MemoryManager.cpp 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/CPU.h>
  9. #include <Kernel/Arch/PageDirectory.h>
  10. #include <Kernel/Arch/PageFault.h>
  11. #include <Kernel/Arch/RegisterState.h>
  12. #include <Kernel/BootInfo.h>
  13. #include <Kernel/FileSystem/Inode.h>
  14. #include <Kernel/Heap/kmalloc.h>
  15. #include <Kernel/InterruptDisabler.h>
  16. #include <Kernel/KSyms.h>
  17. #include <Kernel/Memory/AnonymousVMObject.h>
  18. #include <Kernel/Memory/MemoryManager.h>
  19. #include <Kernel/Memory/PhysicalRegion.h>
  20. #include <Kernel/Memory/SharedInodeVMObject.h>
  21. #include <Kernel/Multiboot.h>
  22. #include <Kernel/Panic.h>
  23. #include <Kernel/Prekernel/Prekernel.h>
  24. #include <Kernel/Process.h>
  25. #include <Kernel/Sections.h>
  26. #include <Kernel/StdLib.h>
  27. extern u8 start_of_kernel_image[];
  28. extern u8 end_of_kernel_image[];
  29. extern u8 start_of_kernel_text[];
  30. extern u8 start_of_kernel_data[];
  31. extern u8 end_of_kernel_bss[];
  32. extern u8 start_of_ro_after_init[];
  33. extern u8 end_of_ro_after_init[];
  34. extern u8 start_of_unmap_after_init[];
  35. extern u8 end_of_unmap_after_init[];
  36. extern u8 start_of_kernel_ksyms[];
  37. extern u8 end_of_kernel_ksyms[];
  38. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  39. extern size_t multiboot_copy_boot_modules_count;
  40. namespace Kernel::Memory {
  41. ErrorOr<FlatPtr> page_round_up(FlatPtr x)
  42. {
  43. if (x > (explode_byte(0xFF) & ~0xFFF)) {
  44. return Error::from_errno(EINVAL);
  45. }
  46. return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
  47. }
  48. // NOTE: We can NOT use Singleton for this class, because
  49. // MemoryManager::initialize is called *before* global constructors are
  50. // run. If we do, then Singleton would get re-initialized, causing
  51. // the memory manager to be initialized twice!
  52. static MemoryManager* s_the;
  53. MemoryManager& MemoryManager::the()
  54. {
  55. return *s_the;
  56. }
  57. bool MemoryManager::is_initialized()
  58. {
  59. return s_the != nullptr;
  60. }
  61. static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
  62. {
  63. #if ARCH(AARCH64)
  64. // NOTE: This is not the same as x86_64, because the aarch64 kernel currently doesn't use the pre-kernel.
  65. return VirtualRange { VirtualAddress(kernel_mapping_base), KERNEL_PD_END - kernel_mapping_base };
  66. #else
  67. size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
  68. return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
  69. #endif
  70. }
  71. MemoryManager::GlobalData::GlobalData()
  72. : region_tree(kernel_virtual_range())
  73. {
  74. }
  75. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  76. {
  77. s_the = this;
  78. parse_memory_map();
  79. activate_kernel_page_directory(kernel_page_directory());
  80. protect_kernel_image();
  81. // We're temporarily "committing" to two pages that we need to allocate below
  82. auto committed_pages = commit_physical_pages(2).release_value();
  83. m_shared_zero_page = committed_pages.take_one();
  84. // We're wasting a page here, we just need a special tag (physical
  85. // address) so that we know when we need to lazily allocate a page
  86. // that we should be drawing this page from the committed pool rather
  87. // than potentially failing if no pages are available anymore.
  88. // By using a tag we don't have to query the VMObject for every page
  89. // whether it was committed or not
  90. m_lazy_committed_page = committed_pages.take_one();
  91. }
  92. UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
  93. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  94. {
  95. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  96. // Disable writing to the kernel text and rodata segments.
  97. for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  98. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  99. pte.set_writable(false);
  100. }
  101. if (Processor::current().has_nx()) {
  102. // Disable execution of the kernel data, bss and heap segments.
