MathObject.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/Function.h>
  9. #include <AK/Random.h>
  10. #include <LibJS/Runtime/GlobalObject.h>
  11. #include <LibJS/Runtime/MathObject.h>
  12. #include <math.h>
  13. namespace JS {
  14. MathObject::MathObject(GlobalObject& global_object)
  15. : Object(*global_object.object_prototype())
  16. {
  17. }
  18. void MathObject::initialize(GlobalObject& global_object)
  19. {
  20. auto& vm = this->vm();
  21. Object::initialize(global_object);
  22. u8 attr = Attribute::Writable | Attribute::Configurable;
  23. define_native_function(vm.names.abs, abs, 1, attr);
  24. define_native_function(vm.names.random, random, 0, attr);
  25. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  26. define_native_function(vm.names.floor, floor, 1, attr);
  27. define_native_function(vm.names.ceil, ceil, 1, attr);
  28. define_native_function(vm.names.round, round, 1, attr);
  29. define_native_function(vm.names.max, max, 2, attr);
  30. define_native_function(vm.names.min, min, 2, attr);
  31. define_native_function(vm.names.trunc, trunc, 1, attr);
  32. define_native_function(vm.names.sin, sin, 1, attr);
  33. define_native_function(vm.names.cos, cos, 1, attr);
  34. define_native_function(vm.names.tan, tan, 1, attr);
  35. define_native_function(vm.names.pow, pow, 2, attr);
  36. define_native_function(vm.names.exp, exp, 1, attr);
  37. define_native_function(vm.names.expm1, expm1, 1, attr);
  38. define_native_function(vm.names.sign, sign, 1, attr);
  39. define_native_function(vm.names.clz32, clz32, 1, attr);
  40. define_native_function(vm.names.acos, acos, 1, attr);
  41. define_native_function(vm.names.acosh, acosh, 1, attr);
  42. define_native_function(vm.names.asin, asin, 1, attr);
  43. define_native_function(vm.names.asinh, asinh, 1, attr);
  44. define_native_function(vm.names.atan, atan, 1, attr);
  45. define_native_function(vm.names.atanh, atanh, 1, attr);
  46. define_native_function(vm.names.log1p, log1p, 1, attr);
  47. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  48. define_native_function(vm.names.atan2, atan2, 2, attr);
  49. define_native_function(vm.names.fround, fround, 1, attr);
  50. define_native_function(vm.names.hypot, hypot, 2, attr);
  51. define_native_function(vm.names.imul, imul, 2, attr);
  52. define_native_function(vm.names.log, log, 1, attr);
  53. define_native_function(vm.names.log2, log2, 1, attr);
  54. define_native_function(vm.names.log10, log10, 1, attr);
  55. define_native_function(vm.names.sinh, sinh, 1, attr);
  56. define_native_function(vm.names.cosh, cosh, 1, attr);
  57. define_native_function(vm.names.tanh, tanh, 1, attr);
  58. // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
  59. define_direct_property(vm.names.E, Value(M_E), 0);
  60. define_direct_property(vm.names.LN2, Value(M_LN2), 0);
  61. define_direct_property(vm.names.LN10, Value(M_LN10), 0);
  62. define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  63. define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  64. define_direct_property(vm.names.PI, Value(M_PI), 0);
  65. define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  66. define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  67. // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
  68. define_direct_property(*vm.well_known_symbol_to_string_tag(), js_string(vm, vm.names.Math.as_string()), Attribute::Configurable);
  69. }
  70. MathObject::~MathObject()
  71. {
  72. }
  73. // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
  74. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  75. {
  76. auto number = vm.argument(0).to_number(global_object);
  77. if (vm.exception())
  78. return {};
  79. if (number.is_nan())
  80. return js_nan();
  81. if (number.is_negative_zero())
  82. return Value(0);
  83. if (number.is_negative_infinity())
  84. return js_infinity();
  85. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  86. }
  87. // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
  88. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  89. {
  90. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  91. return Value(r);
  92. }
  93. // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
  94. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  95. {
  96. auto number = vm.argument(0).to_number(global_object);
  97. if (vm.exception())
  98. return {};
  99. if (number.is_nan())
  100. return js_nan();
  101. return Value(::sqrt(number.as_double()));
  102. }
  103. // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
  104. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  105. {
  106. auto number = vm.argument(0).to_number(global_object);
  107. if (vm.exception())
  108. return {};
  109. if (number.is_nan())
  110. return js_nan();
  111. return Value(::floor(number.as_double()));
  112. }
  113. // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
  114. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  115. {
  116. auto number = vm.argument(0).to_number(global_object);
  117. if (vm.exception())
  118. return {};
  119. if (number.is_nan())
  120. return js_nan();
  121. auto number_double = number.as_double();
  122. if (number_double < 0 && number_double > -1)
  123. return Value(-0.f);
