Bitmap.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Checked.h>
  7. #include <AK/LexicalPath.h>
  8. #include <AK/Memory.h>
  9. #include <AK/MemoryStream.h>
  10. #include <AK/Optional.h>
  11. #include <AK/ScopeGuard.h>
  12. #include <AK/String.h>
  13. #include <LibGfx/BMPLoader.h>
  14. #include <LibGfx/Bitmap.h>
  15. #include <LibGfx/DDSLoader.h>
  16. #include <LibGfx/GIFLoader.h>
  17. #include <LibGfx/ICOLoader.h>
  18. #include <LibGfx/JPGLoader.h>
  19. #include <LibGfx/PBMLoader.h>
  20. #include <LibGfx/PGMLoader.h>
  21. #include <LibGfx/PNGLoader.h>
  22. #include <LibGfx/PPMLoader.h>
  23. #include <LibGfx/ShareableBitmap.h>
  24. #include <errno.h>
  25. #include <stdio.h>
  26. #include <sys/mman.h>
  27. namespace Gfx {
  28. struct BackingStore {
  29. void* data { nullptr };
  30. size_t pitch { 0 };
  31. size_t size_in_bytes { 0 };
  32. };
  33. size_t Bitmap::minimum_pitch(size_t physical_width, BitmapFormat format)
  34. {
  35. size_t element_size;
  36. switch (determine_storage_format(format)) {
  37. case StorageFormat::Indexed8:
  38. element_size = 1;
  39. break;
  40. case StorageFormat::BGRx8888:
  41. case StorageFormat::BGRA8888:
  42. case StorageFormat::RGBA8888:
  43. element_size = 4;
  44. break;
  45. default:
  46. VERIFY_NOT_REACHED();
  47. }
  48. return physical_width * element_size;
  49. }
  50. static bool size_would_overflow(BitmapFormat format, const IntSize& size, int scale_factor)
  51. {
  52. if (size.width() < 0 || size.height() < 0)
  53. return true;
  54. // This check is a bit arbitrary, but should protect us from most shenanigans:
  55. if (size.width() >= INT16_MAX || size.height() >= INT16_MAX || scale_factor < 1 || scale_factor > 4)
  56. return true;
  57. // In contrast, this check is absolutely necessary:
  58. size_t pitch = Bitmap::minimum_pitch(size.width() * scale_factor, format);
  59. return Checked<size_t>::multiplication_would_overflow(pitch, size.height() * scale_factor);
  60. }
  61. RefPtr<Bitmap> Bitmap::try_create(BitmapFormat format, const IntSize& size, int scale_factor)
  62. {
  63. auto backing_store = Bitmap::try_allocate_backing_store(format, size, scale_factor);
  64. if (!backing_store.has_value())
  65. return nullptr;
  66. return adopt_ref(*new Bitmap(format, size, scale_factor, backing_store.value()));
  67. }
  68. RefPtr<Bitmap> Bitmap::try_create_shareable(BitmapFormat format, const IntSize& size, int scale_factor)
  69. {
  70. if (size_would_overflow(format, size, scale_factor))
  71. return nullptr;
  72. const auto pitch = minimum_pitch(size.width() * scale_factor, format);
  73. const auto data_size = size_in_bytes(pitch, size.height() * scale_factor);
  74. auto buffer = Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(data_size, PAGE_SIZE));
  75. if (!buffer.is_valid())
  76. return nullptr;
  77. return Bitmap::try_create_with_anonymous_buffer(format, buffer, size, scale_factor, {});
  78. }
  79. Bitmap::Bitmap(BitmapFormat format, const IntSize& size, int scale_factor, const BackingStore& backing_store)
  80. : m_size(size)
  81. , m_scale(scale_factor)
  82. , m_data(backing_store.data)
  83. , m_pitch(backing_store.pitch)
  84. , m_format(format)
  85. {
  86. VERIFY(!m_size.is_empty());
  87. VERIFY(!size_would_overflow(format, size, scale_factor));
  88. VERIFY(m_data);
  89. VERIFY(backing_store.size_in_bytes == size_in_bytes());
  90. allocate_palette_from_format(format, {});
  91. m_needs_munmap = true;
  92. }
  93. RefPtr<Bitmap> Bitmap::try_create_wrapper(BitmapFormat format, const IntSize& size, int scale_factor, size_t pitch, void* data)
  94. {
