Process.h 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #pragma once
  7. #include <AK/Concepts.h>
  8. #include <AK/HashMap.h>
  9. #include <AK/IntrusiveList.h>
  10. #include <AK/IntrusiveListRelaxedConst.h>
  11. #include <AK/NonnullRefPtrVector.h>
  12. #include <AK/OwnPtr.h>
  13. #include <AK/String.h>
  14. #include <AK/Userspace.h>
  15. #include <AK/Variant.h>
  16. #include <AK/WeakPtr.h>
  17. #include <AK/Weakable.h>
  18. #include <Kernel/API/Syscall.h>
  19. #include <Kernel/AtomicEdgeAction.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/InodeMetadata.h>
  22. #include <Kernel/FileSystem/UnveilNode.h>
  23. #include <Kernel/Forward.h>
  24. #include <Kernel/FutexQueue.h>
  25. #include <Kernel/Locking/Mutex.h>
  26. #include <Kernel/Locking/MutexProtected.h>
  27. #include <Kernel/Memory/AddressSpace.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/ProcessExposed.h>
  30. #include <Kernel/ProcessGroup.h>
  31. #include <Kernel/StdLib.h>
  32. #include <Kernel/Thread.h>
  33. #include <Kernel/UnixTypes.h>
  34. #include <LibC/elf.h>
  35. #include <LibC/signal_numbers.h>
  36. namespace Kernel {
  37. MutexProtected<String>& hostname();
  38. Time kgettimeofday();
  39. #define ENUMERATE_PLEDGE_PROMISES \
  40. __ENUMERATE_PLEDGE_PROMISE(stdio) \
  41. __ENUMERATE_PLEDGE_PROMISE(rpath) \
  42. __ENUMERATE_PLEDGE_PROMISE(wpath) \
  43. __ENUMERATE_PLEDGE_PROMISE(cpath) \
  44. __ENUMERATE_PLEDGE_PROMISE(dpath) \
  45. __ENUMERATE_PLEDGE_PROMISE(inet) \
  46. __ENUMERATE_PLEDGE_PROMISE(id) \
  47. __ENUMERATE_PLEDGE_PROMISE(proc) \
  48. __ENUMERATE_PLEDGE_PROMISE(ptrace) \
  49. __ENUMERATE_PLEDGE_PROMISE(exec) \
  50. __ENUMERATE_PLEDGE_PROMISE(unix) \
  51. __ENUMERATE_PLEDGE_PROMISE(recvfd) \
  52. __ENUMERATE_PLEDGE_PROMISE(sendfd) \
  53. __ENUMERATE_PLEDGE_PROMISE(fattr) \
  54. __ENUMERATE_PLEDGE_PROMISE(tty) \
  55. __ENUMERATE_PLEDGE_PROMISE(chown) \
  56. __ENUMERATE_PLEDGE_PROMISE(thread) \
  57. __ENUMERATE_PLEDGE_PROMISE(video) \
  58. __ENUMERATE_PLEDGE_PROMISE(accept) \
  59. __ENUMERATE_PLEDGE_PROMISE(settime) \
  60. __ENUMERATE_PLEDGE_PROMISE(sigaction) \
  61. __ENUMERATE_PLEDGE_PROMISE(setkeymap) \
  62. __ENUMERATE_PLEDGE_PROMISE(prot_exec) \
  63. __ENUMERATE_PLEDGE_PROMISE(map_fixed) \
  64. __ENUMERATE_PLEDGE_PROMISE(getkeymap)
  65. enum class Pledge : u32 {
  66. #define __ENUMERATE_PLEDGE_PROMISE(x) x,
  67. ENUMERATE_PLEDGE_PROMISES
  68. #undef __ENUMERATE_PLEDGE_PROMISE
  69. };
  70. enum class VeilState {
  71. None,
  72. Dropped,
  73. Locked,
  74. };
  75. using FutexQueues = HashMap<FlatPtr, RefPtr<FutexQueue>>;
  76. struct LoadResult;
  77. class Process final
  78. : public AK::RefCountedBase
  79. , public Weakable<Process> {
  80. class ProtectedValues {
  81. public:
  82. ProcessID pid { 0 };
  83. ProcessID ppid { 0 };
  84. SessionID sid { 0 };
  85. UserID euid { 0 };
  86. GroupID egid { 0 };
  87. UserID uid { 0 };
  88. GroupID gid { 0 };
  89. UserID suid { 0 };
  90. GroupID sgid { 0 };
  91. Vector<GroupID> extra_gids;
  92. bool dumpable { false };
  93. Atomic<bool> has_promises { false };
  94. Atomic<u32> promises { 0 };
  95. Atomic<bool> has_execpromises { false };
  96. Atomic<u32> execpromises { 0 };
  97. mode_t umask { 022 };
  98. VirtualAddress signal_trampoline;
  99. Atomic<u32> thread_count { 0 };
  100. u8 termination_status { 0 };
  101. u8 termination_signal { 0 };
  102. };
  103. public:
  104. AK_MAKE_NONCOPYABLE(Process);
  105. AK_MAKE_NONMOVABLE(Process);
  106. MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
  107. friend class Thread;
  108. friend class Coredump;
  109. friend class ProcFSProcessFileDescriptions;
  110. // Helper class to temporarily unprotect a process's protected data so you can write to it.
