Region.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/InterruptDisabler.h>
  9. #include <Kernel/Arch/PageDirectory.h>
  10. #include <Kernel/Arch/PageFault.h>
  11. #include <Kernel/Debug.h>
  12. #include <Kernel/FileSystem/Inode.h>
  13. #include <Kernel/Memory/AnonymousVMObject.h>
  14. #include <Kernel/Memory/MemoryManager.h>
  15. #include <Kernel/Memory/PageDirectory.h>
  16. #include <Kernel/Memory/Region.h>
  17. #include <Kernel/Memory/SharedInodeVMObject.h>
  18. #include <Kernel/Panic.h>
  19. #include <Kernel/Process.h>
  20. #include <Kernel/Scheduler.h>
  21. #include <Kernel/Thread.h>
  22. namespace Kernel::Memory {
  23. Region::Region()
  24. : m_range(VirtualRange({}, 0))
  25. {
  26. }
  27. Region::Region(NonnullLockRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  28. : m_range(VirtualRange({}, 0))
  29. , m_offset_in_vmobject(offset_in_vmobject)
  30. , m_vmobject(move(vmobject))
  31. , m_name(move(name))
  32. , m_access(access | ((access & 0x7) << 4))
  33. , m_shared(shared)
  34. , m_cacheable(cacheable == Cacheable::Yes)
  35. {
  36. m_vmobject->add_region(*this);
  37. }
  38. Region::Region(VirtualRange const& range, NonnullLockRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  39. : m_range(range)
  40. , m_offset_in_vmobject(offset_in_vmobject)
  41. , m_vmobject(move(vmobject))
  42. , m_name(move(name))
  43. , m_access(access | ((access & 0x7) << 4))
  44. , m_shared(shared)
  45. , m_cacheable(cacheable == Cacheable::Yes)
  46. {
  47. VERIFY(m_range.base().is_page_aligned());
  48. VERIFY(m_range.size());
  49. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  50. m_vmobject->add_region(*this);
  51. }
  52. Region::~Region()
  53. {
  54. if (is_writable() && vmobject().is_shared_inode()) {
  55. // FIXME: This is very aggressive. Find a way to do less work!
  56. (void)static_cast<SharedInodeVMObject&>(vmobject()).sync();
  57. }
  58. m_vmobject->remove_region(*this);
  59. if (m_page_directory) {
  60. SpinlockLocker pd_locker(m_page_directory->get_lock());
  61. if (!is_readable() && !is_writable() && !is_executable()) {
  62. // If the region is "PROT_NONE", we didn't map it in the first place.
  63. } else {
  64. unmap_with_locks_held(ShouldFlushTLB::Yes, pd_locker);
  65. VERIFY(!m_page_directory);
  66. }
  67. }
  68. if (is_kernel())
  69. MM.unregister_kernel_region(*this);
  70. }
  71. ErrorOr<NonnullOwnPtr<Region>> Region::create_unbacked()
  72. {
  73. return adopt_nonnull_own_or_enomem(new (nothrow) Region);
  74. }
  75. ErrorOr<NonnullOwnPtr<Region>> Region::create_unplaced(NonnullLockRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  76. {
  77. return adopt_nonnull_own_or_enomem(new (nothrow) Region(move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  78. }
  79. ErrorOr<NonnullOwnPtr<Region>> Region::try_clone()
  80. {
  81. VERIFY(Process::has_current());
  82. if (m_shared) {
  83. VERIFY(!m_stack);
  84. if (vmobject().is_inode())
  85. VERIFY(vmobject().is_shared_inode());
  86. // Create a new region backed by the same VMObject.
  87. OwnPtr<KString> region_name;
  88. if (m_name)
  89. region_name = TRY(m_name->try_clone());
  90. auto region = TRY(Region::try_create_user_accessible(
  91. m_range, vmobject(), m_offset_in_vmobject, move(region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  92. region->set_mmap(m_mmap, m_mmapped_from_readable, m_mmapped_from_writable);
  93. region->set_shared(m_shared);
  94. region->set_syscall_region(is_syscall_region());
  95. return region;
  96. }
  97. if (vmobject().is_inode())
  98. VERIFY(vmobject().is_private_inode());
  99. auto vmobject_clone = TRY(vmobject().try_clone());
  100. // Set up a COW region. The parent (this) region becomes COW as well!
