Record.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562
  1. /*
  2. * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Debug.h>
  7. #include <AK/Endian.h>
  8. #include <AK/MemoryStream.h>
  9. #include <LibCore/Timer.h>
  10. #include <LibCrypto/PK/Code/EMSA_PSS.h>
  11. #include <LibTLS/TLSv12.h>
  12. namespace TLS {
  13. ByteBuffer TLSv12::build_alert(bool critical, u8 code)
  14. {
  15. PacketBuilder builder(MessageType::Alert, (u16)m_context.options.version);
  16. builder.append((u8)(critical ? AlertLevel::Critical : AlertLevel::Warning));
  17. builder.append(code);
  18. if (critical)
  19. m_context.critical_error = code;
  20. auto packet = builder.build();
  21. update_packet(packet);
  22. return packet;
  23. }
  24. void TLSv12::alert(AlertLevel level, AlertDescription code)
  25. {
  26. auto the_alert = build_alert(level == AlertLevel::Critical, (u8)code);
  27. write_packet(the_alert);
  28. flush();
  29. }
  30. void TLSv12::write_packet(ByteBuffer& packet)
  31. {
  32. auto ok = m_context.tls_buffer.try_append(packet.data(), packet.size());
  33. if (!ok) {
  34. // Toooooo bad, drop the record on the ground.
  35. return;
  36. }
  37. if (m_context.connection_status > ConnectionStatus::Disconnected) {
  38. if (!m_has_scheduled_write_flush) {
  39. dbgln_if(TLS_DEBUG, "Scheduling write of {}", m_context.tls_buffer.size());
  40. deferred_invoke([this] { write_into_socket(); });
  41. m_has_scheduled_write_flush = true;
  42. } else {
  43. // multiple packet are available, let's flush some out
  44. dbgln_if(TLS_DEBUG, "Flushing scheduled write of {}", m_context.tls_buffer.size());
  45. write_into_socket();
  46. // the deferred invoke is still in place
  47. m_has_scheduled_write_flush = true;
  48. }
  49. }
  50. }
  51. void TLSv12::update_packet(ByteBuffer& packet)
  52. {
  53. u32 header_size = 5;
  54. ByteReader::store(packet.offset_pointer(3), AK::convert_between_host_and_network_endian((u16)(packet.size() - header_size)));
  55. if (packet[0] != (u8)MessageType::ChangeCipher) {
  56. if (packet[0] == (u8)MessageType::Handshake && packet.size() > header_size) {
  57. u8 handshake_type = packet[header_size];
  58. if (handshake_type != HandshakeType::HelloRequest && handshake_type != HandshakeType::HelloVerifyRequest) {
  59. update_hash(packet.bytes(), header_size);
  60. }
  61. }
  62. if (m_context.cipher_spec_set && m_context.crypto.created) {
  63. size_t length = packet.size() - header_size;
  64. size_t block_size = 0;
  65. size_t padding = 0;
  66. size_t mac_size = 0;
  67. m_cipher_local.visit(
  68. [&](Empty&) { VERIFY_NOT_REACHED(); },
  69. [&](Crypto::Cipher::AESCipher::GCMMode& gcm) {
  70. VERIFY(is_aead());
  71. block_size = gcm.cipher().block_size();
  72. padding = 0;
  73. mac_size = 0; // AEAD provides its own authentication scheme.
  74. },
  75. [&](Crypto::Cipher::AESCipher::CBCMode& cbc) {
  76. VERIFY(!is_aead());
  77. block_size = cbc.cipher().block_size();
  78. // If the length is already a multiple a block_size,
  79. // an entire block of padding is added.
  80. // In short, we _never_ have no padding.