  111. class ProtectedDataMutationScope {
  112. public:
  113. explicit ProtectedDataMutationScope(Process& process)
  114. : m_process(process)
  115. {
  116. m_process.unprotect_data();
  117. }
  118. ~ProtectedDataMutationScope() { m_process.protect_data(); }
  119. private:
  120. Process& m_process;
  121. };
  122. enum class State : u8 {
  123. Running = 0,
  124. Dying,
  125. Dead
  126. };
  127. public:
  128. class ProcessProcFSTraits;
  129. inline static Process& current()
  130. {
  131. auto current_thread = Processor::current_thread();
  132. VERIFY(current_thread);
  133. return current_thread->process();
  134. }
  135. inline static bool has_current()
  136. {
  137. return Processor::current_thread();
  138. }
  139. template<typename EntryFunction>
  140. static void kernel_process_trampoline(void* data)
  141. {
  142. EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
  143. (*func)();
  144. delete func;
  145. }
  146. enum class RegisterProcess {
  147. No,
  148. Yes
  149. };
  150. template<typename EntryFunction>
  151. static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
  152. {
  153. auto* entry_func = new EntryFunction(move(entry));
  154. return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
  155. }
  156. static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
  157. static KResultOr<NonnullRefPtr<Process>> try_create_user_process(RefPtr<Thread>& first_thread, String const& path, UserID, GroupID, Vector<String> arguments, Vector<String> environment, TTY*);
  158. static void register_new(Process&);
  159. bool unref() const;
  160. ~Process();
  161. static NonnullRefPtrVector<Process> all_processes();
  162. RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
  163. bool is_profiling() const { return m_profiling; }
  164. void set_profiling(bool profiling) { m_profiling = profiling; }
  165. bool should_generate_coredump() const { return m_should_generate_coredump; }
  166. void set_should_generate_coredump(bool b) { m_should_generate_coredump = b; }
  167. bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; }
  168. bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; }
  169. bool is_stopped() const { return m_is_stopped; }
  170. bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
  171. bool is_kernel_process() const { return m_is_kernel_process; }
  172. bool is_user_process() const { return !m_is_kernel_process; }
  173. static RefPtr<Process> from_pid(ProcessID);
  174. static SessionID get_sid_from_pgid(ProcessGroupID pgid);
  175. const String& name() const { return m_name; }
  176. ProcessID pid() const { return m_protected_values.pid; }
  177. SessionID sid() const { return m_protected_values.sid; }
  178. bool is_session_leader() const { return sid().value() == pid().value(); }
  179. ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
  180. bool is_group_leader() const { return pgid().value() == pid().value(); }
  181. Vector<GroupID> const& extra_gids() const { return m_protected_values.extra_gids; }
  182. UserID euid() const { return m_protected_values.euid; }
  183. GroupID egid() const { return m_protected_values.egid; }
  184. UserID uid() const { return m_protected_values.uid; }
  185. GroupID gid() const { return m_protected_values.gid; }
  186. UserID suid() const { return m_protected_values.suid; }
  187. GroupID sgid() const { return m_protected_values.sgid; }
  188. ProcessID ppid() const { return m_protected_values.ppid; }
  189. bool is_dumpable() const { return m_protected_values.dumpable; }
  190. void set_dumpable(bool);
  191. mode_t umask() const { return m_protected_values.umask; }
  192. bool in_group(GroupID) const;
  193. // Breakable iteration functions
  194. template<IteratorFunction<Process&> Callback>
  195. static void for_each(Callback);
  196. template<IteratorFunction<Process&> Callback>
  197. static void for_each_in_pgrp(ProcessGroupID, Callback);
  198. template<IteratorFunction<Process&> Callback>
  199. void for_each_child(Callback);
  200. template<IteratorFunction<Thread&> Callback>
  201. IterationDecision for_each_thread(Callback);
  202. template<IteratorFunction<Thread&> Callback>
  203. IterationDecision for_each_thread(Callback callback) const;
  204. // Non-breakable iteration functions
  205. template<VoidFunction<Process&> Callback>
  206. static void for_each(Callback);
  207. template<VoidFunction<Process&> Callback>
  208. static void for_each_in_pgrp(ProcessGroupID, Callback);
  209. template<VoidFunction<Process&> Callback>
  210. void for_each_child(Callback);
  211. template<VoidFunction<Thread&> Callback>
  212. IterationDecision for_each_thread(Callback);
  213. template<VoidFunction<Thread&> Callback>
  214. IterationDecision for_each_thread(Callback callback) const;
  215. void die();
  216. void finalize();
  217. ThreadTracer* tracer() { return m_tracer.ptr(); }
  218. bool is_traced() const { return !!m_tracer; }
  219. KResult start_tracing_from(ProcessID tracer);
  220. void stop_tracing();
  221. void tracer_trap(Thread&, const RegisterState&);
  222. KResultOr<FlatPtr> sys$emuctl();