  101. if (is_writable())
  102. remap();
  103. OwnPtr<KString> clone_region_name;
  104. if (m_name)
  105. clone_region_name = TRY(m_name->try_clone());
  106. auto clone_region = TRY(Region::try_create_user_accessible(
  107. m_range, move(vmobject_clone), m_offset_in_vmobject, move(clone_region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  108. if (m_stack) {
  109. VERIFY(vmobject().is_anonymous());
  110. clone_region->set_stack(true);
  111. }
  112. clone_region->set_syscall_region(is_syscall_region());
  113. clone_region->set_mmap(m_mmap, m_mmapped_from_readable, m_mmapped_from_writable);
  114. return clone_region;
  115. }
  116. void Region::set_vmobject(NonnullLockRefPtr<VMObject>&& obj)
  117. {
  118. if (m_vmobject.ptr() == obj.ptr())
  119. return;
  120. m_vmobject->remove_region(*this);
  121. m_vmobject = move(obj);
  122. m_vmobject->add_region(*this);
  123. }
  124. size_t Region::cow_pages() const
  125. {
  126. if (!vmobject().is_anonymous())
  127. return 0;
  128. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  129. }
  130. size_t Region::amount_dirty() const
  131. {
  132. if (!vmobject().is_inode())
  133. return amount_resident();
  134. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  135. }
  136. size_t Region::amount_resident() const
  137. {
  138. size_t bytes = 0;
  139. for (size_t i = 0; i < page_count(); ++i) {
  140. auto page = physical_page(i);
  141. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  142. bytes += PAGE_SIZE;
  143. }
  144. return bytes;
  145. }
  146. size_t Region::amount_shared() const
  147. {
  148. size_t bytes = 0;
  149. for (size_t i = 0; i < page_count(); ++i) {
  150. auto page = physical_page(i);
  151. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  152. bytes += PAGE_SIZE;
  153. }
  154. return bytes;
  155. }
  156. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullLockRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  157. {
  158. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  159. }
  160. bool Region::should_cow(size_t page_index) const
  161. {
  162. if (!vmobject().is_anonymous())
  163. return false;
  164. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  165. }
  166. ErrorOr<void> Region::set_should_cow(size_t page_index, bool cow)
  167. {
  168. VERIFY(!m_shared);
  169. if (vmobject().is_anonymous())
  170. TRY(static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow));
  171. return {};
  172. }
  173. bool Region::map_individual_page_impl(size_t page_index, RefPtr<PhysicalPage> page)
  174. {
  175. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  176. auto page_vaddr = vaddr_from_page_index(page_index);
  177. bool user_allowed = page_vaddr.get() >= USER_RANGE_BASE && is_user_address(page_vaddr);
  178. if (is_mmap() && !user_allowed) {
  179. PANIC("About to map mmap'ed page at a kernel address");
  180. }
  181. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  182. if (!pte)
  183. return false;
  184. if (!page || (!is_readable() && !is_writable())) {
  185. pte->clear();
  186. return true;
  187. }
  188. pte->set_cache_disabled(!m_cacheable);
  189. pte->set_physical_page_base(page->paddr().get());
  190. pte->set_present(true);
  191. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  192. pte->set_writable(false);
  193. else
  194. pte->set_writable(is_writable());
  195. if (Processor::current().has_nx())
  196. pte->set_execute_disabled(!is_executable());
  197. if (Processor::current().has_pat())
  198. pte->set_pat(is_write_combine());
  199. pte->set_user_allowed(user_allowed);
  200. return true;
  201. }
  202. bool Region::map_individual_page_impl(size_t page_index)
  203. {
  204. RefPtr<PhysicalPage> page;
  205. {
  206. SpinlockLocker vmobject_locker(vmobject().m_lock);
  207. page = physical_page(page_index);
  208. }
  209. return map_individual_page_impl(page_index, page);
  210. }
  211. bool Region::remap_vmobject_page(size_t page_index, NonnullRefPtr<PhysicalPage> physical_page)
  212. {
  213. SpinlockLocker page_lock(m_page_directory->get_lock());
  214. // NOTE: `page_index` is a VMObject page index, so first we convert it to a Region page index.
  215. if (!translate_vmobject_page(page_index))
  216. return false;
  217. bool success = map_individual_page_impl(page_index, physical_page);
  218. MemoryManager::flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  219. return success;
  220. }
  221. void Region::unmap(ShouldFlushTLB should_flush_tlb)
  222. {
  223. if (!m_page_directory)
  224. return;
  225. SpinlockLocker pd_locker(m_page_directory->get_lock());
  226. unmap_with_locks_held(should_flush_tlb, pd_locker);
  227. }
  228. void Region::unmap_with_locks_held(ShouldFlushTLB should_flush_tlb, SpinlockLocker<RecursiveSpinlock>&)
  229. {
  230. if (!m_page_directory)
  231. return;
  232. size_t count = page_count();
  233. for (size_t i = 0; i < count; ++i) {
  234. auto vaddr = vaddr_from_page_index(i);
  235. MM.release_pte(*m_page_directory, vaddr, i == count - 1 ? MemoryManager::IsLastPTERelease::Yes : MemoryManager::IsLastPTERelease::No);
  236. }
  237. if (should_flush_tlb == ShouldFlushTLB::Yes)
  238. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_count());
  239. m_page_directory = nullptr;
  240. }
  241. void Region::set_page_directory(PageDirectory& page_directory)
  242. {
  243. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  244. m_page_directory = page_directory;
  245. }
  246. ErrorOr<void> Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  247. {
  248. SpinlockLocker page_lock(page_directory.get_lock());
  249. // FIXME: Find a better place for this sanity check(?)