  81. mac_size = mac_length();
  82. length += mac_size;
  83. padding = block_size - length % block_size;
  84. length += padding;
  85. });
  86. if (m_context.crypto.created == 1) {
  87. // `buffer' will continue to be encrypted
  88. auto buffer_result = ByteBuffer::create_uninitialized(length);
  89. if (!buffer_result.has_value()) {
  90. dbgln("LibTLS: Failed to allocate enough memory");
  91. VERIFY_NOT_REACHED();
  92. }
  93. auto buffer = buffer_result.release_value();
  94. size_t buffer_position = 0;
  95. auto iv_size = iv_length();
  96. // copy the packet, sans the header
  97. buffer.overwrite(buffer_position, packet.offset_pointer(header_size), packet.size() - header_size);
  98. buffer_position += packet.size() - header_size;
  99. ByteBuffer ct;
  100. m_cipher_local.visit(
  101. [&](Empty&) { VERIFY_NOT_REACHED(); },
  102. [&](Crypto::Cipher::AESCipher::GCMMode& gcm) {
  103. VERIFY(is_aead());
  104. // We need enough space for a header, the data, a tag, and the IV
  105. auto ct_buffer_result = ByteBuffer::create_uninitialized(length + header_size + iv_size + 16);
  106. if (!ct_buffer_result.has_value()) {
  107. dbgln("LibTLS: Failed to allocate enough memory for the ciphertext");
  108. VERIFY_NOT_REACHED();
  109. }
  110. ct = ct_buffer_result.release_value();
  111. // copy the header over
  112. ct.overwrite(0, packet.data(), header_size - 2);
  113. // AEAD AAD (13)
  114. // Seq. no (8)
  115. // content type (1)
  116. // version (2)
  117. // length (2)
  118. u8 aad[13];
  119. Bytes aad_bytes { aad, 13 };
  120. OutputMemoryStream aad_stream { aad_bytes };
  121. u64 seq_no = AK::convert_between_host_and_network_endian(m_context.local_sequence_number);
  122. u16 len = AK::convert_between_host_and_network_endian((u16)(packet.size() - header_size));
  123. aad_stream.write({ &seq_no, sizeof(seq_no) });
  124. aad_stream.write(packet.bytes().slice(0, 3)); // content-type + version
  125. aad_stream.write({ &len, sizeof(len) }); // length
  126. VERIFY(aad_stream.is_end());
  127. // AEAD IV (12)
  128. // IV (4)
  129. // (Nonce) (8)
  130. // -- Our GCM impl takes 16 bytes
  131. // zero (4)
  132. u8 iv[16];
  133. Bytes iv_bytes { iv, 16 };
  134. Bytes { m_context.crypto.local_aead_iv, 4 }.copy_to(iv_bytes);
  135. fill_with_random(iv_bytes.offset(4), 8);
  136. memset(iv_bytes.offset(12), 0, 4);
  137. // write the random part of the iv out
  138. iv_bytes.slice(4, 8).copy_to(ct.bytes().slice(header_size));
  139. // Write the encrypted data and the tag
  140. gcm.encrypt(
  141. packet.bytes().slice(header_size, length),
  142. ct.bytes().slice(header_size + 8, length),
  143. iv_bytes,
  144. aad_bytes,
  145. ct.bytes().slice(header_size + 8 + length, 16));
  146. VERIFY(header_size + 8 + length + 16 == ct.size());
  147. },
  148. [&](Crypto::Cipher::AESCipher::CBCMode& cbc) {
  149. VERIFY(!is_aead());
  150. // We need enough space for a header, iv_length bytes of IV and whatever the packet contains
  151. auto ct_buffer_result = ByteBuffer::create_uninitialized(length + header_size + iv_size);
  152. if (!ct_buffer_result.has_value()) {
  153. dbgln("LibTLS: Failed to allocate enough memory for the ciphertext");
  154. VERIFY_NOT_REACHED();
  155. }
  156. ct = ct_buffer_result.release_value();
  157. // copy the header over
  158. ct.overwrite(0, packet.data(), header_size - 2);
  159. // get the appropricate HMAC value for the entire packet
  160. auto mac = hmac_message(packet, {}, mac_size, true);
  161. // write the MAC
  162. buffer.overwrite(buffer_position, mac.data(), mac.size());
  163. buffer_position += mac.size();
  164. // Apply the padding (a packet MUST always be padded)
  165. memset(buffer.offset_pointer(buffer_position), padding - 1, padding);
  166. buffer_position += padding;
  167. VERIFY(buffer_position == buffer.size());
  168. auto iv_buffer_result = ByteBuffer::create_uninitialized(iv_size);
  169. if (!iv_buffer_result.has_value()) {
  170. dbgln("LibTLS: Failed to allocate memory for IV");
  171. VERIFY_NOT_REACHED();
  172. }
  173. auto iv = iv_buffer_result.release_value();