  223. KResultOr<FlatPtr> sys$yield();
  224. KResultOr<FlatPtr> sys$sync();
  225. KResultOr<FlatPtr> sys$beep();
  226. KResultOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
  227. KResultOr<FlatPtr> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
  228. KResultOr<FlatPtr> sys$create_inode_watcher(u32 flags);
  229. KResultOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
  230. KResultOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
  231. KResultOr<FlatPtr> sys$dbgputch(u8);
  232. KResultOr<FlatPtr> sys$dbgputstr(Userspace<const char*>, size_t);
  233. KResultOr<FlatPtr> sys$dump_backtrace();
  234. KResultOr<FlatPtr> sys$gettid();
  235. KResultOr<FlatPtr> sys$setsid();
  236. KResultOr<FlatPtr> sys$getsid(pid_t);
  237. KResultOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
  238. KResultOr<FlatPtr> sys$getpgrp();
  239. KResultOr<FlatPtr> sys$getpgid(pid_t);
  240. KResultOr<FlatPtr> sys$getuid();
  241. KResultOr<FlatPtr> sys$getgid();
  242. KResultOr<FlatPtr> sys$geteuid();
  243. KResultOr<FlatPtr> sys$getegid();
  244. KResultOr<FlatPtr> sys$getpid();
  245. KResultOr<FlatPtr> sys$getppid();
  246. KResultOr<FlatPtr> sys$getresuid(Userspace<UserID*>, Userspace<UserID*>, Userspace<UserID*>);
  247. KResultOr<FlatPtr> sys$getresgid(Userspace<GroupID*>, Userspace<GroupID*>, Userspace<GroupID*>);
  248. KResultOr<FlatPtr> sys$umask(mode_t);
  249. KResultOr<FlatPtr> sys$open(Userspace<const Syscall::SC_open_params*>);
  250. KResultOr<FlatPtr> sys$close(int fd);
  251. KResultOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
  252. KResultOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
  253. KResultOr<FlatPtr> sys$write(int fd, Userspace<const u8*>, size_t);
  254. KResultOr<FlatPtr> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
  255. KResultOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
  256. KResultOr<FlatPtr> sys$stat(Userspace<const Syscall::SC_stat_params*>);
  257. KResultOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
  258. KResultOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t*>);
  259. KResultOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
  260. [[noreturn]] void sys$exit(int status);
  261. KResultOr<FlatPtr> sys$sigreturn(RegisterState& registers);
  262. KResultOr<FlatPtr> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
  263. KResultOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
  264. KResultOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
  265. KResultOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
  266. KResultOr<FlatPtr> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
  267. KResultOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
  268. KResultOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
  269. KResultOr<FlatPtr> sys$msyscall(Userspace<void*>);
  270. KResultOr<FlatPtr> sys$purge(int mode);
  271. KResultOr<FlatPtr> sys$select(Userspace<const Syscall::SC_select_params*>);
  272. KResultOr<FlatPtr> sys$poll(Userspace<const Syscall::SC_poll_params*>);
  273. KResultOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
  274. KResultOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
  275. KResultOr<FlatPtr> sys$chdir(Userspace<const char*>, size_t);
  276. KResultOr<FlatPtr> sys$fchdir(int fd);
  277. KResultOr<FlatPtr> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
  278. KResultOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
  279. KResultOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<const timespec*>);
  280. KResultOr<FlatPtr> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
  281. KResultOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
  282. KResultOr<FlatPtr> sys$sethostname(Userspace<const char*>, size_t);
  283. KResultOr<FlatPtr> sys$uname(Userspace<utsname*>);
  284. KResultOr<FlatPtr> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
  285. KResultOr<FlatPtr> sys$ttyname(int fd, Userspace<char*>, size_t);
  286. KResultOr<FlatPtr> sys$ptsname(int fd, Userspace<char*>, size_t);
  287. KResultOr<FlatPtr> sys$fork(RegisterState&);
  288. KResultOr<FlatPtr> sys$execve(Userspace<const Syscall::SC_execve_params*>);
  289. KResultOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
  290. KResultOr<FlatPtr> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
  291. KResultOr<FlatPtr> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
  292. KResultOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
  293. KResultOr<FlatPtr> sys$getgroups(size_t, Userspace<gid_t*>);
  294. KResultOr<FlatPtr> sys$setgroups(size_t, Userspace<const gid_t*>);
  295. KResultOr<FlatPtr> sys$pipe(int pipefd[2], int flags);
  296. KResultOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
  297. KResultOr<FlatPtr> sys$seteuid(UserID);
  298. KResultOr<FlatPtr> sys$setegid(GroupID);
  299. KResultOr<FlatPtr> sys$setuid(UserID);
  300. KResultOr<FlatPtr> sys$setgid(GroupID);
  301. KResultOr<FlatPtr> sys$setreuid(UserID, UserID);
  302. KResultOr<FlatPtr> sys$setresuid(UserID, UserID, UserID);
  303. KResultOr<FlatPtr> sys$setresgid(GroupID, GroupID, GroupID);
