MemoryManager.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. //#define MM_DEBUG
  9. #define SCRUB_DEALLOCATED_PAGE_TABLES
  10. static MemoryManager* s_the;
  11. MemoryManager& MM
  12. {
  13. return *s_the;
  14. }
  15. MemoryManager::MemoryManager()
  16. {
  17. m_kernel_page_directory = (PageDirectory*)0x4000;
  18. m_pageTableZero = (dword*)0x6000;
  19. m_pageTableOne = (dword*)0x7000;
  20. m_next_laddr.set(0xd0000000);
  21. initializePaging();
  22. }
  23. MemoryManager::~MemoryManager()
  24. {
  25. }
  26. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  27. {
  28. memset(&page_directory, 0, sizeof(PageDirectory));
  29. page_directory.entries[0] = m_kernel_page_directory->entries[0];
  30. page_directory.entries[1] = m_kernel_page_directory->entries[1];
  31. }
  32. void MemoryManager::release_page_directory(PageDirectory& page_directory)
  33. {
  34. ASSERT_INTERRUPTS_DISABLED();
  35. #ifdef MM_DEBUG
  36. dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
  37. #endif
  38. for (size_t i = 0; i < 1024; ++i) {
  39. auto& page_table = page_directory.physical_pages[i];
  40. if (!page_table.is_null()) {
  41. #ifdef MM_DEBUG
  42. dbgprintf("MM: deallocating user page table P%x\n", page_table->paddr().get());
  43. #endif
  44. deallocate_page_table(page_directory, i);
  45. }
  46. }
  47. #ifdef SCRUB_DEALLOCATED_PAGE_TABLES
  48. memset(&page_directory, 0xc9, sizeof(PageDirectory));
  49. #endif
  50. }
  51. void MemoryManager::initializePaging()
  52. {
  53. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  54. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  55. memset(m_pageTableZero, 0, PAGE_SIZE);
  56. memset(m_pageTableOne, 0, PAGE_SIZE);
  57. memset(m_kernel_page_directory, 0, sizeof(PageDirectory));
  58. #ifdef MM_DEBUG
  59. kprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
  60. #endif
  61. // Make null dereferences crash.
  62. protectMap(LinearAddress(0), PAGE_SIZE);
  63. // The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
  64. create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
  65. // The physical pages 4 MB through 8 MB are available for allocation.
  66. for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
  67. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));
  68. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
  69. asm volatile(
  70. "movl %cr0, %eax\n"
  71. "orl $0x80000001, %eax\n"
  72. "movl %eax, %cr0\n"
  73. );
  74. }
  75. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  76. {
  77. auto& page_directory_physical_ptr = page_directory.physical_pages[index];
  78. ASSERT(!page_directory_physical_ptr);
  79. auto ppages = allocate_physical_pages(1);
  80. ASSERT(ppages.size() == 1);
  81. dword address = ppages[0]->paddr().get();
  82. create_identity_mapping(LinearAddress(address), PAGE_SIZE);
  83. memset((void*)address, 0, PAGE_SIZE);
  84. page_directory.physical_pages[index] = move(ppages[0]);
  85. return page_directory.physical_pages[index];
  86. }
  87. void MemoryManager::deallocate_page_table(PageDirectory& page_directory, unsigned index)
  88. {
  89. auto& physical_page = page_directory.physical_pages[index];
  90. ASSERT(physical_page);
  91. ASSERT(!m_free_physical_pages.contains_slow(physical_page));
  92. for (size_t i = 0; i < MM.m_free_physical_pages.size(); ++i) {
  93. ASSERT(MM.m_free_physical_pages[i].ptr() != physical_page.ptr());
  94. }
  95. remove_identity_mapping(LinearAddress(physical_page->paddr().get()), PAGE_SIZE);
  96. page_directory.physical_pages[index] = nullptr;
  97. }
  98. void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
  99. {
  100. InterruptDisabler disabler;
  101. // FIXME: ASSERT(laddr is 4KB aligned);
  102. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  103. auto pte_address = laddr.offset(offset);
  104. auto pte = ensurePTE(m_kernel_page_directory, pte_address);
  105. pte.setPhysicalPageBase(0);
  106. pte.setUserAllowed(false);
  107. pte.setPresent(true);
  108. pte.setWritable(true);
  109. flushTLB(pte_address);
  110. }
  111. }
  112. auto MemoryManager::ensurePTE(PageDirectory* page_directory, LinearAddress laddr) -> PageTableEntry
  113. {
  114. ASSERT_INTERRUPTS_DISABLED();
  115. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  116. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  117. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory->entries[page_directory_index]);
  118. if (!pde.isPresent()) {
  119. #ifdef MM_DEBUG
  120. dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
  121. #endif
  122. if (page_directory_index == 0) {
  123. ASSERT(page_directory == m_kernel_page_directory);
  124. pde.setPageTableBase((dword)m_pageTableZero);
  125. pde.setUserAllowed(false);
  126. pde.setPresent(true);
  127. pde.setWritable(true);
  128. } else if (page_directory_index == 1) {
  129. ASSERT(page_directory == m_kernel_page_directory);
  130. pde.setPageTableBase((dword)m_pageTableOne);
  131. pde.setUserAllowed(false);
  132. pde.setPresent(true);
  133. pde.setWritable(true);
  134. } else {
