MemoryManager.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/StringView.h>
  29. #include <Kernel/Arch/i386/CPU.h>
  30. #include <Kernel/CMOS.h>
  31. #include <Kernel/FileSystem/Inode.h>
  32. #include <Kernel/Heap/kmalloc.h>
  33. #include <Kernel/Multiboot.h>
  34. #include <Kernel/Process.h>
  35. #include <Kernel/StdLib.h>
  36. #include <Kernel/VM/AnonymousVMObject.h>
  37. #include <Kernel/VM/ContiguousVMObject.h>
  38. #include <Kernel/VM/MemoryManager.h>
  39. #include <Kernel/VM/PageDirectory.h>
  40. #include <Kernel/VM/PhysicalRegion.h>
  41. #include <Kernel/VM/SharedInodeVMObject.h>
  42. //#define MM_DEBUG
  43. //#define PAGE_FAULT_DEBUG
  44. extern u8* start_of_kernel_image;
  45. extern u8* end_of_kernel_image;
  46. extern FlatPtr start_of_kernel_text;
  47. extern FlatPtr start_of_kernel_data;
  48. extern FlatPtr end_of_kernel_bss;
  49. namespace Kernel {
  50. // NOTE: We can NOT use AK::Singleton for this class, because
  51. // MemoryManager::initialize is called *before* global constructors are
  52. // run. If we do, then AK::Singleton would get re-initialized, causing
  53. // the memory manager to be initialized twice!
  54. static MemoryManager* s_the;
  55. RecursiveSpinLock s_mm_lock;
  56. MemoryManager& MM
  57. {
  58. return *s_the;
  59. }
  60. bool MemoryManager::is_initialized()
  61. {
  62. return s_the != nullptr;
  63. }
  64. MemoryManager::MemoryManager()
  65. {
  66. ScopedSpinLock lock(s_mm_lock);
  67. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  68. parse_memory_map();
  69. write_cr3(kernel_page_directory().cr3());
  70. protect_kernel_image();
  71. // We're temporarily "committing" to two pages that we need to allocate below
  72. if (!commit_user_physical_pages(2))
  73. ASSERT_NOT_REACHED();
  74. m_shared_zero_page = allocate_committed_user_physical_page();
  75. // We're wasting a page here, we just need a special tag (physical
  76. // address) so that we know when we need to lazily allocate a page
  77. // that we should be drawing this page from the committed pool rather
  78. // than potentially failing if no pages are available anymore.
  79. // By using a tag we don't have to query the VMObject for every page
  80. // whether it was committed or not
  81. m_lazy_committed_page = allocate_committed_user_physical_page();
  82. }
  83. MemoryManager::~MemoryManager()
  84. {
  85. }
  86. void MemoryManager::protect_kernel_image()
  87. {
  88. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  89. // Disable writing to the kernel text and rodata segments.
  90. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  91. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  92. pte.set_writable(false);
  93. }
  94. if (Processor::current().has_feature(CPUFeature::NX)) {
  95. // Disable execution of the kernel data and bss segments, as well as the kernel heap.
  96. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  97. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  98. pte.set_execute_disabled(true);
  99. }
  100. for (size_t i = FlatPtr(kmalloc_start); i < FlatPtr(kmalloc_end); i += PAGE_SIZE) {
  101. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  102. pte.set_execute_disabled(true);
  103. }
  104. }
  105. }
  106. void MemoryManager::parse_memory_map()
  107. {
  108. RefPtr<PhysicalRegion> region;
  109. bool region_is_super = false;
  110. // We need to make sure we exclude the kmalloc range as well as the kernel image.
  111. // The kmalloc range directly follows the kernel image
  112. const PhysicalAddress used_range_start(virtual_to_low_physical(FlatPtr(&start_of_kernel_image)));
  113. const PhysicalAddress used_range_end(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(kmalloc_end))));
  114. klog() << "MM: kernel range: " << used_range_start << " - " << PhysicalAddress(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(&end_of_kernel_image))));
  115. klog() << "MM: kmalloc range: " << PhysicalAddress(virtual_to_low_physical(FlatPtr(kmalloc_start))) << " - " << used_range_end;
  116. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  117. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  118. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  119. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  120. continue;
  121. // FIXME: Maybe make use of stuff below the 1MiB mark?
