AnonymousVMObject.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <Kernel/Process.h>
  27. #include <Kernel/VM/AnonymousVMObject.h>
  28. #include <Kernel/VM/MemoryManager.h>
  29. #include <Kernel/VM/PhysicalPage.h>
  30. //#define COMMIT_DEBUG
  31. //#define PAGE_FAULT_DEBUG
  32. namespace Kernel {
  33. RefPtr<VMObject> AnonymousVMObject::clone()
  34. {
  35. // We need to acquire our lock so we copy a sane state
  36. ScopedSpinLock lock(m_lock);
  37. // We're the parent. Since we're about to become COW we need to
  38. // commit the number of pages that we need to potentially allocate
  39. // so that the parent is still guaranteed to be able to have all
  40. // non-volatile memory available.
  41. size_t need_cow_pages = 0;
  42. {
  43. // We definitely need to commit non-volatile areas
  44. for_each_nonvolatile_range([&](const VolatilePageRange& nonvolatile_range) {
  45. need_cow_pages += nonvolatile_range.count;
  46. return IterationDecision::Continue;
  47. });
  48. }
  49. #ifdef COMMIT_DEBUG
  50. klog() << "Cloning " << this << ", need " << need_cow_pages << " committed cow pages";
  51. #endif
  52. if (!MM.commit_user_physical_pages(need_cow_pages))
  53. return {};
  54. // Create or replace the committed cow pages. When cloning a previously
  55. // cloned vmobject, we want to essentially "fork", leaving us and the
  56. // new clone with one set of shared committed cow pages, and the original
  57. // one would keep the one it still has. This ensures that the original
  58. // one and this one, as well as the clone have sufficient resources
  59. // to cow all pages as needed
  60. m_shared_committed_cow_pages = adopt(*new CommittedCowPages(need_cow_pages));
  61. // Both original and clone become COW. So create a COW map for ourselves
  62. // or reset all pages to be copied again if we were previously cloned
  63. ensure_or_reset_cow_map();
  64. return adopt(*new AnonymousVMObject(*this));
  65. }
  66. RefPtr<AnonymousVMObject> AnonymousVMObject::create_with_size(size_t size, AllocationStrategy commit)
  67. {
  68. if (commit == AllocationStrategy::Reserve || commit == AllocationStrategy::AllocateNow) {
  69. // We need to attempt to commit before actually creating the object
  70. if (!MM.commit_user_physical_pages(ceil_div(size, PAGE_SIZE)))
  71. return {};
  72. }
  73. return adopt(*new AnonymousVMObject(size, commit));
  74. }
  75. NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_page(PhysicalPage& page)
  76. {
  77. return adopt(*new AnonymousVMObject(page));
  78. }
  79. RefPtr<AnonymousVMObject> AnonymousVMObject::create_for_physical_range(PhysicalAddress paddr, size_t size)
  80. {
  81. if (paddr.offset(size) < paddr) {
  82. dbgln("Shenanigans! create_for_physical_range({}, {}) would wrap around", paddr, size);
  83. return nullptr;
  84. }
  85. return adopt(*new AnonymousVMObject(paddr, size));
  86. }
  87. AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy)
  88. : VMObject(size)
  89. , m_volatile_ranges_cache({ 0, page_count() })
  90. , m_unused_committed_pages(strategy == AllocationStrategy::Reserve ? page_count() : 0)
  91. {
  92. if (strategy == AllocationStrategy::AllocateNow) {
  93. // Allocate all pages right now. We know we can get all because we committed the amount needed
  94. for (size_t i = 0; i < page_count(); ++i)
  95. physical_pages()[i] = MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  96. } else {
  97. auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
  98. for (size_t i = 0; i < page_count(); ++i)
  99. physical_pages()[i] = initial_page;
  100. }
  101. }
  102. AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
  103. : VMObject(size)
  104. , m_volatile_ranges_cache({ 0, page_count() })
  105. {
  106. ASSERT(paddr.page_base() == paddr);
  107. for (size_t i = 0; i < page_count(); ++i)
  108. physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), false, false);
  109. }
  110. AnonymousVMObject::AnonymousVMObject(PhysicalPage& page)
  111. : VMObject(PAGE_SIZE)
  112. , m_volatile_ranges_cache({ 0, page_count() })
  113. {
  114. physical_pages()[0] = page;
  115. }
  116. AnonymousVMObject::AnonymousVMObject(const AnonymousVMObject& other)
  117. : VMObject(other)
  118. , m_volatile_ranges_cache({ 0, page_count() }) // do *not* clone this
  119. , m_volatile_ranges_cache_dirty(true) // do *not* clone this
  120. , m_purgeable_ranges() // do *not* clone this
  121. , m_unused_committed_pages(other.m_unused_committed_pages)
  122. , m_cow_map() // do *not* clone this
  123. , m_shared_committed_cow_pages(other.m_shared_committed_cow_pages) // share the pool
  124. {
  125. // We can't really "copy" a spinlock. But we're holding it. Clear in the clone
  126. ASSERT(other.m_lock.is_locked());
  127. m_lock.initialize();
  128. // The clone also becomes COW
  129. ensure_or_reset_cow_map();
  130. if (m_unused_committed_pages > 0) {
  131. // The original vmobject didn't use up all commited pages. When
  132. // cloning (fork) we will overcommit. For this purpose we drop all
  133. // lazy-commit references and replace them with shared zero pages.