  103. for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  104. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  105. pte.set_execute_disabled(true);
  106. }
  107. }
  108. }
  109. UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
  110. {
  111. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  112. auto start = start_of_prekernel_image.page_base().get();
  113. auto end = end_of_prekernel_image.page_base().get();
  114. for (auto i = start; i <= end; i += PAGE_SIZE)
  115. release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
  116. flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
  117. }
  118. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  119. {
  120. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  121. // Disable writing to the .ro_after_init section
  122. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  123. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  124. pte.set_writable(false);
  125. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  126. }
  127. }
  128. void MemoryManager::unmap_text_after_init()
  129. {
  130. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  131. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  132. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
  133. // Unmap the entire .unmap_after_init section
  134. for (auto i = start; i < end; i += PAGE_SIZE) {
  135. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  136. pte.clear();
  137. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  138. }
  139. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  140. }
  141. UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
  142. {
  143. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  144. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  145. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
  146. for (auto i = start; i < end; i += PAGE_SIZE) {
  147. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  148. pte.set_writable(false);
  149. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  150. }
  151. dmesgln("Write-protected kernel symbols after init.");
  152. }
  153. IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
  154. {
  155. return m_global_data.with([&](auto& global_data) {
  156. VERIFY(!global_data.physical_memory_ranges.is_empty());
  157. for (auto& current_range : global_data.physical_memory_ranges) {
  158. IterationDecision decision = callback(current_range);
  159. if (decision != IterationDecision::Continue)
  160. return decision;
  161. }
  162. return IterationDecision::Continue;
  163. });
  164. }
  165. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  166. {
  167. m_global_data.with([&](auto& global_data) {
  168. VERIFY(!global_data.physical_memory_ranges.is_empty());
  169. ContiguousReservedMemoryRange range;
  170. for (auto& current_range : global_data.physical_memory_ranges) {
  171. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  172. if (range.start.is_null())
  173. continue;
  174. global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  175. range.start.set((FlatPtr) nullptr);
  176. continue;
  177. }
  178. if (!range.start.is_null()) {
  179. continue;
  180. }
  181. range.start = current_range.start;
  182. }
  183. if (global_data.physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  184. return;
  185. if (range.start.is_null())
  186. return;
  187. global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, global_data.physical_memory_ranges.last().start.get() + global_data.physical_memory_ranges.last().length - range.start.get() });
  188. });
  189. }
  190. bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
  191. {
  192. // Note: Guard against overflow in case someone tries to mmap on the edge of
  193. // the RAM
  194. if (start_address.offset_addition_would_overflow(read_length))
  195. return false;
  196. auto end_address = start_address.offset(read_length);
  197. return m_global_data.with([&](auto& global_data) {
  198. for (auto const& current_range : global_data.reserved_memory_ranges) {
  199. if (current_range.start > start_address)
  200. continue;
  201. if (current_range.start.offset(current_range.length) < end_address)
  202. continue;
  203. return true;
  204. }
  205. return false;
  206. });
  207. }
  208. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  209. {
  210. // Register used memory regions that we know of.
  211. m_global_data.with([&](auto& global_data) {
  212. global_data.used_memory_ranges.ensure_capacity(4);
  213. #if ARCH(X86_64)
  214. global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  215. #endif
  216. global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
  217. if (multiboot_flags & 0x4) {
  218. auto* bootmods_start = multiboot_copy_boot_modules_array;
  219. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  220. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  221. global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  222. }
  223. }
  224. auto* mmap_begin = multiboot_memory_map;
  225. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  226. struct ContiguousPhysicalVirtualRange {
  227. PhysicalAddress lower;
  228. PhysicalAddress upper;
  229. };
  230. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  231. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  232. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  233. // and doing so on a packed struct field is UB.
  234. auto address = mmap->addr;
  235. auto length = mmap->len;
  236. ArmedScopeGuard write_back_guard = [&]() {
  237. mmap->addr = address;
  238. mmap->len = length;
  239. };
  240. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  241. auto start_address = PhysicalAddress(address);
  242. switch (mmap->type) {
  243. case (MULTIBOOT_MEMORY_AVAILABLE):
  244. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  245. break;
  246. case (MULTIBOOT_MEMORY_RESERVED):
  247. #if ARCH(X86_64)
  248. // Workaround for https://gitlab.com/qemu-project/qemu/-/commit/8504f129450b909c88e199ca44facd35d38ba4de
  249. // That commit added a reserved 12GiB entry for the benefit of virtual firmware.
  250. // We can safely ignore this block as it isn't actually reserved on any real hardware.
  251. // From: https://lore.kernel.org/all/20220701161014.3850-1-joao.m.martins@oracle.com/
  252. // "Always add the HyperTransport range into e820 even when the relocation isn't
  253. // done *and* there's >= 40 phys bit that would put max phyusical boundary to 1T
  254. // This should allow virtual firmware to avoid the reserved range at the
  255. // 1T boundary on VFs with big bars."
  256. if (address != 0x000000fd00000000 || length != (0x000000ffffffffff - 0x000000fd00000000) + 1)
  257. #endif
  258. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  259. break;
  260. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  261. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  262. break;
  263. case (MULTIBOOT_MEMORY_NVS):
  264. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  265. break;
  266. case (MULTIBOOT_MEMORY_BADRAM):
  267. dmesgln("MM: Warning, detected bad memory range!");
  268. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  269. break;
  270. default:
  271. dbgln("MM: Unknown range!");
  272. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  273. break;
  274. }
  275. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  276. continue;
  277. // Fix up unaligned memory regions.