  122. if (mmap->addr < (1 * MiB))
  123. continue;
  124. if ((mmap->addr + mmap->len) > 0xffffffff)
  125. continue;
  126. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  127. if (diff != 0) {
  128. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  129. diff = PAGE_SIZE - diff;
  130. mmap->addr += diff;
  131. mmap->len -= diff;
  132. }
  133. if ((mmap->len % PAGE_SIZE) != 0) {
  134. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  135. mmap->len -= mmap->len % PAGE_SIZE;
  136. }
  137. if (mmap->len < PAGE_SIZE) {
  138. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  139. continue;
  140. }
  141. #ifdef MM_DEBUG
  142. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  143. #endif
  144. for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  145. auto addr = PhysicalAddress(page_base);
  146. if (addr.get() < used_range_end.get() && addr.get() >= used_range_start.get())
  147. continue;
  148. if (page_base < 7 * MiB) {
  149. // nothing
  150. } else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
  151. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  152. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  153. region = m_super_physical_regions.last();
  154. region_is_super = true;
  155. } else {
  156. region->expand(region->lower(), addr);
  157. }
  158. } else {
  159. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  160. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  161. region = m_user_physical_regions.last();
  162. region_is_super = false;
  163. } else {
  164. region->expand(region->lower(), addr);
  165. }
  166. }
  167. }
  168. }
  169. for (auto& region : m_super_physical_regions) {
  170. m_super_physical_pages += region.finalize_capacity();
  171. klog() << "Super physical region: " << region.lower() << " - " << region.upper();
  172. }
  173. for (auto& region : m_user_physical_regions) {
  174. m_user_physical_pages += region.finalize_capacity();
  175. klog() << "User physical region: " << region.lower() << " - " << region.upper();
  176. }
  177. ASSERT(m_super_physical_pages > 0);
  178. ASSERT(m_user_physical_pages > 0);
  179. // We start out with no committed pages
  180. m_user_physical_pages_uncommitted = m_user_physical_pages.load();
  181. }
  182. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  183. {
  184. ASSERT_INTERRUPTS_DISABLED();
  185. ASSERT(s_mm_lock.own_lock());
  186. ASSERT(page_directory.get_lock().own_lock());
  187. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  188. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  189. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  190. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  191. const PageDirectoryEntry& pde = pd[page_directory_index];
  192. if (!pde.is_present())
  193. return nullptr;
  194. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  195. }
  196. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  197. {
  198. ASSERT_INTERRUPTS_DISABLED();
  199. ASSERT(s_mm_lock.own_lock());
  200. ASSERT(page_directory.get_lock().own_lock());
  201. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  202. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  203. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  204. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  205. PageDirectoryEntry& pde = pd[page_directory_index];
  206. if (!pde.is_present()) {
  207. #ifdef MM_DEBUG
  208. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  209. #endif
  210. bool did_purge = false;
  211. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  212. if (!page_table) {
  213. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  214. return nullptr;
  215. }
  216. if (did_purge) {
  217. // If any memory had to be purged, ensure_pte may have been called as part
  218. // of the purging process. So we need to re-map the pd in this case to ensure
  219. // we're writing to the correct underlying physical page
  220. pd = quickmap_pd(page_directory, page_directory_table_index);
  221. ASSERT(&pde == &pd[page_directory_index]); // Sanity check
  222. ASSERT(!pde.is_present()); // Should have not changed
  223. }
  224. #ifdef MM_DEBUG
  225. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  226. #endif
  227. pde.set_page_table_base(page_table->paddr().get());