  95. if (size_would_overflow(format, size, scale_factor))
  96. return nullptr;
  97. return adopt_ref(*new Bitmap(format, size, scale_factor, pitch, data));
  98. }
  99. RefPtr<Bitmap> Bitmap::try_load_from_file(String const& path, int scale_factor)
  100. {
  101. if (scale_factor > 1 && path.starts_with("/res/")) {
  102. LexicalPath lexical_path { path };
  103. StringBuilder highdpi_icon_path;
  104. highdpi_icon_path.append(lexical_path.dirname());
  105. highdpi_icon_path.append('/');
  106. highdpi_icon_path.append(lexical_path.title());
  107. highdpi_icon_path.appendff("-{}x.", scale_factor);
  108. highdpi_icon_path.append(lexical_path.extension());
  109. RefPtr<Bitmap> bmp;
  110. #define __ENUMERATE_IMAGE_FORMAT(Name, Ext) \
  111. if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) \
  112. bmp = load_##Name(highdpi_icon_path.to_string());
  113. ENUMERATE_IMAGE_FORMATS
  114. #undef __ENUMERATE_IMAGE_FORMAT
  115. if (bmp) {
  116. VERIFY(bmp->width() % scale_factor == 0);
  117. VERIFY(bmp->height() % scale_factor == 0);
  118. bmp->m_size.set_width(bmp->width() / scale_factor);
  119. bmp->m_size.set_height(bmp->height() / scale_factor);
  120. bmp->m_scale = scale_factor;
  121. return bmp;
  122. }
  123. }
  124. #define __ENUMERATE_IMAGE_FORMAT(Name, Ext) \
  125. if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) \
  126. return load_##Name(path);
  127. ENUMERATE_IMAGE_FORMATS
  128. #undef __ENUMERATE_IMAGE_FORMAT
  129. return nullptr;
  130. }
  131. RefPtr<Bitmap> Bitmap::try_load_from_fd_and_close(int fd, String const& path, int scale_factor)
  132. {
  133. if (scale_factor > 1 && path.starts_with("/res/")) {
  134. LexicalPath lexical_path { path };
  135. StringBuilder highdpi_icon_path;
  136. highdpi_icon_path.append(lexical_path.dirname());
  137. highdpi_icon_path.append('/');
  138. highdpi_icon_path.append(lexical_path.title());
  139. highdpi_icon_path.appendff("-{}x.", scale_factor);
  140. highdpi_icon_path.append(lexical_path.extension());
  141. RefPtr<Bitmap> bmp;
  142. #define __ENUMERATE_IMAGE_FORMAT(Name, Ext) \
  143. if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) { \
  144. auto file = MappedFile::map_from_fd_and_close(fd, highdpi_icon_path.to_string()); \
  145. if (!file.is_error()) \
  146. bmp = load_##Name##_from_memory((const u8*)file.value()->data(), file.value()->size(), highdpi_icon_path.to_string()); \
  147. }
  148. ENUMERATE_IMAGE_FORMATS
  149. #undef __ENUMERATE_IMAGE_FORMAT
  150. if (bmp) {
  151. VERIFY(bmp->width() % scale_factor == 0);
  152. VERIFY(bmp->height() % scale_factor == 0);
  153. bmp->m_size.set_width(bmp->width() / scale_factor);
  154. bmp->m_size.set_height(bmp->height() / scale_factor);
  155. bmp->m_scale = scale_factor;
  156. return bmp;
  157. }
  158. }
  159. #define __ENUMERATE_IMAGE_FORMAT(Name, Ext) \
  160. if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) { \
  161. auto file = MappedFile::map_from_fd_and_close(fd, path); \
  162. if (!file.is_error()) \
  163. return load_##Name##_from_memory((const u8*)file.value()->data(), file.value()->size(), path); \
  164. }
  165. ENUMERATE_IMAGE_FORMATS
  166. #undef __ENUMERATE_IMAGE_FORMAT
  167. return nullptr;
  168. }
  169. Bitmap::Bitmap(BitmapFormat format, const IntSize& size, int scale_factor, size_t pitch, void* data)
  170. : m_size(size)
  171. , m_scale(scale_factor)
  172. , m_data(data)
  173. , m_pitch(pitch)
  174. , m_format(format)
  175. {
  176. VERIFY(pitch >= minimum_pitch(size.width() * scale_factor, format));
  177. VERIFY(!size_would_overflow(format, size, scale_factor));
  178. // FIXME: assert that `data` is actually long enough!