  124. return Value(::ceil(number.as_double()));
  125. }
  126. // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
  127. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  128. {
  129. auto number = vm.argument(0).to_number(global_object);
  130. if (vm.exception())
  131. return {};
  132. auto value = number.as_double();
  133. double integer = ::ceil(value);
  134. if (integer - 0.5 > value)
  135. integer--;
  136. return Value(integer);
  137. }
  138. // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
  139. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  140. {
  141. Vector<Value> coerced;
  142. for (size_t i = 0; i < vm.argument_count(); ++i) {
  143. auto number = vm.argument(i).to_number(global_object);
  144. if (vm.exception())
  145. return {};
  146. coerced.append(number);
  147. }
  148. auto highest = js_negative_infinity();
  149. for (auto& number : coerced) {
  150. if (number.is_nan())
  151. return js_nan();
  152. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  153. highest = number;
  154. }
  155. return highest;
  156. }
  157. // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
  158. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  159. {
  160. Vector<Value> coerced;
  161. for (size_t i = 0; i < vm.argument_count(); ++i) {
  162. auto number = vm.argument(i).to_number(global_object);
  163. if (vm.exception())
  164. return {};
  165. coerced.append(number);
  166. }
  167. auto lowest = js_infinity();
  168. for (auto& number : coerced) {
  169. if (number.is_nan())
  170. return js_nan();
  171. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  172. lowest = number;
  173. }
  174. return lowest;
  175. }
  176. // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
  177. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  178. {
  179. auto number = vm.argument(0).to_number(global_object);
  180. if (vm.exception())
  181. return {};
  182. if (number.is_nan())
  183. return js_nan();
  184. if (number.as_double() < 0)
  185. return MathObject::ceil(vm, global_object);
  186. return MathObject::floor(vm, global_object);
  187. }
  188. // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
  189. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  190. {
  191. auto number = vm.argument(0).to_number(global_object);
  192. if (vm.exception())
  193. return {};
  194. if (number.is_nan())
  195. return js_nan();
  196. return Value(::sin(number.as_double()));
  197. }
  198. // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
  199. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  200. {
  201. auto number = vm.argument(0).to_number(global_object);
  202. if (vm.exception())
  203. return {};
  204. if (number.is_nan())
  205. return js_nan();
  206. return Value(::cos(number.as_double()));
  207. }
  208. // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
  209. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  210. {
  211. auto number = vm.argument(0).to_number(global_object);
  212. if (vm.exception())
  213. return {};
  214. if (number.is_nan())
  215. return js_nan();
  216. return Value(::tan(number.as_double()));
  217. }
  218. // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
  219. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  220. {
  221. auto base = vm.argument(0).to_number(global_object);
  222. if (vm.exception())
  223. return {};
  224. auto exponent = vm.argument(1).to_number(global_object);
  225. if (vm.exception())
  226. return {};
  227. if (exponent.is_nan())
  228. return js_nan();
  229. if (exponent.is_positive_zero() || exponent.is_negative_zero())
  230. return Value(1);
  231. if (base.is_nan())
  232. return js_nan();
  233. if (base.is_positive_infinity())
  234. return exponent.as_double() > 0 ? js_infinity() : Value(0);
  235. if (base.is_negative_infinity()) {
  236. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  237. if (exponent.as_double() > 0)
  238. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  239. else
  240. return is_odd_integral_number ? Value(-0.0) : Value(0);
  241. }
  242. if (base.is_positive_zero())
  243. return exponent.as_double() > 0 ? Value(0) : js_infinity();
  244. if (base.is_negative_zero()) {
  245. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  246. if (exponent.as_double() > 0)
  247. return is_odd_integral_number ? Value(-0.0) : Value(0);
  248. else
  249. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  250. }
  251. VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero());
  252. if (exponent.is_positive_infinity()) {
  253. auto absolute_base = fabs(base.as_double());
  254. if (absolute_base > 1)
  255. return js_infinity();
  256. else if (absolute_base == 1)
  257. return js_nan();
  258. else if (absolute_base < 1)
  259. return Value(0);
  260. }
  261. if (exponent.is_negative_infinity()) {
  262. auto absolute_base = fabs(base.as_double());
  263. if (absolute_base > 1)
  264. return Value(0);
  265. else if (absolute_base == 1)
  266. return js_nan();
  267. else if (absolute_base < 1)
  268. return js_infinity();
  269. }
  270. VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero());
  271. if (base.as_double() < 0 && !exponent.is_integral_number())
  272. return js_nan();