  228. pde.set_user_allowed(true);
  229. pde.set_present(true);
  230. pde.set_writable(true);
  231. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  232. // Use page_directory_table_index and page_directory_index as key
  233. // This allows us to release the page table entry when no longer needed
  234. auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
  235. ASSERT(result == AK::HashSetResult::InsertedNewEntry);
  236. }
  237. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  238. }
  239. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  240. {
  241. ASSERT_INTERRUPTS_DISABLED();
  242. ASSERT(s_mm_lock.own_lock());
  243. ASSERT(page_directory.get_lock().own_lock());
  244. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  245. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  246. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  247. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  248. PageDirectoryEntry& pde = pd[page_directory_index];
  249. if (pde.is_present()) {
  250. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  251. auto& pte = page_table[page_table_index];
  252. pte.clear();
  253. if (is_last_release || page_table_index == 0x1ff) {
  254. // If this is the last PTE in a region or the last PTE in a page table then
  255. // check if we can also release the page table
  256. bool all_clear = true;
  257. for (u32 i = 0; i <= 0x1ff; i++) {
  258. if (!page_table[i].is_null()) {
  259. all_clear = false;
  260. break;
  261. }
  262. }
  263. if (all_clear) {
  264. pde.clear();
  265. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  266. ASSERT(result);
  267. #ifdef MM_DEBUG
  268. dbg() << "MM: Released page table for " << VirtualAddress(vaddr.get() & ~0x1fffff);
  269. #endif
  270. }
  271. }
  272. }
  273. }
  274. void MemoryManager::initialize(u32 cpu)
  275. {
  276. auto mm_data = new MemoryManagerData;
  277. #ifdef MM_DEBUG
  278. dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
  279. #endif
  280. Processor::current().set_mm_data(*mm_data);
  281. if (cpu == 0) {
  282. s_the = new MemoryManager;
  283. kmalloc_enable_expand();
  284. }
  285. }
  286. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  287. {
  288. ScopedSpinLock lock(s_mm_lock);
  289. for (auto& region : MM.m_kernel_regions) {
  290. if (region.contains(vaddr))
  291. return &region;
  292. }
  293. return nullptr;
  294. }
  295. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  296. {
  297. ScopedSpinLock lock(s_mm_lock);
  298. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  299. for (auto& region : process.m_regions) {
  300. if (region.contains(vaddr))
  301. return &region;
  302. }
  303. #ifdef MM_DEBUG
  304. dbg() << process << " Couldn't find user region for " << vaddr;
  305. #endif
  306. return nullptr;
  307. }
  308. Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr)
  309. {
  310. ScopedSpinLock lock(s_mm_lock);
  311. if (auto* region = user_region_from_vaddr(process, vaddr))
  312. return region;
  313. return kernel_region_from_vaddr(vaddr);
  314. }
  315. const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr)
  316. {
  317. ScopedSpinLock lock(s_mm_lock);
  318. if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
  319. return region;
  320. return kernel_region_from_vaddr(vaddr);
  321. }
  322. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  323. {
  324. ScopedSpinLock lock(s_mm_lock);
  325. if (auto* region = kernel_region_from_vaddr(vaddr))
  326. return region;
  327. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  328. if (!page_directory)
  329. return nullptr;
  330. ASSERT(page_directory->process());
  331. return user_region_from_vaddr(*page_directory->process(), vaddr);
  332. }
  333. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  334. {
  335. ASSERT_INTERRUPTS_DISABLED();
  336. ScopedSpinLock lock(s_mm_lock);
  337. if (Processor::current().in_irq()) {
  338. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  339. Processor::current().id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
  340. dump_kernel_regions();
  341. return PageFaultResponse::ShouldCrash;
  342. }
  343. #ifdef PAGE_FAULT_DEBUG
  344. dbgln("MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current().id(), fault.code(), fault.vaddr());
