directory() == &page_directory);
  492. map_region_at_address(page_directory, region, region.vaddr(), true);
  493. }
  494. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr, bool user_allowed)
  495. {
  496. InterruptDisabler disabler;
  497. region.set_page_directory(page_directory);
  498. auto& vmo = region.vmo();
  499. #ifdef MM_DEBUG
  500. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  501. #endif
  502. for (size_t i = 0; i < region.page_count(); ++i) {
  503. auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
  504. auto pte = ensure_pte(page_directory, page_vaddr);
  505. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  506. if (physical_page) {
  507. pte.set_physical_page_base(physical_page->paddr().get());
  508. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  509. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  510. if (region.should_cow(region.first_page_index() + i))
  511. pte.set_writable(false);
  512. else
  513. pte.set_writable(region.is_writable());
  514. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  515. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  516. } else {
  517. pte.set_physical_page_base(0);
  518. pte.set_present(false);
  519. pte.set_writable(region.is_writable());
  520. }
  521. pte.set_user_allowed(user_allowed);
  522. page_directory.flush(page_vaddr);
  523. #ifdef MM_DEBUG
  524. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  525. #endif
  526. }
  527. }
  528. bool MemoryManager::unmap_region(Region& region)
  529. {
  530. ASSERT(region.page_directory());
  531. InterruptDisabler disabler;
  532. for (size_t i = 0; i < region.page_count(); ++i) {
  533. auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
  534. auto pte = ensure_pte(*region.page_directory(), vaddr);
  535. pte.set_physical_page_base(0);
  536. pte.set_present(false);
  537. pte.set_writable(false);
  538. pte.set_user_allowed(false);
  539. region.page_directory()->flush(vaddr);
  540. #ifdef MM_DEBUG
  541. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  542. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
  543. #endif
  544. }
  545. region.release_page_directory();
  546. return true;
  547. }
  548. bool MemoryManager::map_region(Process& process, Region& region)
  549. {
  550. map_region_at_address(process.page_directory(), region, region.vaddr(), true);
  551. return true;
  552. }
  553. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  554. {
  555. auto* region = region_from_vaddr(process, vaddr);
  556. return region && region->is_readable();
  557. }
  558. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  559. {
  560. auto* region = region_from_vaddr(process, vaddr);
  561. return region && region->is_writable();
  562. }
  563. void MemoryManager::register_vmo(VMObject& vmo)
  564. {
  565. InterruptDisabler disabler;
  566. m_vmos.set(&vmo);
  567. }
  568. void MemoryManager::unregister_vmo(VMObject& vmo)
  569. {
  570. InterruptDisabler disabler;
  571. m_vmos.remove(&vmo);
  572. }
  573. void MemoryManager::register_region(Region& region)
  574. {
  575. InterruptDisabler disabler;
  576. if (region.vaddr().get() >= 0xc0000000)
  577. m_kernel_regions.set(&region);
  578. else
  579. m_user_regions.set(&region);
  580. }
  581. void MemoryManager::unregister_region(Region& region)
  582. {
  583. InterruptDisabler disabler;
  584. if (region.vaddr().get() >= 0xc0000000)
  585. m_kernel_regions.remove(&region);
  586. else
  587. m_user_regions.remove(&region);
  588. }
  589. ProcessPagingScope::ProcessPagingScope(Process& process)
  590. {
  591. ASSERT(current);
  592. MM.enter_process_paging_scope(process);
  593. }
  594. ProcessPagingScope::~ProcessPagingScope()
  595. {
  596. MM.enter_process_paging_scope(current->process());
  597. }