  278. auto diff = (FlatPtr)address % PAGE_SIZE;
  279. if (diff != 0) {
  280. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  281. diff = PAGE_SIZE - diff;
  282. address += diff;
  283. length -= diff;
  284. }
  285. if ((length % PAGE_SIZE) != 0) {
  286. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  287. length -= length % PAGE_SIZE;
  288. }
  289. if (length < PAGE_SIZE) {
  290. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  291. continue;
  292. }
  293. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  294. auto addr = PhysicalAddress(page_base);
  295. // Skip used memory ranges.
  296. bool should_skip = false;
  297. for (auto& used_range : global_data.used_memory_ranges) {
  298. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  299. should_skip = true;
  300. break;
  301. }
  302. }
  303. if (should_skip)
  304. continue;
  305. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  306. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  307. .lower = addr,
  308. .upper = addr,
  309. });
  310. } else {
  311. contiguous_physical_ranges.last().upper = addr;
  312. }
  313. }
  314. }
  315. for (auto& range : contiguous_physical_ranges) {
  316. global_data.physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  317. }
  318. for (auto& region : global_data.physical_regions)
  319. global_data.system_memory_info.physical_pages += region->size();
  320. register_reserved_ranges();
  321. for (auto& range : global_data.reserved_memory_ranges) {
  322. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  323. }
  324. initialize_physical_pages();
  325. VERIFY(global_data.system_memory_info.physical_pages > 0);
  326. // We start out with no committed pages
  327. global_data.system_memory_info.physical_pages_uncommitted = global_data.system_memory_info.physical_pages;
  328. for (auto& used_range : global_data.used_memory_ranges) {
  329. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  330. }
  331. for (auto& region : global_data.physical_regions) {
  332. dmesgln("MM: User physical region: {} - {} (size {:#x})", region->lower(), region->upper().offset(-1), PAGE_SIZE * region->size());
  333. region->initialize_zones();
  334. }
  335. });
  336. }
  337. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  338. {
  339. m_global_data.with([&](auto& global_data) {
  340. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  341. PhysicalAddress highest_physical_address;
  342. for (auto& range : global_data.used_memory_ranges) {
  343. if (range.end.get() > highest_physical_address.get())
  344. highest_physical_address = range.end;
  345. }
  346. for (auto& region : global_data.physical_memory_ranges) {
  347. auto range_end = PhysicalAddress(region.start).offset(region.length);
  348. if (range_end.get() > highest_physical_address.get())
  349. highest_physical_address = range_end;
  350. }
  351. // Calculate how many total physical pages the array will have
  352. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  353. VERIFY(m_physical_page_entries_count != 0);
  354. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  355. // Calculate how many bytes the array will consume
  356. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  357. auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
  358. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  359. // Calculate how many page tables we will need to be able to map them all
  360. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  361. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  362. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  363. PhysicalRegion* found_region { nullptr };
  364. Optional<size_t> found_region_index;
  365. for (size_t i = 0; i < global_data.physical_regions.size(); ++i) {
  366. auto& region = global_data.physical_regions[i];
  367. if (region->size() >= physical_page_array_pages_and_page_tables_count) {
  368. found_region = region;
  369. found_region_index = i;
  370. break;
  371. }
  372. }
  373. if (!found_region) {
  374. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  375. VERIFY_NOT_REACHED();
  376. }
  377. VERIFY(global_data.system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
  378. global_data.system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;
  379. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  380. // We're stealing the entire region
  381. global_data.physical_pages_region = global_data.physical_regions.take(*found_region_index);
  382. } else {
  383. global_data.physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  384. }
  385. global_data.used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, global_data.physical_pages_region->lower(), global_data.physical_pages_region->upper() });
  386. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  387. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  388. {
  389. // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
  390. FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
  391. FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
  392. MUST(global_data.region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
  393. }
  394. // Allocate a virtual address range for our array
  395. // This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
  396. auto& region = *MUST(Region::create_unbacked()).leak_ptr();
  397. MUST(global_data.region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
  398. auto range = region.range();
  399. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  400. // try to map the entire region into kernel space so we always have it
  401. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  402. // mapped yet so we can't create them
  403. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  404. auto page_tables_base = global_data.physical_pages_region->lower();
  405. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  406. auto physical_page_array_current_page = physical_page_array_base.get();
  407. auto virtual_page_array_base = range.base().get();
  408. auto virtual_page_array_current_page = virtual_page_array_base;
  409. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  410. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  411. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  412. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  413. __builtin_memset(pt, 0, PAGE_SIZE);
  414. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  415. auto& pte = pt[pte_index];
  416. pte.set_physical_page_base(physical_page_array_current_page);
  417. pte.set_user_allowed(false);
  418. pte.set_writable(true);
  419. if (Processor::current().has_nx())
  420. pte.set_execute_disabled(false);
  421. pte.set_global(true);
  422. pte.set_present(true);
  423. physical_page_array_current_page += PAGE_SIZE;
  424. virtual_page_array_current_page += PAGE_SIZE;
  425. }
  426. unquickmap_page();
  427. // Hook the page table into the kernel page directory
  428. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  429. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  430. PageDirectoryEntry& pde = pd[page_directory_index];
  431. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  432. // We can't use ensure_pte quite yet!