  179. allocate_palette_from_format(format, {});
  180. }
  181. static bool check_size(const IntSize& size, int scale_factor, BitmapFormat format, unsigned actual_size)
  182. {
  183. // FIXME: Code duplication of size_in_bytes() and m_pitch
  184. unsigned expected_size_min = Bitmap::minimum_pitch(size.width() * scale_factor, format) * size.height() * scale_factor;
  185. unsigned expected_size_max = round_up_to_power_of_two(expected_size_min, PAGE_SIZE);
  186. if (expected_size_min > actual_size || actual_size > expected_size_max) {
  187. // Getting here is most likely an error.
  188. dbgln("Constructing a shared bitmap for format {} and size {} @ {}x, which demands {} bytes, which rounds up to at most {}.",
  189. static_cast<int>(format),
  190. size,
  191. scale_factor,
  192. expected_size_min,
  193. expected_size_max);
  194. dbgln("However, we were given {} bytes, which is outside this range?! Refusing cowardly.", actual_size);
  195. return false;
  196. }
  197. return true;
  198. }
  199. RefPtr<Bitmap> Bitmap::try_create_with_anonymous_buffer(BitmapFormat format, Core::AnonymousBuffer buffer, const IntSize& size, int scale_factor, const Vector<RGBA32>& palette)
  200. {
  201. if (size_would_overflow(format, size, scale_factor))
  202. return nullptr;
  203. return adopt_ref(*new Bitmap(format, move(buffer), size, scale_factor, palette));
  204. }
  205. /// Read a bitmap as described by:
  206. /// - actual size
  207. /// - width
  208. /// - height
  209. /// - scale_factor
  210. /// - format
  211. /// - palette count
  212. /// - palette data (= palette count * BGRA8888)
  213. /// - image data (= actual size * u8)
  214. RefPtr<Bitmap> Bitmap::try_create_from_serialized_byte_buffer(ByteBuffer&& buffer)
  215. {
  216. InputMemoryStream stream { buffer };
  217. size_t actual_size;
  218. unsigned width;
  219. unsigned height;
  220. unsigned scale_factor;
  221. BitmapFormat format;
  222. unsigned palette_size;
  223. Vector<RGBA32> palette;
  224. auto read = [&]<typename T>(T& value) {
  225. if (stream.read({ &value, sizeof(T) }) != sizeof(T))
  226. return false;
  227. return true;
  228. };
  229. if (!read(actual_size) || !read(width) || !read(height) || !read(scale_factor) || !read(format) || !read(palette_size))
  230. return nullptr;
  231. if (format > BitmapFormat::BGRA8888 || format < BitmapFormat::Indexed1)
  232. return nullptr;
  233. if (!check_size({ width, height }, scale_factor, format, actual_size))
  234. return {};
  235. palette.ensure_capacity(palette_size);
  236. for (size_t i = 0; i < palette_size; ++i) {
  237. if (!read(palette[i]))
  238. return {};
  239. }
  240. if (stream.remaining() < actual_size)
  241. return {};
  242. auto data = stream.bytes().slice(stream.offset(), actual_size);
  243. auto bitmap = Bitmap::try_create(format, { width, height }, scale_factor);
  244. if (!bitmap)
  245. return {};
  246. bitmap->m_palette = new RGBA32[palette_size];
  247. memcpy(bitmap->m_palette, palette.data(), palette_size * sizeof(RGBA32));
  248. data.copy_to({ bitmap->scanline(0), bitmap->size_in_bytes() });
  249. return bitmap;
  250. }
  251. ByteBuffer Bitmap::serialize_to_byte_buffer() const
  252. {
  253. // FIXME: Somehow handle possible OOM situation here.