  135. auto page_table = allocate_page_table(*page_directory, page_directory_index);
  136. #ifdef MM_DEBUG
  137. dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
  138. page_directory,
  139. page_directory == m_kernel_page_directory ? "Kernel" : "User",
  140. page_directory_index,
  141. laddr.get(),
  142. page_table->paddr().get());
  143. #endif
  144. pde.setPageTableBase(page_table->paddr().get());
  145. pde.setUserAllowed(true);
  146. pde.setPresent(true);
  147. pde.setWritable(true);
  148. page_directory->physical_pages[page_directory_index] = move(page_table);
  149. }
  150. }
  151. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  152. }
  153. void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
  154. {
  155. InterruptDisabler disabler;
  156. // FIXME: ASSERT(linearAddress is 4KB aligned);
  157. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  158. auto pteAddress = linearAddress.offset(offset);
  159. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  160. pte.setPhysicalPageBase(pteAddress.get());
  161. pte.setUserAllowed(false);
  162. pte.setPresent(false);
  163. pte.setWritable(false);
  164. flushTLB(pteAddress);
  165. }
  166. }
  167. void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
  168. {
  169. InterruptDisabler disabler;
  170. // FIXME: ASSERT(laddr is 4KB aligned);
  171. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  172. auto pteAddress = laddr.offset(offset);
  173. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  174. pte.setPhysicalPageBase(pteAddress.get());
  175. pte.setUserAllowed(false);
  176. pte.setPresent(true);
  177. pte.setWritable(true);
  178. flushTLB(pteAddress);
  179. }
  180. }
  181. void MemoryManager::initialize()
  182. {
  183. s_the = new MemoryManager;
  184. }
  185. PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
  186. {
  187. ASSERT_INTERRUPTS_DISABLED();
  188. kprintf("MM: handlePageFault(%w) at L%x\n", fault.code(), fault.address().get());
  189. if (fault.isNotPresent()) {
  190. kprintf(" >> NP fault!\n");
  191. } else if (fault.isProtectionViolation()) {
  192. kprintf(" >> PV fault!\n");
  193. }
  194. return PageFaultResponse::ShouldCrash;
  195. }
  196. Vector<RetainPtr<PhysicalPage>> MemoryManager::allocate_physical_pages(size_t count)
  197. {
  198. InterruptDisabler disabler;
  199. if (count > m_free_physical_pages.size())
  200. return { };
  201. Vector<RetainPtr<PhysicalPage>> pages;
  202. pages.ensureCapacity(count);
  203. for (size_t i = 0; i < count; ++i) {
  204. pages.append(m_free_physical_pages.takeLast());
  205. #ifdef MM_DEBUG
  206. dbgprintf("MM: allocate_physical_pages vending P%x\n", pages.last()->paddr().get());
  207. #endif
  208. }
  209. return pages;
  210. }
  211. void MemoryManager::enter_kernel_paging_scope()
  212. {
  213. InterruptDisabler disabler;
  214. current->m_tss.cr3 = (dword)m_kernel_page_directory;
  215. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory):"memory");
  216. }
  217. void MemoryManager::enter_process_paging_scope(Process& process)
  218. {
  219. InterruptDisabler disabler;
  220. current->m_tss.cr3 = (dword)process.m_page_directory;
  221. asm volatile("movl %%eax, %%cr3"::"a"(process.m_page_directory):"memory");
  222. }
  223. void MemoryManager::flushEntireTLB()
  224. {
  225. asm volatile(
  226. "mov %cr3, %eax\n"
  227. "mov %eax, %cr3\n"
  228. );
  229. }
  230. void MemoryManager::flushTLB(LinearAddress laddr)
  231. {
  232. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  233. }
  234. void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  235. {
  236. InterruptDisabler disabler;
  237. for (size_t i = 0; i < region.physical_pages.size(); ++i) {
  238. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  239. auto pte = ensurePTE(page_directory, page_laddr);
  240. auto& physical_page = region.physical_pages[i];
  241. if (physical_page) {
  242. pte.setPhysicalPageBase(physical_page->paddr().get());
  243. pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
  244. } else {
  245. pte.setPhysicalPageBase(0);
  246. pte.setPresent(false);
  247. }
  248. pte.setWritable(region.is_writable);
  249. pte.setUserAllowed(user_allowed);
  250. flushTLB(page_laddr);
  251. #ifdef MM_DEBUG
  252. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  253. #endif
  254. }
  255. }
  256. void MemoryManager::unmap_range(PageDirectory* page_directory, LinearAddress laddr, size_t size)
  257. {
  258. ASSERT((size % PAGE_SIZE) == 0);
  259. InterruptDisabler disabler;
  260. size_t numPages = size / PAGE_SIZE;
  261. for (size_t i = 0; i < numPages; ++i) {
  262. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  263. auto pte = ensurePTE(page_directory, page_laddr);
  264. pte.setPhysicalPageBase(0);
  265. pte.setPresent(false);
  266. pte.setWritable(false);
  267. pte.setUserAllowed(false);
  268. flushTLB(page_laddr);
  269. #ifdef MM_DEBUG
  270. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  271. #endif
  272. }
  273. }
  274. LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
  275. {
  276. ASSERT((size % PAGE_SIZE) == 0);
  277. // FIXME: Recycle ranges!