  134. for (size_t i = 0; i < page_count(); i++) {
  135. auto& phys_page = m_physical_pages[i];
  136. if (phys_page && phys_page->is_lazy_committed_page()) {
  137. phys_page = MM.shared_zero_page();
  138. if (--m_unused_committed_pages == 0)
  139. break;
  140. }
  141. }
  142. ASSERT(m_unused_committed_pages == 0);
  143. }
  144. }
  145. AnonymousVMObject::~AnonymousVMObject()
  146. {
  147. // Return any unused committed pages
  148. if (m_unused_committed_pages > 0)
  149. MM.uncommit_user_physical_pages(m_unused_committed_pages);
  150. }
  151. int AnonymousVMObject::purge()
  152. {
  153. LOCKER(m_paging_lock);
  154. return purge_impl();
  155. }
  156. int AnonymousVMObject::purge_with_interrupts_disabled(Badge<MemoryManager>)
  157. {
  158. ASSERT_INTERRUPTS_DISABLED();
  159. if (m_paging_lock.is_locked())
  160. return 0;
  161. return purge_impl();
  162. }
  163. void AnonymousVMObject::set_was_purged(const VolatilePageRange& range)
  164. {
  165. ASSERT(m_lock.is_locked());
  166. for (auto* purgeable_ranges : m_purgeable_ranges)
  167. purgeable_ranges->set_was_purged(range);
  168. }
  169. int AnonymousVMObject::purge_impl()
  170. {
  171. int purged_page_count = 0;
  172. ScopedSpinLock lock(m_lock);
  173. for_each_volatile_range([&](const auto& range) {
  174. int purged_in_range = 0;
  175. auto range_end = range.base + range.count;
  176. for (size_t i = range.base; i < range_end; i++) {
  177. auto& phys_page = m_physical_pages[i];
  178. if (phys_page && !phys_page->is_shared_zero_page()) {
  179. ASSERT(!phys_page->is_lazy_committed_page());
  180. ++purged_in_range;
  181. }
  182. phys_page = MM.shared_zero_page();
  183. }
  184. if (purged_in_range > 0) {
  185. purged_page_count += purged_in_range;
  186. set_was_purged(range);
  187. for_each_region([&](auto& region) {
  188. if (&region.vmobject() == this) {
  189. if (auto owner = region.get_owner()) {
  190. // we need to hold a reference the process here (if there is one) as we may not own this region
  191. klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " owned by " << *owner << " at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count);
  192. } else {
  193. klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " (no ownership) at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count);
  194. }
  195. region.remap_vmobject_page_range(range.base, range.count);
  196. }
  197. });
  198. }
  199. return IterationDecision::Continue;
  200. });
  201. return purged_page_count;
  202. }
  203. void AnonymousVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
  204. {
  205. ScopedSpinLock lock(m_lock);
  206. purgeable_page_ranges.set_vmobject(this);
  207. ASSERT(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges));
  208. m_purgeable_ranges.append(&purgeable_page_ranges);
  209. }
  210. void AnonymousVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
  211. {
  212. ScopedSpinLock lock(m_lock);
  213. for (size_t i = 0; i < m_purgeable_ranges.size(); i++) {
  214. if (m_purgeable_ranges[i] != &purgeable_page_ranges)
  215. continue;
  216. purgeable_page_ranges.set_vmobject(nullptr);
  217. m_purgeable_ranges.remove(i);
  218. return;
  219. }
  220. ASSERT_NOT_REACHED();
  221. }
  222. bool AnonymousVMObject::is_any_volatile() const
  223. {
  224. ScopedSpinLock lock(m_lock);
  225. for (auto& volatile_ranges : m_purgeable_ranges) {
  226. ScopedSpinLock lock(volatile_ranges->m_volatile_ranges_lock);
  227. if (!volatile_ranges->is_empty())
  228. return true;
  229. }
  230. return false;
  231. }
  232. size_t AnonymousVMObject::remove_lazy_commit_pages(const VolatilePageRange& range)
  233. {
  234. ASSERT(m_lock.is_locked());
  235. size_t removed_count = 0;
  236. auto range_end = range.base + range.count;
  237. for (size_t i = range.base; i < range_end; i++) {