  254. auto buffer = ByteBuffer::create_uninitialized(sizeof(size_t) + 4 * sizeof(unsigned) + sizeof(BitmapFormat) + sizeof(RGBA32) * palette_size(m_format) + size_in_bytes()).release_value();
  255. OutputMemoryStream stream { buffer };
  256. auto write = [&]<typename T>(T value) {
  257. if (stream.write({ &value, sizeof(T) }) != sizeof(T))
  258. return false;
  259. return true;
  260. };
  261. auto palette = palette_to_vector();
  262. if (!write(size_in_bytes()) || !write((unsigned)size().width()) || !write((unsigned)size().height()) || !write((unsigned)scale()) || !write(m_format) || !write((unsigned)palette.size()))
  263. return {};
  264. for (auto& p : palette) {
  265. if (!write(p))
  266. return {};
  267. }
  268. auto size = size_in_bytes();
  269. VERIFY(stream.remaining() == size);
  270. if (stream.write({ scanline(0), size }) != size)
  271. return {};
  272. return buffer;
  273. }
  274. Bitmap::Bitmap(BitmapFormat format, Core::AnonymousBuffer buffer, const IntSize& size, int scale_factor, const Vector<RGBA32>& palette)
  275. : m_size(size)
  276. , m_scale(scale_factor)
  277. , m_data(buffer.data<void>())
  278. , m_pitch(minimum_pitch(size.width() * scale_factor, format))
  279. , m_format(format)
  280. , m_buffer(move(buffer))
  281. {
  282. VERIFY(!is_indexed() || !palette.is_empty());
  283. VERIFY(!size_would_overflow(format, size, scale_factor));
  284. if (is_indexed(m_format))
  285. allocate_palette_from_format(m_format, palette);
  286. }
  287. RefPtr<Gfx::Bitmap> Bitmap::clone() const
  288. {
  289. auto new_bitmap = Bitmap::try_create(format(), size(), scale());
  290. if (!new_bitmap)
  291. return nullptr;
  292. VERIFY(size_in_bytes() == new_bitmap->size_in_bytes());
  293. memcpy(new_bitmap->scanline(0), scanline(0), size_in_bytes());
  294. return new_bitmap;
  295. }
  296. RefPtr<Gfx::Bitmap> Bitmap::rotated(Gfx::RotationDirection rotation_direction) const
  297. {
  298. auto new_bitmap = Gfx::Bitmap::try_create(this->format(), { height(), width() }, scale());
  299. if (!new_bitmap)
  300. return nullptr;
  301. auto w = this->physical_width();
  302. auto h = this->physical_height();
  303. for (int i = 0; i < w; i++) {
  304. for (int j = 0; j < h; j++) {
  305. Color color;
  306. if (rotation_direction == Gfx::RotationDirection::CounterClockwise)
  307. color = this->get_pixel(w - i - 1, j);
  308. else
  309. color = this->get_pixel(i, h - j - 1);
  310. new_bitmap->set_pixel(j, i, color);
  311. }
  312. }
  313. return new_bitmap;
  314. }
  315. RefPtr<Gfx::Bitmap> Bitmap::flipped(Gfx::Orientation orientation) const
  316. {
  317. auto new_bitmap = Gfx::Bitmap::try_create(this->format(), { width(), height() }, scale());
  318. if (!new_bitmap)
  319. return nullptr;
  320. auto w = this->physical_width();
  321. auto h = this->physical_height();
  322. for (int i = 0; i < w; i++) {
  323. for (int j = 0; j < h; j++) {
  324. Color color = this->get_pixel(i, j);
  325. if (orientation == Orientation::Vertical)
  326. new_bitmap->set_pixel(i, h - j - 1, color);
  327. else
  328. new_bitmap->set_pixel(w - i - 1, j, color);
  329. }
  330. }
  331. return new_bitmap;
  332. }
  333. RefPtr<Gfx::Bitmap> Bitmap::scaled(int sx, int sy) const
  334. {
  335. VERIFY(sx >= 0 && sy >= 0);
  336. if (sx == 1 && sy == 1)
  337. return this;
  338. auto new_bitmap = Gfx::Bitmap::try_create(format(), { width() * sx, height() * sy }, scale());
  339. if (!new_bitmap)
  340. return nullptr;
  341. auto old_width = physical_width();
  342. auto old_height = physical_height();
  343. for (int y = 0; y < old_height; y++) {
  344. for (int x = 0; x < old_width; x++) {
  345. auto color = get_pixel(x, y);
  346. auto base_x = x * sx;
  347. auto base_y = y * sy;
  348. for (int new_y = base_y; new_y < base_y + sy; new_y++) {
  349. for (int new_x = base_x; new_x < base_x + sx; new_x++) {
  350. new_bitmap->set_pixel(new_x, new_y, color);
  351. }
  352. }
  353. }
  354. }
  355. return new_bitmap;
  356. }
  357. // http://fourier.eng.hmc.edu/e161/lectures/resize/node3.html
  358. RefPtr<Gfx::Bitmap> Bitmap::scaled(float sx, float sy) const
  359. {
  360. VERIFY(sx >= 0.0f && sy >= 0.0f);
  361. if (floorf(sx) == sx && floorf(sy) == sy)
  362. return scaled(static_cast<int>(sx), static_cast<int>(sy));
  363. int scaled_width = (int)ceilf(sx * (float)width());
  364. int scaled_height = (int)ceilf(sy * (float)height());
  365. auto new_bitmap = Gfx::Bitmap::try_create(format(), { scaled_width, scaled_height }, scale());
  366. if (!new_bitmap)
  367. return nullptr;
  368. auto old_width = physical_width();
  369. auto old_height = physical_height();
  370. auto new_width = new_bitmap->physical_width();
  371. auto new_height = new_bitmap->physical_height();
  372. // The interpolation goes out of bounds on the bottom- and right-most edges.