  304. KResultOr<FlatPtr> sys$alarm(unsigned seconds);
  305. KResultOr<FlatPtr> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
  306. KResultOr<FlatPtr> sys$fcntl(int fd, int cmd, u32 extra_arg);
  307. KResultOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
  308. KResultOr<FlatPtr> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
  309. KResultOr<FlatPtr> sys$times(Userspace<tms*>);
  310. KResultOr<FlatPtr> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
  311. KResultOr<FlatPtr> sys$link(Userspace<const Syscall::SC_link_params*>);
  312. KResultOr<FlatPtr> sys$unlink(Userspace<const char*> pathname, size_t path_length);
  313. KResultOr<FlatPtr> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
  314. KResultOr<FlatPtr> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
  315. KResultOr<FlatPtr> sys$mount(Userspace<const Syscall::SC_mount_params*>);
  316. KResultOr<FlatPtr> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
  317. KResultOr<FlatPtr> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
  318. KResultOr<FlatPtr> sys$fchmod(int fd, mode_t);
  319. KResultOr<FlatPtr> sys$chown(Userspace<const Syscall::SC_chown_params*>);
  320. KResultOr<FlatPtr> sys$fchown(int fd, UserID, GroupID);
  321. KResultOr<FlatPtr> sys$socket(int domain, int type, int protocol);
  322. KResultOr<FlatPtr> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
  323. KResultOr<FlatPtr> sys$listen(int sockfd, int backlog);
  324. KResultOr<FlatPtr> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
  325. KResultOr<FlatPtr> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
  326. KResultOr<FlatPtr> sys$shutdown(int sockfd, int how);
  327. KResultOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
  328. KResultOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
  329. KResultOr<FlatPtr> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
  330. KResultOr<FlatPtr> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
  331. KResultOr<FlatPtr> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
  332. KResultOr<FlatPtr> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
  333. KResultOr<FlatPtr> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
  334. KResultOr<FlatPtr> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
  335. KResultOr<FlatPtr> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
  336. KResultOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
  337. [[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
  338. KResultOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
  339. KResultOr<FlatPtr> sys$detach_thread(pid_t tid);
  340. KResultOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
  341. KResultOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
  342. KResultOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
  343. KResultOr<FlatPtr> sys$rename(Userspace<const Syscall::SC_rename_params*>);
  344. KResultOr<FlatPtr> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
  345. KResultOr<FlatPtr> sys$halt();
  346. KResultOr<FlatPtr> sys$reboot();
  347. KResultOr<FlatPtr> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
  348. KResultOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
  349. KResultOr<FlatPtr> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
  350. KResultOr<FlatPtr> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
  351. KResultOr<FlatPtr> sys$module_load(Userspace<const char*> path, size_t path_length);
  352. KResultOr<FlatPtr> sys$module_unload(Userspace<const char*> name, size_t name_length);
  353. KResultOr<FlatPtr> sys$profiling_enable(pid_t, u64);
  354. KResultOr<FlatPtr> sys$profiling_disable(pid_t);
  355. KResultOr<FlatPtr> sys$profiling_free_buffer(pid_t);
  356. KResultOr<FlatPtr> sys$futex(Userspace<const Syscall::SC_futex_params*>);
  357. KResultOr<FlatPtr> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
  358. KResultOr<FlatPtr> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
  359. KResultOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
  360. KResultOr<FlatPtr> sys$perf_register_string(Userspace<char const*>, size_t);
  361. KResultOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
  362. KResultOr<FlatPtr> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
  363. KResultOr<FlatPtr> sys$sendfd(int sockfd, int fd);
  364. KResultOr<FlatPtr> sys$recvfd(int sockfd, int options);
  365. KResultOr<FlatPtr> sys$sysconf(int name);
  366. KResultOr<FlatPtr> sys$disown(ProcessID);
  367. KResultOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
  368. KResultOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
  369. KResultOr<FlatPtr> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
  370. KResultOr<FlatPtr> sys$anon_create(size_t, int options);
  371. KResultOr<FlatPtr> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
  372. KResultOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
  373. KResultOr<FlatPtr> sys$map_time_page();
  374. template<bool sockname, typename Params>
  375. int get_sock_or_peer_name(const Params&);
  376. static void initialize();