  273. return Value(::pow(base.as_double(), exponent.as_double()));
  274. }
  275. // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
  276. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  277. {
  278. auto number = vm.argument(0).to_number(global_object);
  279. if (vm.exception())
  280. return {};
  281. if (number.is_nan())
  282. return js_nan();
  283. return Value(::exp(number.as_double()));
  284. }
  285. // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
  286. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  287. {
  288. auto number = vm.argument(0).to_number(global_object);
  289. if (vm.exception())
  290. return {};
  291. if (number.is_nan())
  292. return js_nan();
  293. return Value(::expm1(number.as_double()));
  294. }
  295. // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
  296. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  297. {
  298. auto number = vm.argument(0).to_number(global_object);
  299. if (vm.exception())
  300. return {};
  301. if (number.is_positive_zero())
  302. return Value(0);
  303. if (number.is_negative_zero())
  304. return Value(-0.0);
  305. if (number.as_double() > 0)
  306. return Value(1);
  307. if (number.as_double() < 0)
  308. return Value(-1);
  309. return js_nan();
  310. }
  311. // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
  312. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  313. {
  314. auto number = vm.argument(0).to_u32(global_object);
  315. if (vm.exception())
  316. return {};
  317. if (number == 0)
  318. return Value(32);
  319. return Value(__builtin_clz(number));
  320. }
  321. // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
  322. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  323. {
  324. auto number = vm.argument(0).to_number(global_object);
  325. if (vm.exception())
  326. return {};
  327. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  328. return js_nan();
  329. if (number.as_double() == 1)
  330. return Value(0);
  331. return Value(::acos(number.as_double()));
  332. }
  333. // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
  334. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  335. {
  336. auto number = vm.argument(0).to_number(global_object);
  337. if (vm.exception())
  338. return {};
  339. if (number.as_double() < 1)
  340. return js_nan();
  341. return Value(::acosh(number.as_double()));
  342. }
  343. // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
  344. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  345. {
  346. auto number = vm.argument(0).to_number(global_object);
  347. if (vm.exception())
  348. return {};
  349. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  350. return number;
  351. return Value(::asin(number.as_double()));
  352. }
  353. // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
  354. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  355. {
  356. auto number = vm.argument(0).to_number(global_object);
  357. if (vm.exception())
  358. return {};
  359. return Value(::asinh(number.as_double()));
  360. }
  361. // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
  362. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  363. {
  364. auto number = vm.argument(0).to_number(global_object);
  365. if (vm.exception())
  366. return {};
  367. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  368. return number;
  369. if (number.is_positive_infinity())
  370. return Value(M_PI_2);
  371. if (number.is_negative_infinity())
  372. return Value(-M_PI_2);
  373. return Value(::atan(number.as_double()));
  374. }
  375. // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
  376. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  377. {
  378. auto number = vm.argument(0).to_number(global_object);
  379. if (vm.exception())
  380. return {};
  381. if (number.as_double() > 1 || number.as_double() < -1)
  382. return js_nan();
  383. return Value(::atanh(number.as_double()));
  384. }
  385. // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
  386. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  387. {
  388. auto number = vm.argument(0).to_number(global_object);
  389. if (vm.exception())
  390. return {};
  391. if (number.as_double() < -1)
  392. return js_nan();
  393. return Value(::log1p(number.as_double()));
  394. }
  395. // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
  396. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  397. {
  398. auto number = vm.argument(0).to_number(global_object);
  399. if (vm.exception())
  400. return {};
  401. return Value(::cbrt(number.as_double()));
  402. }
  403. // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
  404. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  405. {
  406. auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
  407. auto y = vm.argument(0).to_number(global_object);
  408. if (vm.exception())
  409. return {};
  410. auto x = vm.argument(1).to_number(global_object);
  411. if (vm.exception())
  412. return {};
  413. if (y.is_nan() || x.is_nan())
  414. return js_nan();
  415. if (y.is_positive_infinity()) {
  416. if (x.is_positive_infinity())
  417. return Value(M_PI_4);
  418. else if (x.is_negative_infinity())
  419. return Value(three_quarters_pi);
  420. else
  421. return Value(M_PI_2);
  422. }