  373. // We handle those in two specialized loops not only to make them faster, but
  374. // also to avoid four branch checks for every pixel.
  375. for (int y = 0; y < new_height - 1; y++) {
  376. for (int x = 0; x < new_width - 1; x++) {
  377. auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
  378. auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
  379. int i = floorf(p);
  380. int j = floorf(q);
  381. float u = p - static_cast<float>(i);
  382. float v = q - static_cast<float>(j);
  383. auto a = get_pixel(i, j);
  384. auto b = get_pixel(i + 1, j);
  385. auto c = get_pixel(i, j + 1);
  386. auto d = get_pixel(i + 1, j + 1);
  387. auto e = a.interpolate(b, u);
  388. auto f = c.interpolate(d, u);
  389. auto color = e.interpolate(f, v);
  390. new_bitmap->set_pixel(x, y, color);
  391. }
  392. }
  393. // Bottom strip (excluding last pixel)
  394. auto old_bottom_y = old_height - 1;
  395. auto new_bottom_y = new_height - 1;
  396. for (int x = 0; x < new_width - 1; x++) {
  397. auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
  398. int i = floorf(p);
  399. float u = p - static_cast<float>(i);
  400. auto a = get_pixel(i, old_bottom_y);
  401. auto b = get_pixel(i + 1, old_bottom_y);
  402. auto color = a.interpolate(b, u);
  403. new_bitmap->set_pixel(x, new_bottom_y, color);
  404. }
  405. // Right strip (excluding last pixel)
  406. auto old_right_x = old_width - 1;
  407. auto new_right_x = new_width - 1;
  408. for (int y = 0; y < new_height - 1; y++) {
  409. auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
  410. int j = floorf(q);
  411. float v = q - static_cast<float>(j);
  412. auto c = get_pixel(old_right_x, j);
  413. auto d = get_pixel(old_right_x, j + 1);
  414. auto color = c.interpolate(d, v);
  415. new_bitmap->set_pixel(new_right_x, y, color);
  416. }
  417. // Bottom-right pixel
  418. new_bitmap->set_pixel(new_width - 1, new_height - 1, get_pixel(physical_width() - 1, physical_height() - 1));
  419. return new_bitmap;
  420. }
  421. RefPtr<Gfx::Bitmap> Bitmap::cropped(Gfx::IntRect crop) const
  422. {
  423. auto new_bitmap = Gfx::Bitmap::try_create(format(), { crop.width(), crop.height() }, 1);
  424. if (!new_bitmap)
  425. return nullptr;
  426. for (int y = 0; y < crop.height(); ++y) {
  427. for (int x = 0; x < crop.width(); ++x) {
  428. int global_x = x + crop.left();
  429. int global_y = y + crop.top();
  430. if (global_x >= physical_width() || global_y >= physical_height() || global_x < 0 || global_y < 0) {
  431. new_bitmap->set_pixel(x, y, Gfx::Color::Black);
  432. } else {
  433. new_bitmap->set_pixel(x, y, get_pixel(global_x, global_y));
  434. }
  435. }
  436. }
  437. return new_bitmap;
  438. }
  439. RefPtr<Bitmap> Bitmap::to_bitmap_backed_by_anonymous_buffer() const
  440. {
  441. if (m_buffer.is_valid())
  442. return *this;
  443. auto buffer = Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(size_in_bytes(), PAGE_SIZE));
  444. if (!buffer.is_valid())
  445. return nullptr;
  446. auto bitmap = Bitmap::try_create_with_anonymous_buffer(m_format, move(buffer), size(), scale(), palette_to_vector());
  447. if (!bitmap)
  448. return nullptr;
  449. memcpy(bitmap->scanline(0), scanline(0), size_in_bytes());
  450. return bitmap;
  451. }
  452. Bitmap::~Bitmap()
  453. {
  454. if (m_needs_munmap) {