  377. [[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false);
  378. [[nodiscard]] siginfo_t wait_info();
  379. const TTY* tty() const { return m_tty; }
  380. void set_tty(TTY*);
  381. u32 m_ticks_in_user { 0 };
  382. u32 m_ticks_in_kernel { 0 };
  383. u32 m_ticks_in_user_for_dead_children { 0 };
  384. u32 m_ticks_in_kernel_for_dead_children { 0 };
  385. Custody& current_directory();
  386. Custody* executable() { return m_executable.ptr(); }
  387. const Custody* executable() const { return m_executable.ptr(); }
  388. const Vector<String>& arguments() const { return m_arguments; };
  389. const Vector<String>& environment() const { return m_environment; };
  390. KResult exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);
  391. KResultOr<LoadResult> load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);
  392. bool is_superuser() const { return euid() == 0; }
  393. void terminate_due_to_signal(u8 signal);
  394. KResult send_signal(u8 signal, Process* sender);
  395. u8 termination_signal() const { return m_protected_values.termination_signal; }
  396. u16 thread_count() const
  397. {
  398. return m_protected_values.thread_count.load(AK::MemoryOrder::memory_order_relaxed);
  399. }
  400. Mutex& big_lock() { return m_big_lock; }
  401. Mutex& ptrace_lock() { return m_ptrace_lock; }
  402. bool has_promises() const { return m_protected_values.has_promises; }
  403. bool has_promised(Pledge pledge) const { return m_protected_values.promises & (1u << (u32)pledge); }
  404. VeilState veil_state() const
  405. {
  406. return m_veil_state;
  407. }
  408. const UnveilNode& unveiled_paths() const
  409. {
  410. return m_unveiled_paths;
  411. }
  412. bool wait_for_tracer_at_next_execve() const
  413. {
  414. return m_wait_for_tracer_at_next_execve;
  415. }
  416. void set_wait_for_tracer_at_next_execve(bool val)
  417. {
  418. m_wait_for_tracer_at_next_execve = val;
  419. }
  420. KResultOr<u32> peek_user_data(Userspace<const u32*> address);
  421. KResult poke_user_data(Userspace<u32*> address, u32 data);
  422. void disowned_by_waiter(Process& process);
  423. void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
  424. Thread::WaitBlockerSet& wait_blocker_set() { return m_wait_blocker_set; }
  425. template<typename Callback>
  426. void for_each_coredump_property(Callback callback) const
  427. {
  428. for (auto& property : m_coredump_properties) {
  429. if (property.key && property.value)
  430. callback(*property.key, *property.value);
  431. }
  432. }
  433. KResult set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value);
  434. KResult try_set_coredump_property(StringView key, StringView value);
  435. const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<Coredump>) const { return m_threads_for_coredump; }
  436. PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
  437. Memory::AddressSpace& address_space() { return *m_space; }
  438. Memory::AddressSpace const& address_space() const { return *m_space; }
  439. VirtualAddress signal_trampoline() const { return m_protected_values.signal_trampoline; }
  440. void require_promise(Pledge);
  441. void require_no_promises();
  442. private:
  443. friend class MemoryManager;
  444. friend class Scheduler;
  445. friend class Region;
  446. friend class PerformanceManager;
  447. bool add_thread(Thread&);
  448. bool remove_thread(Thread&);
  449. Process(const String& name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
  450. static KResultOr<NonnullRefPtr<Process>> try_create(RefPtr<Thread>& first_thread, String const& name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
  451. KResult attach_resources(NonnullOwnPtr<Memory::AddressSpace>&&, RefPtr<Thread>& first_thread, Process* fork_parent);
  452. static ProcessID allocate_pid();
  453. void kill_threads_except_self();
  454. void kill_all_threads();
  455. bool dump_core();
  456. bool dump_perfcore();
  457. bool create_perf_events_buffer_if_needed();
  458. void delete_perf_events_buffer();
  459. KResult do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header);
  460. KResultOr<FlatPtr> do_write(FileDescription&, const UserOrKernelBuffer&, size_t);
  461. KResultOr<FlatPtr> do_statvfs(String path, statvfs* buf);
  462. KResultOr<RefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & elf_header, int nread, size_t file_size);
  463. KResult do_kill(Process&, int signal);
  464. KResult do_killpg(ProcessGroupID pgrp, int signal);
  465. KResult do_killall(int signal);
  466. KResult do_killself(int signal);
  467. KResultOr<siginfo_t> do_waitid(Variant<Empty, NonnullRefPtr<Process>, NonnullRefPtr<ProcessGroup>> waitee, int options);
  468. KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const;
  469. KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const Syscall::StringArgument&) const;
  470. bool has_tracee_thread(ProcessID tracer_pid);
  471. void clear_futex_queues_on_exec();
  472. void setup_socket_fd(int fd, NonnullRefPtr<FileDescription> description, int type);
  473. public:
  474. NonnullRefPtr<ProcessProcFSTraits> procfs_traits() const { return *m_procfs_traits; }