  174. fill_with_random(iv.data(), iv.size());
  175. // write it into the ciphertext portion of the message
  176. ct.overwrite(header_size, iv.data(), iv.size());
  177. VERIFY(header_size + iv_size + length == ct.size());
  178. VERIFY(length % block_size == 0);
  179. // get a block to encrypt into
  180. auto view = ct.bytes().slice(header_size + iv_size, length);
  181. cbc.encrypt(buffer, view, iv);
  182. });
  183. // store the correct ciphertext length into the packet
  184. u16 ct_length = (u16)ct.size() - header_size;
  185. ByteReader::store(ct.offset_pointer(header_size - 2), AK::convert_between_host_and_network_endian(ct_length));
  186. // replace the packet with the ciphertext
  187. packet = ct;
  188. }
  189. }
  190. }
  191. ++m_context.local_sequence_number;
  192. }
  193. void TLSv12::update_hash(ReadonlyBytes message, size_t header_size)
  194. {
  195. dbgln_if(TLS_DEBUG, "Update hash with message of size {}", message.size());
  196. m_context.handshake_hash.update(message.slice(header_size));
  197. }
  198. void TLSv12::ensure_hmac(size_t digest_size, bool local)
  199. {
  200. if (local && m_hmac_local)
  201. return;
  202. if (!local && m_hmac_remote)
  203. return;
  204. auto hash_kind = Crypto::Hash::HashKind::None;
  205. switch (digest_size) {
  206. case Crypto::Hash::SHA1::DigestSize:
  207. hash_kind = Crypto::Hash::HashKind::SHA1;
  208. break;
  209. case Crypto::Hash::SHA256::DigestSize:
  210. hash_kind = Crypto::Hash::HashKind::SHA256;
  211. break;
  212. case Crypto::Hash::SHA384::DigestSize:
  213. hash_kind = Crypto::Hash::HashKind::SHA384;
  214. break;
  215. case Crypto::Hash::SHA512::DigestSize:
  216. hash_kind = Crypto::Hash::HashKind::SHA512;
  217. break;
  218. default:
  219. dbgln("Failed to find a suitable hash for size {}", digest_size);
  220. break;
  221. }
  222. auto hmac = make<Crypto::Authentication::HMAC<Crypto::Hash::Manager>>(ReadonlyBytes { local ? m_context.crypto.local_mac : m_context.crypto.remote_mac, digest_size }, hash_kind);
  223. if (local)
  224. m_hmac_local = move(hmac);
  225. else
  226. m_hmac_remote = move(hmac);
  227. }
  228. ByteBuffer TLSv12::hmac_message(const ReadonlyBytes& buf, const Optional<ReadonlyBytes> buf2, size_t mac_length, bool local)
  229. {
  230. u64 sequence_number = AK::convert_between_host_and_network_endian(local ? m_context.local_sequence_number : m_context.remote_sequence_number);
  231. ensure_hmac(mac_length, local);
  232. auto& hmac = local ? *m_hmac_local : *m_hmac_remote;
  233. if constexpr (TLS_DEBUG) {
  234. dbgln("========================= PACKET DATA ==========================");
  235. print_buffer((const u8*)&sequence_number, sizeof(u64));
  236. print_buffer(buf.data(), buf.size());
  237. if (buf2.has_value())
  238. print_buffer(buf2.value().data(), buf2.value().size());
  239. dbgln("========================= PACKET DATA ==========================");
  240. }
  241. hmac.update((const u8*)&sequence_number, sizeof(u64));
  242. hmac.update(buf);
  243. if (buf2.has_value() && buf2.value().size()) {
  244. hmac.update(buf2.value());
  245. }
  246. auto digest = hmac.digest();
  247. auto mac_result = ByteBuffer::copy(digest.immutable_data(), digest.data_length());
  248. if (!mac_result.has_value()) {
  249. dbgln("Failed to calculate message HMAC: Not enough memory");
  250. return {};
  251. }
  252. if constexpr (TLS_DEBUG) {
  253. dbgln("HMAC of the block for sequence number {}", sequence_number);
  254. print_buffer(*mac_result);
  255. }
  256. return mac_result.release_value();
  257. }
  258. ssize_t TLSv12::handle_message(ReadonlyBytes buffer)
  259. {
  260. auto res { 5ll };
  261. size_t header_size = res;
  262. ssize_t payload_res = 0;
  263. dbgln_if(TLS_DEBUG, "buffer size: {}", buffer.size());
  264. if (buffer.size() < 5) {
  265. return (i8)Error::NeedMoreData;
  266. }
  267. auto type = (MessageType)buffer[0];
  268. size_t buffer_position { 1 };
  269. // FIXME: Read the version and verify it
  270. if constexpr (TLS_DEBUG) {
  271. auto version = ByteReader::load16(buffer.offset_pointer(buffer_position));