  238. auto& phys_page = m_physical_pages[i];
  239. if (phys_page && phys_page->is_lazy_committed_page()) {
  240. phys_page = MM.shared_zero_page();
  241. removed_count++;
  242. ASSERT(m_unused_committed_pages > 0);
  243. if (--m_unused_committed_pages == 0)
  244. break;
  245. }
  246. }
  247. return removed_count;
  248. }
  249. void AnonymousVMObject::update_volatile_cache()
  250. {
  251. ASSERT(m_lock.is_locked());
  252. ASSERT(m_volatile_ranges_cache_dirty);
  253. m_volatile_ranges_cache.clear();
  254. for_each_nonvolatile_range([&](const VolatilePageRange& range) {
  255. m_volatile_ranges_cache.add_unchecked(range);
  256. return IterationDecision::Continue;
  257. });
  258. m_volatile_ranges_cache_dirty = false;
  259. }
  260. void AnonymousVMObject::range_made_volatile(const VolatilePageRange& range)
  261. {
  262. ASSERT(m_lock.is_locked());
  263. if (m_unused_committed_pages == 0)
  264. return;
  265. // We need to check this range for any pages that are marked for
  266. // lazy committed allocation and turn them into shared zero pages
  267. // and also adjust the m_unused_committed_pages for each such page.
  268. // Take into account all the other views as well.
  269. size_t uncommit_page_count = 0;
  270. for_each_volatile_range([&](const auto& r) {
  271. auto intersected = range.intersected(r);
  272. if (!intersected.is_empty()) {
  273. uncommit_page_count += remove_lazy_commit_pages(intersected);
  274. if (m_unused_committed_pages == 0)
  275. return IterationDecision::Break;
  276. }
  277. return IterationDecision::Continue;
  278. });
  279. // Return those committed pages back to the system
  280. if (uncommit_page_count > 0) {
  281. #ifdef COMMIT_DEBUG
  282. klog() << "Uncommit " << uncommit_page_count << " lazy-commit pages from " << this;
  283. #endif
  284. MM.uncommit_user_physical_pages(uncommit_page_count);
  285. }
  286. m_volatile_ranges_cache_dirty = true;
  287. }
  288. void AnonymousVMObject::range_made_nonvolatile(const VolatilePageRange&)
  289. {
  290. ASSERT(m_lock.is_locked());
  291. m_volatile_ranges_cache_dirty = true;
  292. }
  293. size_t AnonymousVMObject::count_needed_commit_pages_for_nonvolatile_range(const VolatilePageRange& range)
  294. {
  295. ASSERT(m_lock.is_locked());
  296. ASSERT(!range.is_empty());
  297. size_t need_commit_pages = 0;
  298. auto range_end = range.base + range.count;
  299. for (size_t page_index = range.base; page_index < range_end; page_index++) {
  300. // COW pages are accounted for in m_shared_committed_cow_pages
  301. if (m_cow_map && m_cow_map->get(page_index))
  302. continue;
  303. auto& phys_page = m_physical_pages[page_index];
  304. if (phys_page && phys_page->is_shared_zero_page())
  305. need_commit_pages++;
  306. }
  307. return need_commit_pages;
  308. }
  309. size_t AnonymousVMObject::mark_committed_pages_for_nonvolatile_range(const VolatilePageRange& range, size_t mark_total)
  310. {
  311. ASSERT(m_lock.is_locked());
  312. ASSERT(!range.is_empty());
  313. ASSERT(mark_total > 0);
  314. size_t pages_updated = 0;
  315. auto range_end = range.base + range.count;
  316. for (size_t page_index = range.base; page_index < range_end; page_index++) {
  317. // COW pages are accounted for in m_shared_committed_cow_pages
  318. if (m_cow_map && m_cow_map->get(page_index))
  319. continue;
  320. auto& phys_page = m_physical_pages[page_index];
  321. if (phys_page && phys_page->is_shared_zero_page()) {
  322. phys_page = MM.lazy_committed_page();
  323. if (++pages_updated == mark_total)
  324. break;
  325. }
  326. }
  327. #ifdef COMMIT_DEBUG
  328. klog() << "Added " << pages_updated << " lazy-commit pages to " << this;
  329. #endif
  330. m_unused_committed_pages += pages_updated;
  331. return pages_updated;
  332. }
  333. RefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(size_t page_index)