  345. #endif
  346. auto* region = find_region_from_vaddr(fault.vaddr());
  347. if (!region) {
  348. klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
  349. return PageFaultResponse::ShouldCrash;
  350. }
  351. return region->handle_fault(fault);
  352. }
  353. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  354. {
  355. ASSERT(!(size % PAGE_SIZE));
  356. ScopedSpinLock lock(s_mm_lock);
  357. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  358. if (!range.is_valid())
  359. return nullptr;
  360. auto vmobject = ContiguousVMObject::create_with_size(size);
  361. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  362. }
  363. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, AllocationStrategy strategy, bool cacheable)
  364. {
  365. ASSERT(!(size % PAGE_SIZE));
  366. ScopedSpinLock lock(s_mm_lock);
  367. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  368. if (!range.is_valid())
  369. return nullptr;
  370. auto vmobject = AnonymousVMObject::create_with_size(size, strategy);
  371. if (!vmobject)
  372. return nullptr;
  373. return allocate_kernel_region_with_vmobject(range, vmobject.release_nonnull(), name, access, user_accessible, cacheable);
  374. }
  375. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  376. {
  377. ASSERT(!(size % PAGE_SIZE));
  378. ScopedSpinLock lock(s_mm_lock);
  379. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  380. if (!range.is_valid())
  381. return nullptr;
  382. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  383. if (!vmobject)
  384. return nullptr;
  385. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  386. }
  387. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  388. {
  389. ASSERT(!(size % PAGE_SIZE));
  390. ScopedSpinLock lock(s_mm_lock);
  391. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  392. if (!range.is_valid())
  393. return nullptr;
  394. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  395. if (!vmobject)
  396. return nullptr;
  397. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  398. }
  399. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  400. {
  401. return allocate_kernel_region(size, name, access, true, AllocationStrategy::Reserve, cacheable);
  402. }
  403. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  404. {
  405. ScopedSpinLock lock(s_mm_lock);
  406. OwnPtr<Region> region;
  407. if (user_accessible)
  408. region = Region::create_user_accessible(nullptr, range, vmobject, 0, name, access, cacheable);
  409. else
  410. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  411. if (region)
  412. region->map(kernel_page_directory());
  413. return region;
  414. }
  415. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  416. {
  417. ASSERT(!(size % PAGE_SIZE));
  418. ScopedSpinLock lock(s_mm_lock);
  419. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  420. if (!range.is_valid())
  421. return nullptr;
  422. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  423. }
  424. bool MemoryManager::commit_user_physical_pages(size_t page_count)
  425. {
  426. ASSERT(page_count > 0);
  427. ScopedSpinLock lock(s_mm_lock);
  428. if (m_user_physical_pages_uncommitted < page_count)
  429. return false;
  430. m_user_physical_pages_uncommitted -= page_count;
  431. m_user_physical_pages_committed += page_count;
  432. return true;
  433. }
  434. void MemoryManager::uncommit_user_physical_pages(size_t page_count)
  435. {
  436. ASSERT(page_count > 0);
  437. ScopedSpinLock lock(s_mm_lock);
  438. ASSERT(m_user_physical_pages_committed >= page_count);
  439. m_user_physical_pages_uncommitted += page_count;
  440. m_user_physical_pages_committed -= page_count;
  441. }
  442. void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
  443. {
  444. ScopedSpinLock lock(s_mm_lock);
  445. for (auto& region : m_user_physical_regions) {
  446. if (!region.contains(page)) {
  447. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  448. continue;
  449. }
  450. region.return_page(page);
  451. --m_user_physical_pages_used;
  452. // Always return pages to the uncommitted pool. Pages that were
  453. // committed and allocated are only freed upon request. Once
  454. // returned there is no guarantee being able to get them back.