  250. if (is_user() && !is_shared()) {
  251. VERIFY(!vmobject().is_shared_inode());
  252. }
  253. set_page_directory(page_directory);
  254. size_t page_index = 0;
  255. while (page_index < page_count()) {
  256. if (!map_individual_page_impl(page_index))
  257. break;
  258. ++page_index;
  259. }
  260. if (page_index > 0) {
  261. if (should_flush_tlb == ShouldFlushTLB::Yes)
  262. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_index);
  263. if (page_index == page_count())
  264. return {};
  265. }
  266. return ENOMEM;
  267. }
  268. void Region::remap()
  269. {
  270. VERIFY(m_page_directory);
  271. auto result = map(*m_page_directory);
  272. if (result.is_error())
  273. TODO();
  274. }
  275. ErrorOr<void> Region::set_write_combine(bool enable)
  276. {
  277. if (enable && !Processor::current().has_pat()) {
  278. dbgln("PAT is not supported, implement MTRR fallback if available");
  279. return Error::from_errno(ENOTSUP);
  280. }
  281. m_write_combine = enable;
  282. remap();
  283. return {};
  284. }
  285. void Region::clear_to_zero()
  286. {
  287. VERIFY(vmobject().is_anonymous());
  288. SpinlockLocker locker(vmobject().m_lock);
  289. for (auto i = 0u; i < page_count(); ++i) {
  290. auto& page = physical_page_slot(i);
  291. VERIFY(page);
  292. if (page->is_shared_zero_page())
  293. continue;
  294. page = MM.shared_zero_page();
  295. }
  296. }
  297. PageFaultResponse Region::handle_fault(PageFault const& fault)
  298. {
  299. auto page_index_in_region = page_index_from_address(fault.vaddr());
  300. if (fault.type() == PageFault::Type::PageNotPresent) {
  301. if (fault.is_read() && !is_readable()) {
  302. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  303. return PageFaultResponse::ShouldCrash;
  304. }
  305. if (fault.is_write() && !is_writable()) {
  306. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  307. return PageFaultResponse::ShouldCrash;
  308. }
  309. if (vmobject().is_inode()) {
  310. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  311. return handle_inode_fault(page_index_in_region);
  312. }
  313. SpinlockLocker vmobject_locker(vmobject().m_lock);
  314. auto& page_slot = physical_page_slot(page_index_in_region);
  315. if (page_slot->is_lazy_committed_page()) {
  316. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  317. VERIFY(m_vmobject->is_anonymous());
  318. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  319. if (!remap_vmobject_page(page_index_in_vmobject, *page_slot))
  320. return PageFaultResponse::OutOfMemory;
  321. return PageFaultResponse::Continue;
  322. }
  323. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  324. dbgln(" - Physical page slot pointer: {:p}", page_slot.ptr());
  325. if (page_slot) {
  326. dbgln(" - Physical page: {}", page_slot->paddr());
  327. dbgln(" - Lazy committed: {}", page_slot->is_lazy_committed_page());
  328. dbgln(" - Shared zero: {}", page_slot->is_shared_zero_page());
  329. }
  330. return PageFaultResponse::ShouldCrash;
  331. }
  332. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  333. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  334. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  335. auto phys_page = physical_page(page_index_in_region);
  336. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  337. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  338. return handle_zero_fault(page_index_in_region, *phys_page);
  339. }
  340. return handle_cow_fault(page_index_in_region);
  341. }
  342. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  343. return PageFaultResponse::ShouldCrash;
  344. }
  345. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region, PhysicalPage& page_in_slot_at_time_of_fault)
  346. {
  347. VERIFY(vmobject().is_anonymous());
  348. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  349. auto current_thread = Thread::current();
  350. if (current_thread != nullptr)
  351. current_thread->did_zero_fault();
  352. RefPtr<PhysicalPage> new_physical_page;
  353. if (page_in_slot_at_time_of_fault.is_lazy_committed_page()) {
  354. VERIFY(m_vmobject->is_anonymous());
  355. new_physical_page = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  356. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", new_physical_page->paddr());
  357. } else {
  358. auto page_or_error = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::Yes);
  359. if (page_or_error.is_error()) {
  360. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  361. return PageFaultResponse::OutOfMemory;
  362. }
  363. new_physical_page = page_or_error.release_value();
  364. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", new_physical_page->paddr());
  365. }
  366. bool already_handled = false;
  367. {
  368. SpinlockLocker locker(vmobject().m_lock);
  369. auto& page_slot = physical_page_slot(page_index_in_region);
  370. already_handled = !page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page();
  371. if (already_handled) {
  372. // Someone else already faulted in a new page in this slot. That's fine, we'll just remap with their page.