  272. dbgln("type={}, version={}", (u8)type, (u16)version);
  273. }
  274. buffer_position += 2;
  275. auto length = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(buffer_position)));
  276. dbgln_if(TLS_DEBUG, "record length: {} at offset: {}", length, buffer_position);
  277. buffer_position += 2;
  278. if (buffer_position + length > buffer.size()) {
  279. dbgln_if(TLS_DEBUG, "record length more than what we have: {}", buffer.size());
  280. return (i8)Error::NeedMoreData;
  281. }
  282. dbgln_if(TLS_DEBUG, "message type: {}, length: {}", (u8)type, length);
  283. auto plain = buffer.slice(buffer_position, buffer.size() - buffer_position);
  284. ByteBuffer decrypted;
  285. if (m_context.cipher_spec_set && type != MessageType::ChangeCipher) {
  286. if constexpr (TLS_DEBUG) {
  287. dbgln("Encrypted: ");
  288. print_buffer(buffer.slice(header_size, length));
  289. }
  290. Error return_value = Error::NoError;
  291. m_cipher_remote.visit(
  292. [&](Empty&) { VERIFY_NOT_REACHED(); },
  293. [&](Crypto::Cipher::AESCipher::GCMMode& gcm) {
  294. VERIFY(is_aead());
  295. if (length < 24) {
  296. dbgln("Invalid packet length");
  297. auto packet = build_alert(true, (u8)AlertDescription::DecryptError);
  298. write_packet(packet);
  299. return_value = Error::BrokenPacket;
  300. return;
  301. }
  302. auto packet_length = length - iv_length() - 16;
  303. auto payload = plain;
  304. auto decrypted_result = ByteBuffer::create_uninitialized(packet_length);
  305. if (!decrypted_result.has_value()) {
  306. dbgln("Failed to allocate memory for the packet");
  307. return_value = Error::DecryptionFailed;
  308. return;
  309. }
  310. decrypted = decrypted_result.release_value();
  311. // AEAD AAD (13)
  312. // Seq. no (8)
  313. // content type (1)
  314. // version (2)
  315. // length (2)
  316. u8 aad[13];
  317. Bytes aad_bytes { aad, 13 };
  318. OutputMemoryStream aad_stream { aad_bytes };
  319. u64 seq_no = AK::convert_between_host_and_network_endian(m_context.remote_sequence_number);
  320. u16 len = AK::convert_between_host_and_network_endian((u16)packet_length);
  321. aad_stream.write({ &seq_no, sizeof(seq_no) }); // Sequence number
  322. aad_stream.write(buffer.slice(0, header_size - 2)); // content-type + version
  323. aad_stream.write({ &len, sizeof(u16) });
  324. VERIFY(aad_stream.is_end());
  325. auto nonce = payload.slice(0, iv_length());
  326. payload = payload.slice(iv_length());
  327. // AEAD IV (12)
  328. // IV (4)
  329. // (Nonce) (8)
  330. // -- Our GCM impl takes 16 bytes
  331. // zero (4)
  332. u8 iv[16];
  333. Bytes iv_bytes { iv, 16 };
  334. Bytes { m_context.crypto.remote_aead_iv, 4 }.copy_to(iv_bytes);
  335. nonce.copy_to(iv_bytes.slice(4));
  336. memset(iv_bytes.offset(12), 0, 4);
  337. auto ciphertext = payload.slice(0, payload.size() - 16);
  338. auto tag = payload.slice(ciphertext.size());
  339. auto consistency = gcm.decrypt(
  340. ciphertext,
  341. decrypted,
  342. iv_bytes,
  343. aad_bytes,
  344. tag);
  345. if (consistency != Crypto::VerificationConsistency::Consistent) {
  346. dbgln("integrity check failed (tag length {})", tag.size());
  347. auto packet = build_alert(true, (u8)AlertDescription::BadRecordMAC);
  348. write_packet(packet);
  349. return_value = Error::IntegrityCheckFailed;
  350. return;
  351. }
  352. plain = decrypted;
  353. },
  354. [&](Crypto::Cipher::AESCipher::CBCMode& cbc) {
  355. VERIFY(!is_aead());
  356. auto iv_size = iv_length();
  357. auto decrypted_result = cbc.create_aligned_buffer(length - iv_size);
  358. if (!decrypted_result.has_value()) {
  359. dbgln("Failed to allocate memory for the packet");
  360. return_value = Error::DecryptionFailed;
  361. return;
  362. }
  363. decrypted = decrypted_result.release_value();
  364. auto iv = buffer.slice(header_size, iv_size);
  365. Bytes decrypted_span = decrypted;
  366. cbc.decrypt(buffer.slice(header_size + iv_size, length - iv_size), decrypted_span, iv);
  367. length = decrypted_span.size();
  368. if constexpr (TLS_DEBUG) {
  369. dbgln("Decrypted: ");