  475. KResult procfs_get_fds_stats(KBufferBuilder& builder) const;
  476. KResult procfs_get_perf_events(KBufferBuilder& builder) const;
  477. KResult procfs_get_unveil_stats(KBufferBuilder& builder) const;
  478. KResult procfs_get_pledge_stats(KBufferBuilder& builder) const;
  479. KResult procfs_get_virtual_memory_stats(KBufferBuilder& builder) const;
  480. KResult procfs_get_binary_link(KBufferBuilder& builder) const;
  481. KResult procfs_get_current_work_directory_link(KBufferBuilder& builder) const;
  482. mode_t binary_link_required_mode() const;
  483. KResultOr<size_t> procfs_get_thread_stack(ThreadID thread_id, KBufferBuilder& builder) const;
  484. KResult traverse_stacks_directory(unsigned fsid, Function<bool(FileSystem::DirectoryEntryView const&)> callback) const;
  485. KResultOr<NonnullRefPtr<Inode>> lookup_stacks_directory(const ProcFS&, StringView name) const;
  486. KResultOr<size_t> procfs_get_file_description_link(unsigned fd, KBufferBuilder& builder) const;
  487. KResult traverse_file_descriptions_directory(unsigned fsid, Function<bool(FileSystem::DirectoryEntryView const&)> callback) const;
  488. KResultOr<NonnullRefPtr<Inode>> lookup_file_descriptions_directory(const ProcFS&, StringView name) const;
  489. private:
  490. inline PerformanceEventBuffer* current_perf_events_buffer()
  491. {
  492. if (g_profiling_all_threads)
  493. return g_global_perf_events;
  494. else if (m_profiling)
  495. return m_perf_event_buffer.ptr();
  496. else
  497. return nullptr;
  498. }
  499. mutable IntrusiveListNode<Process> m_list_node;
  500. String m_name;
  501. OwnPtr<Memory::AddressSpace> m_space;
  502. RefPtr<ProcessGroup> m_pg;
  503. AtomicEdgeAction<u32> m_protected_data_refs;
  504. void protect_data();
  505. void unprotect_data();
  506. OwnPtr<ThreadTracer> m_tracer;
  507. public:
  508. class FileDescriptionAndFlags {
  509. public:
  510. bool is_valid() const { return !m_description.is_null(); }
  511. bool is_allocated() const { return m_is_allocated; }
  512. void allocate()
  513. {
  514. VERIFY(!m_is_allocated);
  515. VERIFY(!is_valid());
  516. m_is_allocated = true;
  517. }
  518. void deallocate()
  519. {
  520. VERIFY(m_is_allocated);
  521. VERIFY(!is_valid());
  522. m_is_allocated = false;
  523. }
  524. FileDescription* description() { return m_description; }
  525. const FileDescription* description() const { return m_description; }
  526. u32 flags() const { return m_flags; }
  527. void set_flags(u32 flags) { m_flags = flags; }
  528. void clear();
  529. void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
  530. private:
  531. RefPtr<FileDescription> m_description;
  532. bool m_is_allocated { false };
  533. u32 m_flags { 0 };
  534. };
  535. class ScopedDescriptionAllocation;
  536. class FileDescriptions {
  537. AK_MAKE_NONCOPYABLE(FileDescriptions);
  538. friend class Process;
  539. public:
  540. ALWAYS_INLINE const FileDescriptionAndFlags& operator[](size_t i) const { return at(i); }
  541. ALWAYS_INLINE FileDescriptionAndFlags& operator[](size_t i) { return at(i); }
  542. KResult try_clone(const Kernel::Process::FileDescriptions& other)
  543. {
  544. SpinlockLocker lock_other(other.m_fds_lock);
  545. if (!try_resize(other.m_fds_metadatas.size()))
  546. return ENOMEM;
  547. for (size_t i = 0; i < other.m_fds_metadatas.size(); ++i) {
  548. m_fds_metadatas[i] = other.m_fds_metadatas[i];
  549. }
  550. return KSuccess;
  551. }
  552. const FileDescriptionAndFlags& at(size_t i) const;
  553. FileDescriptionAndFlags& at(size_t i);
  554. FileDescriptionAndFlags const* get_if_valid(size_t i) const;
  555. FileDescriptionAndFlags* get_if_valid(size_t i);
  556. void enumerate(Function<void(const FileDescriptionAndFlags&)>) const;
  557. void change_each(Function<void(FileDescriptionAndFlags&)>);
  558. KResultOr<ScopedDescriptionAllocation> allocate(int first_candidate_fd = 0);
  559. size_t open_count() const;
  560. bool try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
  561. size_t max_open() const
  562. {
  563. return m_max_open_file_descriptors;
  564. }
  565. void clear()
  566. {
  567. SpinlockLocker lock(m_fds_lock);
  568. m_fds_metadatas.clear();
  569. }
  570. // FIXME: Consider to remove this somehow
  571. RefPtr<FileDescription> file_description(int fd) const;
  572. private:
  573. FileDescriptions() = default;
  574. static constexpr size_t m_max_open_file_descriptors { FD_SETSIZE };
  575. mutable Spinlock<u8> m_fds_lock;
  576. Vector<FileDescriptionAndFlags> m_fds_metadatas;
  577. };
  578. class ScopedDescriptionAllocation {
  579. AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation);
  580. public:
  581. ScopedDescriptionAllocation() = default;
  582. ScopedDescriptionAllocation(int tracked_fd, FileDescriptionAndFlags* description)
  583. : fd(tracked_fd)
  584. , m_description(description)
  585. {
  586. }
  587. ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other)
  588. : fd(other.fd)
  589. {
  590. // Take over the responsibility of tracking to deallocation.