  423. if (y.is_negative_infinity()) {
  424. if (x.is_positive_infinity())
  425. return Value(-M_PI_4);
  426. else if (x.is_negative_infinity())
  427. return Value(-three_quarters_pi);
  428. else
  429. return Value(-M_PI_2);
  430. }
  431. if (y.is_positive_zero()) {
  432. if (x.as_double() > 0 || x.is_positive_zero())
  433. return Value(0.0);
  434. else
  435. return Value(M_PI);
  436. }
  437. if (y.is_negative_zero()) {
  438. if (x.as_double() > 0 || x.is_positive_zero())
  439. return Value(-0.0);
  440. else
  441. return Value(-M_PI);
  442. }
  443. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
  444. if (y.as_double() > 0) {
  445. if (x.is_positive_infinity())
  446. return Value(0);
  447. else if (x.is_negative_infinity())
  448. return Value(M_PI);
  449. else if (x.is_positive_zero() || x.is_negative_zero())
  450. return Value(M_PI_2);
  451. }
  452. if (y.as_double() < 0) {
  453. if (x.is_positive_infinity())
  454. return Value(-0.0);
  455. else if (x.is_negative_infinity())
  456. return Value(-M_PI);
  457. else if (x.is_positive_zero() || x.is_negative_zero())
  458. return Value(-M_PI_2);
  459. }
  460. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
  461. return Value(::atan2(y.as_double(), x.as_double()));
  462. }
  463. // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
  464. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  465. {
  466. auto number = vm.argument(0).to_number(global_object);
  467. if (vm.exception())
  468. return {};
  469. if (number.is_nan())
  470. return js_nan();
  471. return Value((float)number.as_double());
  472. }
  473. // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
  474. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  475. {
  476. Vector<Value> coerced;
  477. for (size_t i = 0; i < vm.argument_count(); ++i) {
  478. auto number = vm.argument(i).to_number(global_object);
  479. if (vm.exception())
  480. return {};
  481. coerced.append(number);
  482. }
  483. for (auto& number : coerced) {
  484. if (number.is_positive_infinity() || number.is_negative_infinity())
  485. return js_infinity();
  486. }
  487. auto only_zero = true;
  488. double sum_of_squares = 0;
  489. for (auto& number : coerced) {
  490. if (number.is_nan() || number.is_positive_infinity())
  491. return number;
  492. if (number.is_negative_infinity())
  493. return js_infinity();
  494. if (!number.is_positive_zero() && !number.is_negative_zero())
  495. only_zero = false;
  496. sum_of_squares += number.as_double() * number.as_double();
  497. }
  498. if (only_zero)
  499. return Value(0);
  500. return Value(::sqrt(sum_of_squares));
  501. }
  502. // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
  503. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  504. {
  505. auto a = vm.argument(0).to_u32(global_object);
  506. if (vm.exception())
  507. return {};
  508. auto b = vm.argument(1).to_u32(global_object);
  509. if (vm.exception())
  510. return {};
  511. return Value(static_cast<i32>(a * b));
  512. }
  513. // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
  514. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  515. {
  516. auto number = vm.argument(0).to_number(global_object);
  517. if (vm.exception())
  518. return {};
  519. if (number.as_double() < 0)
  520. return js_nan();
  521. return Value(::log(number.as_double()));
  522. }
  523. // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
  524. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  525. {
  526. auto number = vm.argument(0).to_number(global_object);
  527. if (vm.exception())
  528. return {};
  529. if (number.as_double() < 0)
  530. return js_nan();
  531. return Value(::log2(number.as_double()));
  532. }
  533. // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
  534. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  535. {
  536. auto number = vm.argument(0).to_number(global_object);
  537. if (vm.exception())
  538. return {};
  539. if (number.as_double() < 0)
  540. return js_nan();
  541. return Value(::log10(number.as_double()));
  542. }
  543. // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
  544. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  545. {
  546. auto number = vm.argument(0).to_number(global_object);
  547. if (vm.exception())
  548. return {};
  549. if (number.is_nan())
  550. return js_nan();
  551. return Value(::sinh(number.as_double()));
  552. }
  553. // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
  554. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  555. {
  556. auto number = vm.argument(0).to_number(global_object);
  557. if (vm.exception())
  558. return {};
  559. if (number.is_nan())
  560. return js_nan();
  561. return Value(::cosh(number.as_double()));
  562. }
  563. // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
  564. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  565. {
  566. auto number = vm.argument(0).to_number(global_object);
  567. if (vm.exception())
  568. return {};
  569. if (number.is_nan())
  570. return js_nan();
  571. if (number.is_positive_infinity())
  572. return Value(1);
  573. if (number.is_negative_infinity())
  574. return Value(-1);
  575. return Value(::tanh(number.as_double()));
  576. }
  577. }