  370. print_buffer(decrypted);
  371. }
  372. auto mac_size = mac_length();
  373. if (length < mac_size) {
  374. dbgln("broken packet");
  375. auto packet = build_alert(true, (u8)AlertDescription::DecryptError);
  376. write_packet(packet);
  377. return_value = Error::BrokenPacket;
  378. return;
  379. }
  380. length -= mac_size;
  381. const u8* message_hmac = decrypted_span.offset(length);
  382. u8 temp_buf[5];
  383. memcpy(temp_buf, buffer.offset_pointer(0), 3);
  384. *(u16*)(temp_buf + 3) = AK::convert_between_host_and_network_endian(length);
  385. auto hmac = hmac_message({ temp_buf, 5 }, decrypted_span.slice(0, length), mac_size);
  386. auto message_mac = ReadonlyBytes { message_hmac, mac_size };
  387. if (hmac != message_mac) {
  388. dbgln("integrity check failed (mac length {})", mac_size);
  389. dbgln("mac received:");
  390. print_buffer(message_mac);
  391. dbgln("mac computed:");
  392. print_buffer(hmac);
  393. auto packet = build_alert(true, (u8)AlertDescription::BadRecordMAC);
  394. write_packet(packet);
  395. return_value = Error::IntegrityCheckFailed;
  396. return;
  397. }
  398. plain = decrypted.bytes().slice(0, length);
  399. });
  400. if (return_value != Error::NoError) {
  401. return (i8)return_value;
  402. }
  403. }
  404. m_context.remote_sequence_number++;
  405. switch (type) {
  406. case MessageType::ApplicationData:
  407. if (m_context.connection_status != ConnectionStatus::Established) {
  408. dbgln("unexpected application data");
  409. payload_res = (i8)Error::UnexpectedMessage;
  410. auto packet = build_alert(true, (u8)AlertDescription::UnexpectedMessage);
  411. write_packet(packet);
  412. } else {
  413. dbgln_if(TLS_DEBUG, "application data message of size {}", plain.size());
  414. if (!m_context.application_buffer.try_append(plain.data(), plain.size())) {
  415. payload_res = (i8)Error::DecryptionFailed;
  416. auto packet = build_alert(true, (u8)AlertDescription::DecryptionFailed);
  417. write_packet(packet);
  418. }
  419. }
  420. break;
  421. case MessageType::Handshake:
  422. dbgln_if(TLS_DEBUG, "tls handshake message");
  423. payload_res = handle_handshake_payload(plain);
  424. break;
  425. case MessageType::ChangeCipher:
  426. if (m_context.connection_status != ConnectionStatus::KeyExchange) {
  427. dbgln("unexpected change cipher message");
  428. auto packet = build_alert(true, (u8)AlertDescription::UnexpectedMessage);
  429. write_packet(packet);
  430. payload_res = (i8)Error::UnexpectedMessage;
  431. } else {
  432. dbgln_if(TLS_DEBUG, "change cipher spec message");
  433. m_context.cipher_spec_set = true;
  434. m_context.remote_sequence_number = 0;
  435. }
  436. break;
  437. case MessageType::Alert:
  438. dbgln_if(TLS_DEBUG, "alert message of length {}", length);
  439. if (length >= 2) {
  440. if constexpr (TLS_DEBUG)
  441. print_buffer(plain);
  442. auto level = plain[0];
  443. auto code = plain[1];
  444. dbgln_if(TLS_DEBUG, "Alert received with level {}, code {}", level, code);
  445. if (level == (u8)AlertLevel::Critical) {
  446. dbgln("We were alerted of a critical error: {} ({})", code, alert_name((AlertDescription)code));
  447. m_context.critical_error = code;
  448. try_disambiguate_error();
  449. res = (i8)Error::UnknownError;
  450. }
  451. if (code == (u8)AlertDescription::CloseNotify) {
  452. res += 2;
  453. alert(AlertLevel::Critical, AlertDescription::CloseNotify);
  454. m_context.connection_finished = true;
  455. if (!m_context.cipher_spec_set) {
  456. // AWS CloudFront hits this.
  457. dbgln("Server sent a close notify and we haven't agreed on a cipher suite. Treating it as a handshake failure.");
  458. m_context.critical_error = (u8)AlertDescription::HandshakeFailure;
  459. try_disambiguate_error();
  460. }
  461. }
  462. m_context.error_code = (Error)code;
  463. }
  464. break;
  465. default:
  466. dbgln("message not understood");
  467. return (i8)Error::NotUnderstood;
  468. }
  469. if (payload_res < 0)
  470. return payload_res;
  471. if (res > 0)
  472. return header_size + length;
  473. return res;
  474. }
  475. }