  591. swap(m_description, other.m_description);
  592. }
  593. ~ScopedDescriptionAllocation()
  594. {
  595. if (m_description && m_description->is_allocated() && !m_description->is_valid()) {
  596. m_description->deallocate();
  597. }
  598. }
  599. const int fd { -1 };
  600. private:
  601. FileDescriptionAndFlags* m_description { nullptr };
  602. };
  603. class ProcessProcFSTraits : public ProcFSExposedComponent {
  604. public:
  605. static KResultOr<NonnullRefPtr<ProcessProcFSTraits>> try_create(Badge<Process>, WeakPtr<Process> process)
  606. {
  607. return adopt_nonnull_ref_or_enomem(new (nothrow) ProcessProcFSTraits(process));
  608. }
  609. virtual InodeIndex component_index() const override;
  610. virtual KResultOr<NonnullRefPtr<Inode>> to_inode(const ProcFS& procfs_instance) const override;
  611. virtual KResult traverse_as_directory(unsigned, Function<bool(FileSystem::DirectoryEntryView const&)>) const override;
  612. virtual mode_t required_mode() const override { return 0555; }
  613. virtual UserID owner_user() const override;
  614. virtual GroupID owner_group() const override;
  615. private:
  616. ProcessProcFSTraits(WeakPtr<Process> process)
  617. : m_process(process)
  618. {
  619. }
  620. // NOTE: We need to weakly hold on to the process, because otherwise
  621. // we would be creating a reference cycle.
  622. WeakPtr<Process> m_process;
  623. };
  624. FileDescriptions& fds() { return m_fds; }
  625. const FileDescriptions& fds() const { return m_fds; }
  626. private:
  627. SpinlockProtected<Thread::ListInProcess>& thread_list() { return m_thread_list; }
  628. SpinlockProtected<Thread::ListInProcess> const& thread_list() const { return m_thread_list; }
  629. SpinlockProtected<Thread::ListInProcess> m_thread_list;
  630. FileDescriptions m_fds;
  631. const bool m_is_kernel_process;
  632. Atomic<State> m_state { State::Running };
  633. bool m_profiling { false };
  634. Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
  635. bool m_should_generate_coredump { false };
  636. RefPtr<Custody> m_executable;
  637. RefPtr<Custody> m_cwd;
  638. Vector<String> m_arguments;
  639. Vector<String> m_environment;
  640. RefPtr<TTY> m_tty;
  641. WeakPtr<Memory::Region> m_master_tls_region;
  642. size_t m_master_tls_size { 0 };
  643. size_t m_master_tls_alignment { 0 };
  644. Mutex m_big_lock { "Process" };
  645. Mutex m_ptrace_lock { "ptrace" };
  646. RefPtr<Timer> m_alarm_timer;
  647. VeilState m_veil_state { VeilState::None };
  648. UnveilNode m_unveiled_paths { "/", { .full_path = "/" } };
  649. OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
  650. FutexQueues m_futex_queues;
  651. Spinlock<u8> m_futex_lock;
  652. // This member is used in the implementation of ptrace's PT_TRACEME flag.
  653. // If it is set to true, the process will stop at the next execve syscall
  654. // and wait for a tracer to attach.
  655. bool m_wait_for_tracer_at_next_execve { false };
  656. Thread::WaitBlockerSet m_wait_blocker_set;
  657. struct CoredumpProperty {
  658. OwnPtr<KString> key;
  659. OwnPtr<KString> value;
  660. };
  661. Array<CoredumpProperty, 4> m_coredump_properties;
  662. NonnullRefPtrVector<Thread> m_threads_for_coredump;
  663. mutable RefPtr<ProcessProcFSTraits> m_procfs_traits;
  664. static_assert(sizeof(ProtectedValues) < (PAGE_SIZE));
  665. alignas(4096) ProtectedValues m_protected_values;
  666. u8 m_protected_values_padding[PAGE_SIZE - sizeof(ProtectedValues)];
  667. public:
  668. using List = IntrusiveListRelaxedConst<Process, RawPtr<Process>, &Process::m_list_node>;
  669. };
  670. // Note: Process object should be 2 pages of 4096 bytes each.
  671. // It's not expected that the Process object will expand further because the first
  672. // page is used for all unprotected values (which should be plenty of space for them).
  673. // The second page is being used exclusively for write-protected values.