  433. pde.set_page_table_base(pt_paddr.get());
  434. pde.set_user_allowed(false);
  435. pde.set_present(true);
  436. pde.set_writable(true);
  437. pde.set_global(true);
  438. unquickmap_page();
  439. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  440. }
  441. // We now have the entire PhysicalPageEntry array mapped!
  442. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  443. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  444. new (&m_physical_page_entries[i]) PageTableEntry();
  445. // Now we should be able to allocate PhysicalPage instances,
  446. // so finish setting up the kernel page directory
  447. m_kernel_page_directory->allocate_kernel_directory();
  448. // Now create legit PhysicalPage objects for the page tables we created.
  449. virtual_page_array_current_page = virtual_page_array_base;
  450. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  451. VERIFY(virtual_page_array_current_page <= range.end().get());
  452. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  453. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  454. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  455. auto physical_page = adopt_lock_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  456. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  457. (void)physical_page.leak_ref();
  458. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  459. }
  460. dmesgln("MM: Physical page entries: {}", range);
  461. });
  462. }
  463. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  464. {
  465. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  466. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  467. return m_physical_page_entries[physical_page_entry_index];
  468. }
  469. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  470. {
  471. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  472. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  473. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  474. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  475. }
  476. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  477. {
  478. VERIFY_INTERRUPTS_DISABLED();
  479. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  480. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  481. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  482. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  483. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  484. PageDirectoryEntry const& pde = pd[page_directory_index];
  485. if (!pde.is_present())
  486. return nullptr;
  487. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  488. }
  489. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  490. {
  491. VERIFY_INTERRUPTS_DISABLED();
  492. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  493. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  494. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  495. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  496. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  497. auto& pde = pd[page_directory_index];
  498. if (pde.is_present())
  499. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  500. bool did_purge = false;
  501. auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
  502. if (page_table_or_error.is_error()) {
  503. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  504. return nullptr;
  505. }
  506. auto page_table = page_table_or_error.release_value();
  507. if (did_purge) {
  508. // If any memory had to be purged, ensure_pte may have been called as part
  509. // of the purging process. So we need to re-map the pd in this case to ensure
  510. // we're writing to the correct underlying physical page
  511. pd = quickmap_pd(page_directory, page_directory_table_index);
  512. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  513. VERIFY(!pde.is_present()); // Should have not changed
  514. }
  515. pde.set_page_table_base(page_table->paddr().get());
  516. pde.set_user_allowed(true);
  517. pde.set_present(true);
  518. pde.set_writable(true);
  519. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  520. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  521. (void)page_table.leak_ref();
  522. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  523. }
  524. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
  525. {
  526. VERIFY_INTERRUPTS_DISABLED();
  527. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  528. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  529. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  530. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  531. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  532. PageDirectoryEntry& pde = pd[page_directory_index];
  533. if (pde.is_present()) {
  534. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  535. auto& pte = page_table[page_table_index];
  536. pte.clear();
  537. if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
  538. // If this is the last PTE in a region or the last PTE in a page table then
  539. // check if we can also release the page table
  540. bool all_clear = true;
  541. for (u32 i = 0; i <= 0x1ff; i++) {
  542. if (!page_table[i].is_null()) {
  543. all_clear = false;
  544. break;
  545. }
  546. }
  547. if (all_clear) {
  548. get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
  549. pde.clear();
  550. }
  551. }
  552. }
  553. }
  554. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  555. {
  556. dmesgln("Initialize MMU");
  557. ProcessorSpecific<MemoryManagerData>::initialize();
  558. if (cpu == 0) {
  559. new MemoryManager;
  560. kmalloc_enable_expand();
  561. }
  562. }
  563. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  564. {
  565. return space.find_region_containing({ vaddr, 1 });
  566. }
  567. void MemoryManager::validate_syscall_preconditions(Process& process, RegisterState const& regs)