  278. auto laddr = m_next_laddr;
  279. m_next_laddr.set(m_next_laddr.get() + size);
  280. return laddr;
  281. }
  282. byte* MemoryManager::create_kernel_alias_for_region(Region& region)
  283. {
  284. InterruptDisabler disabler;
  285. #ifdef MM_DEBUG
  286. dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
  287. #endif
  288. auto laddr = allocate_linear_address_range(region.size);
  289. map_region_at_address(m_kernel_page_directory, region, laddr, false);
  290. #ifdef MM_DEBUG
  291. dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
  292. #endif
  293. return laddr.asPtr();
  294. }
  295. void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
  296. {
  297. #ifdef MM_DEBUG
  298. dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
  299. #endif
  300. unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
  301. }
  302. bool MemoryManager::unmapRegion(Process& process, Region& region)
  303. {
  304. InterruptDisabler disabler;
  305. for (size_t i = 0; i < region.physical_pages.size(); ++i) {
  306. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  307. auto pte = ensurePTE(process.m_page_directory, laddr);
  308. pte.setPhysicalPageBase(0);
  309. pte.setPresent(false);
  310. pte.setWritable(false);
  311. pte.setUserAllowed(false);
  312. flushTLB(laddr);
  313. #ifdef MM_DEBUG
  314. auto& physical_page = region.physical_pages[i];
  315. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  316. #endif
  317. }
  318. return true;
  319. }
  320. bool MemoryManager::mapRegion(Process& process, Region& region)
  321. {
  322. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  323. return true;
  324. }
  325. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  326. {
  327. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  328. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  329. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  330. if (!pde.isPresent())
  331. return false;
  332. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  333. if (!pte.isPresent())
  334. return false;
  335. if (!pte.isUserAllowed())
  336. return false;
  337. return true;
  338. }
  339. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  340. {
  341. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  342. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  343. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  344. if (!pde.isPresent())
  345. return false;
  346. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  347. if (!pte.isPresent())
  348. return false;
  349. if (!pte.isUserAllowed())
  350. return false;
  351. if (!pte.isWritable())
  352. return false;
  353. return true;
  354. }
  355. RetainPtr<Region> Region::clone()
  356. {
  357. InterruptDisabler disabler;
  358. KernelPagingScope pagingScope;
  359. if (is_readable && !is_writable) {
  360. // Create a new region backed by the same physical pages.
  361. return adopt(*new Region(linearAddress, size, physical_pages, String(name), is_readable, is_writable));
  362. }
  363. // FIXME: Implement COW regions.
  364. auto clone_physical_pages = MM.allocate_physical_pages(physical_pages.size());
  365. auto clone_region = adopt(*new Region(linearAddress, size, move(clone_physical_pages), String(name), is_readable, is_writable));
  366. // FIXME: It would be cool to make the src_alias a read-only mapping.
  367. byte* src_alias = MM.create_kernel_alias_for_region(*this);
  368. byte* dest_alias = MM.create_kernel_alias_for_region(*clone_region);
  369. memcpy(dest_alias, src_alias, size);
  370. MM.remove_kernel_alias_for_region(*clone_region, dest_alias);
  371. MM.remove_kernel_alias_for_region(*this, src_alias);
  372. return clone_region;
  373. }
  374. Region::Region(LinearAddress a, size_t s, Vector<RetainPtr<PhysicalPage>> pp, String&& n, bool r, bool w)
  375. : linearAddress(a)
  376. , size(s)
  377. , physical_pages(move(pp))
  378. , name(move(n))
  379. , is_readable(r)
  380. , is_writable(w)
  381. {
  382. }
  383. Region::~Region()
  384. {
  385. }
  386. void PhysicalPage::return_to_freelist()
  387. {
  388. InterruptDisabler disabler;
  389. m_retain_count = 1;
  390. MM.m_free_physical_pages.append(adopt(*this));
  391. #ifdef MM_DEBUG
  392. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  393. #endif
  394. }