  455. ++m_user_physical_pages_uncommitted;
  456. return;
  457. }
  458. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  459. ASSERT_NOT_REACHED();
  460. }
  461. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  462. {
  463. ASSERT(s_mm_lock.is_locked());
  464. RefPtr<PhysicalPage> page;
  465. if (committed) {
  466. // Draw from the committed pages pool. We should always have these pages available
  467. ASSERT(m_user_physical_pages_committed > 0);
  468. m_user_physical_pages_committed--;
  469. } else {
  470. // We need to make sure we don't touch pages that we have committed to
  471. if (m_user_physical_pages_uncommitted == 0)
  472. return {};
  473. m_user_physical_pages_uncommitted--;
  474. }
  475. for (auto& region : m_user_physical_regions) {
  476. page = region.take_free_page(false);
  477. if (!page.is_null()) {
  478. ++m_user_physical_pages_used;
  479. break;
  480. }
  481. }
  482. ASSERT(!committed || !page.is_null());
  483. return page;
  484. }
  485. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
  486. {
  487. ScopedSpinLock lock(s_mm_lock);
  488. auto page = find_free_user_physical_page(true);
  489. if (should_zero_fill == ShouldZeroFill::Yes) {
  490. auto* ptr = quickmap_page(*page);
  491. memset(ptr, 0, PAGE_SIZE);
  492. unquickmap_page();
  493. }
  494. return page.release_nonnull();
  495. }
  496. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  497. {
  498. ScopedSpinLock lock(s_mm_lock);
  499. auto page = find_free_user_physical_page(false);
  500. bool purged_pages = false;
  501. if (!page) {
  502. // We didn't have a single free physical page. Let's try to free something up!
  503. // First, we look for a purgeable VMObject in the volatile state.
  504. for_each_vmobject([&](auto& vmobject) {
  505. if (!vmobject.is_anonymous())
  506. return IterationDecision::Continue;
  507. int purged_page_count = static_cast<AnonymousVMObject&>(vmobject).purge_with_interrupts_disabled({});
  508. if (purged_page_count) {
  509. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from AnonymousVMObject{" << &vmobject << "}";
  510. page = find_free_user_physical_page(false);
  511. purged_pages = true;
  512. ASSERT(page);
  513. return IterationDecision::Break;
  514. }
  515. return IterationDecision::Continue;
  516. });
  517. if (!page) {
  518. klog() << "MM: no user physical pages available";
  519. return {};
  520. }
  521. }
  522. #ifdef MM_DEBUG
  523. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  524. #endif
  525. if (should_zero_fill == ShouldZeroFill::Yes) {
  526. auto* ptr = quickmap_page(*page);
  527. memset(ptr, 0, PAGE_SIZE);
  528. unquickmap_page();
  529. }
  530. if (did_purge)
  531. *did_purge = purged_pages;
  532. return page;
  533. }
  534. void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
  535. {
  536. ScopedSpinLock lock(s_mm_lock);
  537. for (auto& region : m_super_physical_regions) {
  538. if (!region.contains(page)) {
  539. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  540. continue;
  541. }
  542. region.return_page(page);
  543. --m_super_physical_pages_used;
  544. return;
  545. }
  546. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  547. ASSERT_NOT_REACHED();
  548. }
  549. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  550. {
  551. ASSERT(!(size % PAGE_SIZE));
  552. ScopedSpinLock lock(s_mm_lock);
  553. size_t count = ceil_div(size, PAGE_SIZE);
  554. NonnullRefPtrVector<PhysicalPage> physical_pages;
  555. for (auto& region : m_super_physical_regions) {
  556. physical_pages = region.take_contiguous_free_pages((count), true);
  557. if (!physical_pages.is_empty())
  558. break;
  559. }
  560. if (physical_pages.is_empty()) {
  561. if (m_super_physical_regions.is_empty()) {
  562. klog() << "MM: no super physical regions available (?)";
  563. }
  564. klog() << "MM: no super physical pages available";
  565. ASSERT_NOT_REACHED();
  566. return {};
  567. }
  568. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  569. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  570. m_super_physical_pages_used += count;