  568. {
  569. bool should_crash = false;
  570. char const* crash_description = nullptr;
  571. int crash_signal = 0;
  572. auto unlock_and_handle_crash = [&](char const* description, int signal) {
  573. should_crash = true;
  574. crash_description = description;
  575. crash_signal = signal;
  576. };
  577. process.address_space().with([&](auto& space) -> void {
  578. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  579. if (!MM.validate_user_stack(*space, userspace_sp)) {
  580. dbgln("Invalid stack pointer: {}", userspace_sp);
  581. return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
  582. }
  583. VirtualAddress ip = VirtualAddress { regs.ip() };
  584. auto* calling_region = MM.find_user_region_from_vaddr(*space, ip);
  585. if (!calling_region) {
  586. dbgln("Syscall from {:p} which has no associated region", ip);
  587. return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  588. }
  589. if (calling_region->is_writable()) {
  590. dbgln("Syscall from writable memory at {:p}", ip);
  591. return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  592. }
  593. if (space->enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  594. dbgln("Syscall from non-syscall region");
  595. return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  596. }
  597. });
  598. if (should_crash) {
  599. handle_crash(regs, crash_description, crash_signal);
  600. }
  601. }
  602. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  603. {
  604. auto faulted_in_range = [&fault](auto const* start, auto const* end) {
  605. return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
  606. };
  607. if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init)) {
  608. dbgln("Attempt to write into READONLY_AFTER_INIT section");
  609. return PageFaultResponse::ShouldCrash;
  610. }
  611. if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
  612. auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
  613. dbgln("Attempt to access UNMAP_AFTER_INIT section ({:p}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
  614. return PageFaultResponse::ShouldCrash;
  615. }
  616. if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms)) {
  617. dbgln("Attempt to access KSYMS section");
  618. return PageFaultResponse::ShouldCrash;
  619. }
  620. if (Processor::current_in_irq()) {
  621. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  622. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  623. dump_kernel_regions();
  624. return PageFaultResponse::ShouldCrash;
  625. }
  626. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  627. // The faulting region may be unmapped concurrently to handling this page fault, and since
  628. // regions are singly-owned it would usually result in the region being immediately
  629. // de-allocated. To ensure the region is not de-allocated while we're still handling the
  630. // fault we increase a page fault counter on the region, and the region will refrain from
  631. // de-allocating itself until the counter reaches zero. (Since unmapping the region also
  632. // includes removing it from the region tree while holding the address space spinlock, and
  633. // because we increment the counter while still holding the spinlock it is guaranteed that
  634. // we always increment the counter before it gets a chance to be deleted)
  635. Region* region = nullptr;
  636. if (is_user_address(fault.vaddr())) {
  637. auto page_directory = PageDirectory::find_current();
  638. if (!page_directory)
  639. return PageFaultResponse::ShouldCrash;
  640. auto* process = page_directory->process();
  641. VERIFY(process);
  642. region = process->address_space().with([&](auto& space) -> Region* {
  643. auto* region = find_user_region_from_vaddr(*space, fault.vaddr());
  644. if (!region)
  645. return nullptr;
  646. region->start_handling_page_fault({});
  647. return region;
  648. });
  649. } else {
  650. region = MM.m_global_data.with([&](auto& global_data) -> Region* {
  651. auto* region = global_data.region_tree.find_region_containing(fault.vaddr());
  652. if (!region)
  653. return nullptr;
  654. region->start_handling_page_fault({});
  655. return region;
  656. });
  657. }
  658. if (!region)
  659. return PageFaultResponse::ShouldCrash;
  660. auto response = region->handle_fault(fault);
  661. region->finish_handling_page_fault({});
  662. return response;
  663. }
  664. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  665. {
  666. VERIFY(!(size % PAGE_SIZE));
  667. OwnPtr<KString> name_kstring;
  668. if (!name.is_null())
  669. name_kstring = TRY(KString::try_create(name));
  670. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  671. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  672. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
  673. TRY(region->map(kernel_page_directory()));
  674. return region;
  675. }
  676. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
  677. {
  678. dma_buffer_page = TRY(allocate_physical_page());
  679. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  680. return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
  681. }
  682. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
  683. {
  684. RefPtr<Memory::PhysicalPage> dma_buffer_page;
  685. return allocate_dma_buffer_page(name, access, dma_buffer_page);
  686. }
  687. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, Vector<NonnullRefPtr<Memory::PhysicalPage>>& dma_buffer_pages)
  688. {
  689. VERIFY(!(size % PAGE_SIZE));
  690. dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
  691. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  692. return allocate_kernel_region(dma_buffer_pages.first()->paddr(), size, name, access, Region::Cacheable::No);
  693. }
  694. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
  695. {
  696. VERIFY(!(size % PAGE_SIZE));
  697. Vector<NonnullRefPtr<Memory::PhysicalPage>> dma_buffer_pages;