  455. int rc = munmap(m_data, size_in_bytes());
  456. VERIFY(rc == 0);
  457. }
  458. m_data = nullptr;
  459. delete[] m_palette;
  460. }
  461. void Bitmap::set_mmap_name([[maybe_unused]] String const& name)
  462. {
  463. VERIFY(m_needs_munmap);
  464. #ifdef __serenity__
  465. ::set_mmap_name(m_data, size_in_bytes(), name.characters());
  466. #endif
  467. }
  468. void Bitmap::fill(Color color)
  469. {
  470. VERIFY(!is_indexed(m_format));
  471. for (int y = 0; y < physical_height(); ++y) {
  472. auto* scanline = this->scanline(y);
  473. fast_u32_fill(scanline, color.value(), physical_width());
  474. }
  475. }
  476. void Bitmap::set_volatile()
  477. {
  478. if (m_volatile)
  479. return;
  480. #ifdef __serenity__
  481. int rc = madvise(m_data, size_in_bytes(), MADV_SET_VOLATILE);
  482. if (rc < 0) {
  483. perror("madvise(MADV_SET_VOLATILE)");
  484. VERIFY_NOT_REACHED();
  485. }
  486. #endif
  487. m_volatile = true;
  488. }
  489. [[nodiscard]] bool Bitmap::set_nonvolatile(bool& was_purged)
  490. {
  491. if (!m_volatile) {
  492. was_purged = false;
  493. return true;
  494. }
  495. #ifdef __serenity__
  496. int rc = madvise(m_data, size_in_bytes(), MADV_SET_NONVOLATILE);
  497. if (rc < 0) {
  498. if (errno == ENOMEM) {
  499. was_purged = true;
  500. return false;
  501. }
  502. perror("madvise(MADV_SET_NONVOLATILE)");
  503. VERIFY_NOT_REACHED();
  504. }
  505. was_purged = rc != 0;
  506. #endif
  507. m_volatile = false;
  508. return true;
  509. }
  510. ShareableBitmap Bitmap::to_shareable_bitmap() const
  511. {
  512. auto bitmap = to_bitmap_backed_by_anonymous_buffer();
  513. if (!bitmap)
  514. return {};
  515. return ShareableBitmap(*bitmap);
  516. }
  517. Optional<BackingStore> Bitmap::try_allocate_backing_store(BitmapFormat format, IntSize const& size, int scale_factor)
  518. {
  519. if (size_would_overflow(format, size, scale_factor))
  520. return {};
  521. const auto pitch = minimum_pitch(size.width() * scale_factor, format);
  522. const auto data_size_in_bytes = size_in_bytes(pitch, size.height() * scale_factor);
  523. int map_flags = MAP_ANONYMOUS | MAP_PRIVATE;
  524. #ifdef __serenity__
  525. map_flags |= MAP_PURGEABLE;
  526. void* data = mmap_with_name(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0, String::formatted("GraphicsBitmap [{}]", size).characters());
  527. #else
  528. void* data = mmap(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0);
  529. #endif
  530. if (data == MAP_FAILED) {
  531. perror("mmap");
  532. return {};
  533. }
  534. return { { data, pitch, data_size_in_bytes } };
  535. }
  536. void Bitmap::allocate_palette_from_format(BitmapFormat format, const Vector<RGBA32>& source_palette)
  537. {
  538. size_t size = palette_size(format);
  539. if (size == 0)
  540. return;
  541. m_palette = new RGBA32[size];
  542. if (!source_palette.is_empty()) {
  543. VERIFY(source_palette.size() == size);
  544. memcpy(m_palette, source_palette.data(), size * sizeof(RGBA32));
  545. }
  546. }
  547. Vector<RGBA32> Bitmap::palette_to_vector() const
  548. {
  549. Vector<RGBA32> vector;
  550. auto size = palette_size(m_format);
  551. vector.ensure_capacity(size);
  552. for (size_t i = 0; i < size; ++i)
  553. vector.unchecked_append(palette_color(i).value());
  554. return vector;
  555. }
  556. }