  334. {
  335. {
  336. ScopedSpinLock lock(m_lock);
  337. ASSERT(m_unused_committed_pages > 0);
  338. // We should't have any committed page tags in volatile regions
  339. ASSERT([&]() {
  340. for (auto* purgeable_ranges : m_purgeable_ranges) {
  341. if (purgeable_ranges->is_volatile(page_index))
  342. return false;
  343. }
  344. return true;
  345. }());
  346. m_unused_committed_pages--;
  347. }
  348. return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  349. }
  350. Bitmap& AnonymousVMObject::ensure_cow_map()
  351. {
  352. if (!m_cow_map)
  353. m_cow_map = make<Bitmap>(page_count(), true);
  354. return *m_cow_map;
  355. }
  356. void AnonymousVMObject::ensure_or_reset_cow_map()
  357. {
  358. if (!m_cow_map)
  359. m_cow_map = make<Bitmap>(page_count(), true);
  360. else
  361. m_cow_map->fill(true);
  362. }
  363. bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
  364. {
  365. auto& page = physical_pages()[page_index];
  366. if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
  367. return true;
  368. if (is_shared)
  369. return false;
  370. return m_cow_map && m_cow_map->get(page_index);
  371. }
  372. void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
  373. {
  374. ensure_cow_map().set(page_index, cow);
  375. }
  376. size_t AnonymousVMObject::cow_pages() const
  377. {
  378. if (!m_cow_map)
  379. return 0;
  380. return m_cow_map->count_slow(true);
  381. }
  382. bool AnonymousVMObject::is_nonvolatile(size_t page_index)
  383. {
  384. if (m_volatile_ranges_cache_dirty)
  385. update_volatile_cache();
  386. return !m_volatile_ranges_cache.contains(page_index);
  387. }
  388. PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
  389. {
  390. ASSERT_INTERRUPTS_DISABLED();
  391. ScopedSpinLock lock(m_lock);
  392. auto& page_slot = physical_pages()[page_index];
  393. bool have_committed = m_shared_committed_cow_pages && is_nonvolatile(page_index);
  394. if (page_slot->ref_count() == 1) {
  395. #ifdef PAGE_FAULT_DEBUG
  396. dbgln(" >> It's a COW page but nobody is sharing it anymore. Remap r/w");
  397. #endif
  398. set_should_cow(page_index, false);
  399. if (have_committed) {
  400. if (m_shared_committed_cow_pages->return_one())
  401. m_shared_committed_cow_pages = nullptr;
  402. }
  403. return PageFaultResponse::Continue;
  404. }
  405. RefPtr<PhysicalPage> page;
  406. if (have_committed) {
  407. #ifdef PAGE_FAULT_DEBUG
  408. dbgln(" >> It's a committed COW page and it's time to COW!");
  409. #endif
  410. page = m_shared_committed_cow_pages->allocate_one();
  411. } else {
  412. #ifdef PAGE_FAULT_DEBUG
  413. dbgln(" >> It's a COW page and it's time to COW!");
  414. #endif
  415. page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  416. if (page.is_null()) {
  417. klog() << "MM: handle_cow_fault was unable to allocate a physical page";
  418. return PageFaultResponse::OutOfMemory;
  419. }
  420. }
  421. u8* dest_ptr = MM.quickmap_page(*page);
  422. #ifdef PAGE_FAULT_DEBUG
  423. dbg() << " >> COW " << page->paddr() << " <- " << page_slot->paddr();
  424. #endif
  425. {
  426. SmapDisabler disabler;
  427. void* fault_at;
  428. if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
  429. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  430. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
  431. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  432. else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
  433. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
  434. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  435. else
  436. ASSERT_NOT_REACHED();
  437. }
  438. }
  439. page_slot = move(page);
  440. MM.unquickmap_page();
  441. set_should_cow(page_index, false);
  442. return PageFaultResponse::Continue;
  443. }
  444. }