  674. static_assert(sizeof(Process) == (PAGE_SIZE * 2));
  675. extern RecursiveSpinlock g_profiling_lock;
  676. SpinlockProtected<Process::List>& processes();
  677. template<IteratorFunction<Process&> Callback>
  678. inline void Process::for_each(Callback callback)
  679. {
  680. VERIFY_INTERRUPTS_DISABLED();
  681. processes().with([&](const auto& list) {
  682. for (auto it = list.begin(); it != list.end();) {
  683. auto& process = *it;
  684. ++it;
  685. if (callback(process) == IterationDecision::Break)
  686. break;
  687. }
  688. });
  689. }
  690. template<IteratorFunction<Process&> Callback>
  691. inline void Process::for_each_child(Callback callback)
  692. {
  693. ProcessID my_pid = pid();
  694. processes().with([&](const auto& list) {
  695. for (auto it = list.begin(); it != list.end();) {
  696. auto& process = *it;
  697. ++it;
  698. if (process.ppid() == my_pid || process.has_tracee_thread(pid())) {
  699. if (callback(process) == IterationDecision::Break)
  700. break;
  701. }
  702. }
  703. });
  704. }
  705. template<IteratorFunction<Thread&> Callback>
  706. inline IterationDecision Process::for_each_thread(Callback callback) const
  707. {
  708. return thread_list().with([&](auto& thread_list) -> IterationDecision {
  709. for (auto& thread : thread_list) {
  710. IterationDecision decision = callback(thread);
  711. if (decision != IterationDecision::Continue)
  712. return decision;
  713. }
  714. return IterationDecision::Continue;
  715. });
  716. }
  717. template<IteratorFunction<Thread&> Callback>
  718. inline IterationDecision Process::for_each_thread(Callback callback)
  719. {
  720. return thread_list().with([&](auto& thread_list) -> IterationDecision {
  721. for (auto& thread : thread_list) {
  722. IterationDecision decision = callback(thread);
  723. if (decision != IterationDecision::Continue)
  724. return decision;
  725. }
  726. return IterationDecision::Continue;
  727. });
  728. }
  729. template<IteratorFunction<Process&> Callback>
  730. inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
  731. {
  732. processes().with([&](const auto& list) {
  733. for (auto it = list.begin(); it != list.end();) {
  734. auto& process = *it;
  735. ++it;
  736. if (!process.is_dead() && process.pgid() == pgid) {
  737. if (callback(process) == IterationDecision::Break)
  738. break;
  739. }
  740. }
  741. });
  742. }
  743. template<VoidFunction<Process&> Callback>
  744. inline void Process::for_each(Callback callback)
  745. {
  746. return for_each([&](auto& item) {
  747. callback(item);
  748. return IterationDecision::Continue;
  749. });
  750. }
  751. template<VoidFunction<Process&> Callback>
  752. inline void Process::for_each_child(Callback callback)
  753. {
  754. return for_each_child([&](auto& item) {
  755. callback(item);
  756. return IterationDecision::Continue;
  757. });
  758. }
  759. template<VoidFunction<Thread&> Callback>
  760. inline IterationDecision Process::for_each_thread(Callback callback) const
  761. {
  762. thread_list().with([&](auto& thread_list) {
  763. for (auto& thread : thread_list)
  764. callback(thread);
  765. });
  766. return IterationDecision::Continue;
  767. }
  768. template<VoidFunction<Thread&> Callback>
  769. inline IterationDecision Process::for_each_thread(Callback callback)
  770. {
  771. thread_list().with([&](auto& thread_list) {
  772. for (auto& thread : thread_list)
  773. callback(thread);
  774. });
  775. return IterationDecision::Continue;
  776. }
  777. template<VoidFunction<Process&> Callback>
  778. inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
  779. {
  780. return for_each_in_pgrp(pgid, [&](auto& item) {
  781. callback(item);
  782. return IterationDecision::Continue;
  783. });
  784. }
  785. inline bool InodeMetadata::may_read(const Process& process) const
  786. {
  787. return may_read(process.euid(), process.egid(), process.extra_gids());
  788. }
  789. inline bool InodeMetadata::may_write(const Process& process) const
  790. {
  791. return may_write(process.euid(), process.egid(), process.extra_gids());
  792. }
  793. inline bool InodeMetadata::may_execute(const Process& process) const
  794. {
  795. return may_execute(process.euid(), process.egid(), process.extra_gids());
  796. }
  797. inline ProcessID Thread::pid() const
  798. {
  799. return m_process->pid();
  800. }
  801. #define REQUIRE_PROMISE(promise) \
  802. do { \
  803. Process::current().require_promise(Pledge::promise); \
  804. } while (0)
  805. #define REQUIRE_NO_PROMISES \
  806. do { \
  807. Process::current().require_no_promises(); \
  808. } while (0)
  809. }
  810. #define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \
  811. VERIFY(process->big_lock().is_locked_by_current_thread());
  812. #define VERIFY_NO_PROCESS_BIG_LOCK(process) \
  813. VERIFY(!process->big_lock().is_locked_by_current_thread());
  814. inline static KResultOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
  815. {
  816. Userspace<char const*> characters((FlatPtr)string.characters);
  817. return try_copy_kstring_from_user(characters, string.length);
  818. }
  819. template<>
  820. struct AK::Formatter<Kernel::Process> : AK::Formatter<String> {
  821. void format(FormatBuilder& builder, const Kernel::Process& value)
  822. {
  823. return AK::Formatter<String>::format(builder, String::formatted("{}({})", value.name(), value.pid().value()));
  824. }
  825. };