  698. return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
  699. }
  700. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  701. {
  702. VERIFY(!(size % PAGE_SIZE));
  703. OwnPtr<KString> name_kstring;
  704. if (!name.is_null())
  705. name_kstring = TRY(KString::try_create(name));
  706. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  707. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  708. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
  709. TRY(region->map(kernel_page_directory()));
  710. return region;
  711. }
  712. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  713. {
  714. VERIFY(!(size % PAGE_SIZE));
  715. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  716. OwnPtr<KString> name_kstring;
  717. if (!name.is_null())
  718. name_kstring = TRY(KString::try_create(name));
  719. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  720. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE); }));
  721. TRY(region->map(kernel_page_directory()));
  722. return region;
  723. }
  724. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  725. {
  726. VERIFY(!(size % PAGE_SIZE));
  727. OwnPtr<KString> name_kstring;
  728. if (!name.is_null())
  729. name_kstring = TRY(KString::try_create(name));
  730. auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
  731. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
  732. TRY(region->map(kernel_page_directory()));
  733. return region;
  734. }
  735. ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
  736. {
  737. VERIFY(page_count > 0);
  738. auto result = m_global_data.with([&](auto& global_data) -> ErrorOr<CommittedPhysicalPageSet> {
  739. if (global_data.system_memory_info.physical_pages_uncommitted < page_count) {
  740. dbgln("MM: Unable to commit {} pages, have only {}", page_count, global_data.system_memory_info.physical_pages_uncommitted);
  741. return ENOMEM;
  742. }
  743. global_data.system_memory_info.physical_pages_uncommitted -= page_count;
  744. global_data.system_memory_info.physical_pages_committed += page_count;
  745. return CommittedPhysicalPageSet { {}, page_count };
  746. });
  747. if (result.is_error()) {
  748. Process::for_each_ignoring_jails([&](Process const& process) {
  749. size_t amount_resident = 0;
  750. size_t amount_shared = 0;
  751. size_t amount_virtual = 0;
  752. process.address_space().with([&](auto& space) {
  753. amount_resident = space->amount_resident();
  754. amount_shared = space->amount_shared();
  755. amount_virtual = space->amount_virtual();
  756. });
  757. process.name().with([&](auto& process_name) {
  758. dbgln("{}({}) resident:{}, shared:{}, virtual:{}",
  759. process_name->view(),
  760. process.pid(),
  761. amount_resident / PAGE_SIZE,
  762. amount_shared / PAGE_SIZE,
  763. amount_virtual / PAGE_SIZE);
  764. });
  765. return IterationDecision::Continue;
  766. });
  767. }
  768. return result;
  769. }
  770. void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  771. {
  772. VERIFY(page_count > 0);
  773. m_global_data.with([&](auto& global_data) {
  774. VERIFY(global_data.system_memory_info.physical_pages_committed >= page_count);
  775. global_data.system_memory_info.physical_pages_uncommitted += page_count;
  776. global_data.system_memory_info.physical_pages_committed -= page_count;
  777. });
  778. }
  779. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  780. {
  781. return m_global_data.with([&](auto& global_data) {
  782. // Are we returning a user page?
  783. for (auto& region : global_data.physical_regions) {
  784. if (!region->contains(paddr))
  785. continue;
  786. region->return_page(paddr);
  787. --global_data.system_memory_info.physical_pages_used;
  788. // Always return pages to the uncommitted pool. Pages that were
  789. // committed and allocated are only freed upon request. Once
  790. // returned there is no guarantee being able to get them back.
  791. ++global_data.system_memory_info.physical_pages_uncommitted;
  792. return;
  793. }
  794. PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
  795. });
  796. }
  797. RefPtr<PhysicalPage> MemoryManager::find_free_physical_page(bool committed)
  798. {
  799. RefPtr<PhysicalPage> page;
  800. m_global_data.with([&](auto& global_data) {
  801. if (committed) {
  802. // Draw from the committed pages pool. We should always have these pages available
  803. VERIFY(global_data.system_memory_info.physical_pages_committed > 0);
  804. global_data.system_memory_info.physical_pages_committed--;
  805. } else {
  806. // We need to make sure we don't touch pages that we have committed to
  807. if (global_data.system_memory_info.physical_pages_uncommitted == 0)
  808. return;
  809. global_data.system_memory_info.physical_pages_uncommitted--;
  810. }
  811. for (auto& region : global_data.physical_regions) {
  812. page = region->take_free_page();
  813. if (!page.is_null()) {
  814. ++global_data.system_memory_info.physical_pages_used;
  815. break;
  816. }
  817. }
  818. });
  819. if (page.is_null())
  820. dbgln("MM: couldn't find free physical page. Continuing...");
  821. return page;
  822. }
  823. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  824. {
  825. auto page = find_free_physical_page(true);
  826. VERIFY(page);
  827. if (should_zero_fill == ShouldZeroFill::Yes) {
  828. InterruptDisabler disabler;
  829. auto* ptr = quickmap_page(*page);
  830. memset(ptr, 0, PAGE_SIZE);
  831. unquickmap_page();
  832. }
  833. return page.release_nonnull();
  834. }
  835. ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  836. {
  837. return m_global_data.with([&](auto&) -> ErrorOr<NonnullRefPtr<PhysicalPage>> {
  838. auto page = find_free_physical_page(false);
  839. bool purged_pages = false;
  840. if (!page) {
  841. // We didn't have a single free physical page. Let's try to free something up!