  571. return physical_pages;
  572. }
  573. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  574. {
  575. ScopedSpinLock lock(s_mm_lock);
  576. RefPtr<PhysicalPage> page;
  577. for (auto& region : m_super_physical_regions) {
  578. page = region.take_free_page(true);
  579. if (!page.is_null())
  580. break;
  581. }
  582. if (!page) {
  583. if (m_super_physical_regions.is_empty()) {
  584. klog() << "MM: no super physical regions available (?)";
  585. }
  586. klog() << "MM: no super physical pages available";
  587. ASSERT_NOT_REACHED();
  588. return {};
  589. }
  590. #ifdef MM_DEBUG
  591. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  592. #endif
  593. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  594. ++m_super_physical_pages_used;
  595. return page;
  596. }
  597. void MemoryManager::enter_process_paging_scope(Process& process)
  598. {
  599. auto current_thread = Thread::current();
  600. ASSERT(current_thread != nullptr);
  601. ScopedSpinLock lock(s_mm_lock);
  602. current_thread->tss().cr3 = process.page_directory().cr3();
  603. write_cr3(process.page_directory().cr3());
  604. }
  605. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  606. {
  607. #ifdef MM_DEBUG
  608. dbg() << "MM: Flush " << page_count << " pages at " << vaddr << " on CPU#" << Processor::current().id();
  609. #endif
  610. Processor::flush_tlb_local(vaddr, page_count);
  611. }
  612. void MemoryManager::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
  613. {
  614. #ifdef MM_DEBUG
  615. dbg() << "MM: Flush " << page_count << " pages at " << vaddr;
  616. #endif
  617. Processor::flush_tlb(page_directory, vaddr, page_count);
  618. }
  619. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  620. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  621. {
  622. ASSERT(s_mm_lock.own_lock());
  623. auto& mm_data = get_data();
  624. auto& pte = boot_pd3_pt1023[4];
  625. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  626. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  627. #ifdef MM_DEBUG
  628. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  629. #endif
  630. pte.set_physical_page_base(pd_paddr.get());
  631. pte.set_present(true);
  632. pte.set_writable(true);
  633. pte.set_user_allowed(false);
  634. // Because we must continue to hold the MM lock while we use this
  635. // mapping, it is sufficient to only flush on the current CPU. Other
  636. // CPUs trying to use this API must wait on the MM lock anyway
  637. flush_tlb_local(VirtualAddress(0xffe04000));
  638. } else {
  639. // Even though we don't allow this to be called concurrently, it's
  640. // possible that this PD was mapped on a different CPU and we don't
  641. // broadcast the flush. If so, we still need to flush the TLB.
  642. if (mm_data.m_last_quickmap_pd != pd_paddr)
  643. flush_tlb_local(VirtualAddress(0xffe04000));
  644. }
  645. mm_data.m_last_quickmap_pd = pd_paddr;
  646. return (PageDirectoryEntry*)0xffe04000;
  647. }
  648. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  649. {
  650. ASSERT(s_mm_lock.own_lock());
  651. auto& mm_data = get_data();
  652. auto& pte = boot_pd3_pt1023[0];
  653. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  654. #ifdef MM_DEBUG
  655. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  656. #endif
  657. pte.set_physical_page_base(pt_paddr.get());
  658. pte.set_present(true);
  659. pte.set_writable(true);
  660. pte.set_user_allowed(false);
  661. // Because we must continue to hold the MM lock while we use this
  662. // mapping, it is sufficient to only flush on the current CPU. Other
  663. // CPUs trying to use this API must wait on the MM lock anyway
  664. flush_tlb_local(VirtualAddress(0xffe00000));
  665. } else {
  666. // Even though we don't allow this to be called concurrently, it's
  667. // possible that this PT was mapped on a different CPU and we don't
  668. // broadcast the flush. If so, we still need to flush the TLB.
