UserOrKernelBuffer.h 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. /*
  2. * Copyright (c) 2020, the SerenityOS developers.
  3. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #pragma once
  8. #include <AK/Types.h>
  9. #include <AK/Userspace.h>
  10. #include <Kernel/Memory/MemoryManager.h>
  11. #include <Kernel/StdLib.h>
  12. #include <Kernel/UnixTypes.h>
  13. #include <LibC/errno_numbers.h>
  14. namespace Kernel {
  15. class [[nodiscard]] UserOrKernelBuffer {
  16. public:
  17. UserOrKernelBuffer() = delete;
  18. static UserOrKernelBuffer for_kernel_buffer(u8* kernel_buffer)
  19. {
  20. VERIFY(!kernel_buffer || !Memory::is_user_address(VirtualAddress(kernel_buffer)));
  21. return UserOrKernelBuffer(kernel_buffer);
  22. }
  23. static Optional<UserOrKernelBuffer> for_user_buffer(u8* user_buffer, size_t size)
  24. {
  25. if (user_buffer && !Memory::is_user_range(VirtualAddress(user_buffer), size))
  26. return {};
  27. return UserOrKernelBuffer(user_buffer);
  28. }
  29. template<typename UserspaceType>
  30. static Optional<UserOrKernelBuffer> for_user_buffer(UserspaceType userspace, size_t size)
  31. {
  32. if (!Memory::is_user_range(VirtualAddress(userspace.unsafe_userspace_ptr()), size))
  33. return {};
  34. return UserOrKernelBuffer(const_cast<u8*>((const u8*)userspace.unsafe_userspace_ptr()));
  35. }
  36. [[nodiscard]] bool is_kernel_buffer() const;
  37. [[nodiscard]] const void* user_or_kernel_ptr() const { return m_buffer; }
  38. [[nodiscard]] UserOrKernelBuffer offset(size_t offset) const
  39. {
  40. if (!m_buffer)
  41. return *this;
  42. UserOrKernelBuffer offset_buffer = *this;
  43. offset_buffer.m_buffer += offset;
  44. VERIFY(offset_buffer.is_kernel_buffer() == is_kernel_buffer());
  45. return offset_buffer;
  46. }
  47. [[nodiscard]] KResultOr<NonnullOwnPtr<KString>> try_copy_into_kstring(size_t) const;
  48. [[nodiscard]] bool write(const void* src, size_t offset, size_t len);
  49. [[nodiscard]] bool write(const void* src, size_t len)
  50. {
  51. return write(src, 0, len);
  52. }
  53. [[nodiscard]] bool write(ReadonlyBytes bytes)
  54. {
  55. return write(bytes.data(), bytes.size());
  56. }
  57. [[nodiscard]] bool read(void* dest, size_t offset, size_t len) const;
  58. [[nodiscard]] bool read(void* dest, size_t len) const
  59. {
  60. return read(dest, 0, len);
  61. }
  62. [[nodiscard]] bool read(Bytes bytes) const
  63. {
  64. return read(bytes.data(), bytes.size());
  65. }
  66. [[nodiscard]] bool memset(int value, size_t offset, size_t len);
  67. [[nodiscard]] bool memset(int value, size_t len)
  68. {
  69. return memset(value, 0, len);
  70. }
  71. template<size_t BUFFER_BYTES, typename F>
  72. [[nodiscard]] KResultOr<size_t> write_buffered(size_t offset, size_t len, F f)
  73. {
  74. if (!m_buffer)
  75. return EFAULT;
  76. if (is_kernel_buffer()) {
  77. // We're transferring directly to a kernel buffer, bypass
  78. Bytes bytes { m_buffer + offset, len };
  79. return f(bytes);
  80. }
  81. // The purpose of using a buffer on the stack is that we can
  82. // avoid a bunch of small (e.g. 1-byte) copy_to_user calls
  83. u8 buffer[BUFFER_BYTES];
  84. size_t nwritten = 0;
  85. while (nwritten < len) {
  86. auto to_copy = min(sizeof(buffer), len - nwritten);
  87. Bytes bytes { buffer, to_copy };
  88. KResultOr<size_t> copied_or_error = f(bytes);
  89. if (copied_or_error.is_error())
  90. return copied_or_error.error();
  91. auto copied = copied_or_error.value();
  92. VERIFY(copied <= to_copy);
  93. if (!write(buffer, nwritten, copied))
  94. return EFAULT;
  95. nwritten += copied;
  96. if (copied < to_copy)
  97. break;
  98. }
  99. return nwritten;
  100. }
  101. template<size_t BUFFER_BYTES, typename F>
  102. [[nodiscard]] KResultOr<size_t> write_buffered(size_t len, F f)
  103. {
  104. return write_buffered<BUFFER_BYTES, F>(0, len, f);
  105. }
  106. template<size_t BUFFER_BYTES, typename F>
  107. [[nodiscard]] KResultOr<size_t> read_buffered(size_t offset, size_t len, F f) const
  108. {
  109. if (!m_buffer)
  110. return EFAULT;
  111. if (is_kernel_buffer()) {
  112. // We're transferring directly from a kernel buffer, bypass
  113. return f({ m_buffer + offset, len });
  114. }
  115. // The purpose of using a buffer on the stack is that we can
  116. // avoid a bunch of small (e.g. 1-byte) copy_from_user calls
  117. u8 buffer[BUFFER_BYTES];
  118. size_t nread = 0;
  119. while (nread < len) {
  120. auto to_copy = min(sizeof(buffer), len - nread);
  121. if (!read(buffer, nread, to_copy))
  122. return EFAULT;
  123. ReadonlyBytes read_only_bytes { buffer, to_copy };
  124. KResultOr<size_t> copied_or_error = f(read_only_bytes);
  125. if (copied_or_error.is_error())
  126. return copied_or_error.error();
  127. auto copied = copied_or_error.value();
  128. VERIFY(copied <= to_copy);
  129. nread += copied;
  130. if (copied < to_copy)
  131. break;
  132. }
  133. return nread;
  134. }
  135. template<size_t BUFFER_BYTES, typename F>
  136. [[nodiscard]] KResultOr<size_t> read_buffered(size_t len, F f) const
  137. {
  138. return read_buffered<BUFFER_BYTES, F>(0, len, f);
  139. }
  140. private:
  141. explicit UserOrKernelBuffer(u8* buffer)
  142. : m_buffer(buffer)
  143. {
  144. }
  145. u8* m_buffer;
  146. };
  147. }