  842. // First, we look for a purgeable VMObject in the volatile state.
  843. for_each_vmobject([&](auto& vmobject) {
  844. if (!vmobject.is_anonymous())
  845. return IterationDecision::Continue;
  846. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  847. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  848. return IterationDecision::Continue;
  849. if (auto purged_page_count = anonymous_vmobject.purge()) {
  850. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  851. page = find_free_physical_page(false);
  852. purged_pages = true;
  853. VERIFY(page);
  854. return IterationDecision::Break;
  855. }
  856. return IterationDecision::Continue;
  857. });
  858. }
  859. if (!page) {
  860. // Second, we look for a file-backed VMObject with clean pages.
  861. for_each_vmobject([&](auto& vmobject) {
  862. if (!vmobject.is_inode())
  863. return IterationDecision::Continue;
  864. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
  865. if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) {
  866. dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count);
  867. page = find_free_physical_page(false);
  868. VERIFY(page);
  869. return IterationDecision::Break;
  870. }
  871. return IterationDecision::Continue;
  872. });
  873. }
  874. if (!page) {
  875. dmesgln("MM: no physical pages available");
  876. return ENOMEM;
  877. }
  878. if (should_zero_fill == ShouldZeroFill::Yes) {
  879. auto* ptr = quickmap_page(*page);
  880. memset(ptr, 0, PAGE_SIZE);
  881. unquickmap_page();
  882. }
  883. if (did_purge)
  884. *did_purge = purged_pages;
  885. return page.release_nonnull();
  886. });
  887. }
  888. ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
  889. {
  890. VERIFY(!(size % PAGE_SIZE));
  891. size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  892. auto physical_pages = TRY(m_global_data.with([&](auto& global_data) -> ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> {
  893. // We need to make sure we don't touch pages that we have committed to
  894. if (global_data.system_memory_info.physical_pages_uncommitted < page_count)
  895. return ENOMEM;
  896. for (auto& physical_region : global_data.physical_regions) {
  897. auto physical_pages = physical_region->take_contiguous_free_pages(page_count);
  898. if (!physical_pages.is_empty()) {
  899. global_data.system_memory_info.physical_pages_uncommitted -= page_count;
  900. global_data.system_memory_info.physical_pages_used += page_count;
  901. return physical_pages;
  902. }
  903. }
  904. dmesgln("MM: no contiguous physical pages available");
  905. return ENOMEM;
  906. }));
  907. {
  908. auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0]->paddr(), PAGE_SIZE * page_count, {}, Region::Access::Read | Region::Access::Write));
  909. memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
  910. }
  911. return physical_pages;
  912. }
  913. void MemoryManager::enter_process_address_space(Process& process)
  914. {
  915. process.address_space().with([](auto& space) {
  916. enter_address_space(*space);
  917. });
  918. }
  919. void MemoryManager::enter_address_space(AddressSpace& space)
  920. {
  921. auto* current_thread = Thread::current();
  922. VERIFY(current_thread != nullptr);
  923. activate_page_directory(space.page_directory(), current_thread);
  924. }
  925. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  926. {
  927. Processor::flush_tlb_local(vaddr, page_count);
  928. }
  929. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  930. {
  931. Processor::flush_tlb(page_directory, vaddr, page_count);
  932. }
  933. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  934. {
  935. VERIFY_INTERRUPTS_DISABLED();
  936. VirtualAddress vaddr(KERNEL_QUICKMAP_PD_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  937. size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  938. auto& pte = boot_pd_kernel_pt1023[pte_index];
  939. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  940. if (pte.physical_page_base() != pd_paddr.get()) {
  941. pte.set_physical_page_base(pd_paddr.get());
  942. pte.set_present(true);
  943. pte.set_writable(true);
  944. pte.set_user_allowed(false);
  945. flush_tlb_local(vaddr);
  946. }
  947. return (PageDirectoryEntry*)vaddr.get();
  948. }
  949. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  950. {
  951. VERIFY_INTERRUPTS_DISABLED();
  952. VirtualAddress vaddr(KERNEL_QUICKMAP_PT_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  953. size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  954. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_index];
  955. if (pte.physical_page_base() != pt_paddr.get()) {
  956. pte.set_physical_page_base(pt_paddr.get());
  957. pte.set_present(true);
  958. pte.set_writable(true);
  959. pte.set_user_allowed(false);
  960. flush_tlb_local(vaddr);