  669. if (mm_data.m_last_quickmap_pt != pt_paddr)
  670. flush_tlb_local(VirtualAddress(0xffe00000));
  671. }
  672. mm_data.m_last_quickmap_pt = pt_paddr;
  673. return (PageTableEntry*)0xffe00000;
  674. }
  675. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  676. {
  677. ASSERT_INTERRUPTS_DISABLED();
  678. auto& mm_data = get_data();
  679. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  680. ScopedSpinLock lock(s_mm_lock);
  681. u32 pte_idx = 8 + Processor::current().id();
  682. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  683. auto& pte = boot_pd3_pt1023[pte_idx];
  684. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  685. #ifdef MM_DEBUG
  686. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  687. #endif
  688. pte.set_physical_page_base(physical_page.paddr().get());
  689. pte.set_present(true);
  690. pte.set_writable(true);
  691. pte.set_user_allowed(false);
  692. flush_tlb_local(vaddr);
  693. }
  694. return vaddr.as_ptr();
  695. }
  696. void MemoryManager::unquickmap_page()
  697. {
  698. ASSERT_INTERRUPTS_DISABLED();
  699. ScopedSpinLock lock(s_mm_lock);
  700. auto& mm_data = get_data();
  701. ASSERT(mm_data.m_quickmap_in_use.is_locked());
  702. u32 pte_idx = 8 + Processor::current().id();
  703. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  704. auto& pte = boot_pd3_pt1023[pte_idx];
  705. pte.clear();
  706. flush_tlb_local(vaddr);
  707. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  708. }
  709. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  710. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  711. {
  712. ASSERT(s_mm_lock.is_locked());
  713. ASSERT(size);
  714. if (base_vaddr > base_vaddr.offset(size)) {
  715. dbgln("Shenanigans! Asked to validate wrappy {} size={}", base_vaddr, size);
  716. return false;
  717. }
  718. VirtualAddress vaddr = base_vaddr.page_base();
  719. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  720. if (end_vaddr < vaddr) {
  721. dbgln("Shenanigans! Asked to validate {} size={}", base_vaddr, size);
  722. return false;
  723. }
  724. const Region* region = nullptr;
  725. while (vaddr <= end_vaddr) {
  726. if (!region || !region->contains(vaddr)) {
  727. if (space == AccessSpace::Kernel)
  728. region = kernel_region_from_vaddr(vaddr);
  729. if (!region || !region->contains(vaddr))
  730. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  731. if (!region
  732. || (space == AccessSpace::User && !region->is_user_accessible())
  733. || (access_type == AccessType::Read && !region->is_readable())
  734. || (access_type == AccessType::Write && !region->is_writable())) {
  735. return false;
  736. }
  737. }
  738. vaddr = region->range().end();
  739. }
  740. return true;
  741. }
  742. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  743. {
  744. if (!is_user_address(vaddr))
  745. return false;
  746. ScopedSpinLock lock(s_mm_lock);
  747. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  748. return region && region->is_user_accessible() && region->is_stack();
  749. }
  750. void MemoryManager::register_vmobject(VMObject& vmobject)
  751. {
  752. ScopedSpinLock lock(s_mm_lock);
  753. m_vmobjects.append(&vmobject);
  754. }
  755. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  756. {
  757. ScopedSpinLock lock(s_mm_lock);
  758. m_vmobjects.remove(&vmobject);
  759. }
  760. void MemoryManager::register_region(Region& region)
  761. {
  762. ScopedSpinLock lock(s_mm_lock);
  763. if (region.is_kernel())
  764. m_kernel_regions.append(&region);
  765. else
  766. m_user_regions.append(&region);
  767. }
  768. void MemoryManager::unregister_region(Region& region)
  769. {
  770. ScopedSpinLock lock(s_mm_lock);
  771. if (region.is_kernel())
  772. m_kernel_regions.remove(&region);
  773. else
  774. m_user_regions.remove(&region);
  775. }
  776. void MemoryManager::dump_kernel_regions()
  777. {
  778. klog() << "Kernel regions:";
  779. klog() << "BEGIN END SIZE ACCESS NAME";
  780. ScopedSpinLock lock(s_mm_lock);
  781. for (auto& region : MM.m_kernel_regions) {
  782. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_anonymous() ? 'A' : ' ') << " " << region.name().characters();
  783. }
  784. }
  785. }