  373. new_physical_page = page_slot;
  374. } else {
  375. // Install the newly allocated page into the VMObject.
  376. page_slot = new_physical_page;
  377. }
  378. }
  379. if (!remap_vmobject_page(page_index_in_vmobject, *new_physical_page)) {
  380. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", new_physical_page);
  381. return PageFaultResponse::OutOfMemory;
  382. }
  383. return PageFaultResponse::Continue;
  384. }
  385. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  386. {
  387. auto current_thread = Thread::current();
  388. if (current_thread)
  389. current_thread->did_cow_fault();
  390. if (!vmobject().is_anonymous())
  391. return PageFaultResponse::ShouldCrash;
  392. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  393. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  394. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject().physical_pages()[page_index_in_vmobject]))
  395. return PageFaultResponse::OutOfMemory;
  396. return response;
  397. }
  398. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  399. {
  400. VERIFY(vmobject().is_inode());
  401. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  402. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  403. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  404. auto& vmobject_physical_page_slot = inode_vmobject.physical_pages()[page_index_in_vmobject];
  405. {
  406. // NOTE: The VMObject lock is required when manipulating the VMObject's physical page slot.
  407. SpinlockLocker locker(inode_vmobject.m_lock);
  408. if (!vmobject_physical_page_slot.is_null()) {
  409. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  410. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject_physical_page_slot))
  411. return PageFaultResponse::OutOfMemory;
  412. return PageFaultResponse::Continue;
  413. }
  414. }
  415. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  416. auto current_thread = Thread::current();
  417. if (current_thread)
  418. current_thread->did_inode_fault();
  419. u8 page_buffer[PAGE_SIZE];
  420. auto& inode = inode_vmobject.inode();
  421. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  422. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  423. if (result.is_error()) {
  424. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  425. return PageFaultResponse::ShouldCrash;
  426. }
  427. auto nread = result.value();
  428. if (nread < PAGE_SIZE) {
  429. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  430. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  431. }
  432. // Allocate a new physical page, and copy the read inode contents into it.
  433. auto new_physical_page_or_error = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::No);
  434. if (new_physical_page_or_error.is_error()) {
  435. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  436. return PageFaultResponse::OutOfMemory;
  437. }
  438. auto new_physical_page = new_physical_page_or_error.release_value();
  439. {
  440. InterruptDisabler disabler;
  441. u8* dest_ptr = MM.quickmap_page(*new_physical_page);
  442. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  443. MM.unquickmap_page();
  444. }
  445. {
  446. // NOTE: The VMObject lock is required when manipulating the VMObject's physical page slot.
  447. SpinlockLocker locker(inode_vmobject.m_lock);
  448. if (!vmobject_physical_page_slot.is_null()) {
  449. // Someone else faulted in this page while we were reading from the inode.
  450. // No harm done (other than some duplicate work), remap the page here and return.
  451. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  452. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject_physical_page_slot))
  453. return PageFaultResponse::OutOfMemory;
  454. return PageFaultResponse::Continue;
  455. }
  456. vmobject_physical_page_slot = new_physical_page;
  457. }
  458. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject_physical_page_slot))
  459. return PageFaultResponse::OutOfMemory;
  460. return PageFaultResponse::Continue;
  461. }
  462. RefPtr<PhysicalPage> Region::physical_page(size_t index) const
  463. {
  464. SpinlockLocker vmobject_locker(vmobject().m_lock);
  465. VERIFY(index < page_count());
  466. return vmobject().physical_pages()[first_page_index() + index];
  467. }
  468. RefPtr<PhysicalPage>& Region::physical_page_slot(size_t index)
  469. {
  470. VERIFY(vmobject().m_lock.is_locked_by_current_processor());
  471. VERIFY(index < page_count());
  472. return vmobject().physical_pages()[first_page_index() + index];
  473. }
  474. }