  961. }
  962. return (PageTableEntry*)vaddr.get();
  963. }
  964. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  965. {
  966. VERIFY_INTERRUPTS_DISABLED();
  967. auto& mm_data = get_data();
  968. mm_data.m_quickmap_previous_interrupts_state = mm_data.m_quickmap_in_use.lock();
  969. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  970. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  971. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  972. if (pte.physical_page_base() != physical_address.get()) {
  973. pte.set_physical_page_base(physical_address.get());
  974. pte.set_present(true);
  975. pte.set_writable(true);
  976. pte.set_user_allowed(false);
  977. flush_tlb_local(vaddr);
  978. }
  979. return vaddr.as_ptr();
  980. }
  981. void MemoryManager::unquickmap_page()
  982. {
  983. VERIFY_INTERRUPTS_DISABLED();
  984. auto& mm_data = get_data();
  985. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  986. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  987. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  988. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  989. pte.clear();
  990. flush_tlb_local(vaddr);
  991. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_previous_interrupts_state);
  992. }
  993. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  994. {
  995. if (!is_user_address(vaddr))
  996. return false;
  997. auto* region = find_user_region_from_vaddr(space, vaddr);
  998. return region && region->is_user() && region->is_stack();
  999. }
  1000. void MemoryManager::unregister_kernel_region(Region& region)
  1001. {
  1002. VERIFY(region.is_kernel());
  1003. m_global_data.with([&](auto& global_data) { global_data.region_tree.remove(region); });
  1004. }
  1005. void MemoryManager::dump_kernel_regions()
  1006. {
  1007. dbgln("Kernel regions:");
  1008. char const* addr_padding = " ";
  1009. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  1010. addr_padding, addr_padding, addr_padding);
  1011. m_global_data.with([&](auto& global_data) {
  1012. for (auto& region : global_data.region_tree.regions()) {
  1013. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  1014. region.vaddr().get(),
  1015. region.vaddr().offset(region.size() - 1).get(),
  1016. region.size(),
  1017. region.is_readable() ? 'R' : ' ',
  1018. region.is_writable() ? 'W' : ' ',
  1019. region.is_executable() ? 'X' : ' ',
  1020. region.is_shared() ? 'S' : ' ',
  1021. region.is_stack() ? 'T' : ' ',
  1022. region.is_syscall_region() ? 'C' : ' ',
  1023. region.name());
  1024. }
  1025. });
  1026. }
  1027. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  1028. {
  1029. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  1030. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  1031. VERIFY(pte);
  1032. if (pte->is_writable() == writable)
  1033. return;
  1034. pte->set_writable(writable);
  1035. flush_tlb(&kernel_page_directory(), vaddr);
  1036. }
  1037. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  1038. {
  1039. if (m_page_count)
  1040. MM.uncommit_physical_pages({}, m_page_count);
  1041. }
  1042. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  1043. {
  1044. VERIFY(m_page_count > 0);
  1045. --m_page_count;
  1046. return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  1047. }
  1048. void CommittedPhysicalPageSet::uncommit_one()
  1049. {
  1050. VERIFY(m_page_count > 0);
  1051. --m_page_count;
  1052. MM.uncommit_physical_pages({}, 1);
  1053. }
  1054. void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
  1055. {
  1056. auto* quickmapped_page = quickmap_page(physical_page);
  1057. memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
  1058. unquickmap_page();
  1059. }
  1060. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
  1061. {
  1062. auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
  1063. auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
  1064. Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
  1065. region->m_range = range;
  1066. TRY(region->map(MM.kernel_page_directory()));
  1067. return region;
  1068. }
  1069. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
  1070. {
  1071. auto region = TRY(Region::create_unbacked());
  1072. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment); }));
  1073. return region;
  1074. }
  1075. MemoryManager::SystemMemoryInfo MemoryManager::get_system_memory_info()
  1076. {
  1077. return m_global_data.with([&](auto& global_data) {
  1078. auto physical_pages_unused = global_data.system_memory_info.physical_pages_committed + global_data.system_memory_info.physical_pages_uncommitted;
  1079. VERIFY(global_data.system_memory_info.physical_pages == (global_data.system_memory_info.physical_pages_used + physical_pages_unused));
  1080. return global_data.system_memory_info;
  1081. });
  1082. }
  1083. }