RangeAllocator.cpp 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include "RangeAllocator.h"
  7. #include <AK/BinarySearch.h>
  8. #include <AK/Checked.h>
  9. #include <AK/QuickSort.h>
  10. #include <AK/Random.h>
  11. #define VM_GUARD_PAGES
  12. #define PAGE_MASK ((FlatPtr)0xfffff000u)
  13. namespace UserspaceEmulator {
  14. RangeAllocator::RangeAllocator()
  15. : m_total_range({}, 0)
  16. {
  17. }
  18. void RangeAllocator::initialize_with_range(VirtualAddress base, size_t size)
  19. {
  20. m_total_range = { base, size };
  21. m_available_ranges.append({ base, size });
  22. }
  23. void RangeAllocator::dump() const
  24. {
  25. dbgln("RangeAllocator({})", this);
  26. for (auto& range : m_available_ranges) {
  27. dbgln(" {:x} -> {:x}", range.base().get(), range.end().get() - 1);
  28. }
  29. }
  30. void RangeAllocator::carve_at_index(int index, const Range& range)
  31. {
  32. auto remaining_parts = m_available_ranges[index].carve(range);
  33. VERIFY(remaining_parts.size() >= 1);
  34. VERIFY(m_total_range.contains(remaining_parts[0]));
  35. m_available_ranges[index] = remaining_parts[0];
  36. if (remaining_parts.size() == 2) {
  37. VERIFY(m_total_range.contains(remaining_parts[1]));
  38. m_available_ranges.insert(index + 1, move(remaining_parts[1]));
  39. }
  40. }
  41. Optional<Range> RangeAllocator::allocate_randomized(size_t size, size_t alignment)
  42. {
  43. if (!size)
  44. return {};
  45. VERIFY((size % PAGE_SIZE) == 0);
  46. VERIFY((alignment % PAGE_SIZE) == 0);
  47. // FIXME: I'm sure there's a smarter way to do this.
  48. static constexpr size_t maximum_randomization_attempts = 1000;
  49. for (size_t i = 0; i < maximum_randomization_attempts; ++i) {
  50. VirtualAddress random_address { round_up_to_power_of_two(get_random<FlatPtr>(), alignment) };
  51. if (!m_total_range.contains(random_address, size))
  52. continue;
  53. auto range = allocate_specific(random_address, size);
  54. if (range.has_value())
  55. return range;
  56. }
  57. return allocate_anywhere(size, alignment);
  58. }
  59. Optional<Range> RangeAllocator::allocate_anywhere(size_t size, size_t alignment)
  60. {
  61. if (!size)
  62. return {};
  63. VERIFY((size % PAGE_SIZE) == 0);
  64. VERIFY((alignment % PAGE_SIZE) == 0);
  65. #ifdef VM_GUARD_PAGES
  66. // NOTE: We pad VM allocations with a guard page on each side.
  67. if (Checked<size_t>::addition_would_overflow(size, PAGE_SIZE * 2))
  68. return {};
  69. size_t effective_size = size + PAGE_SIZE * 2;
  70. size_t offset_from_effective_base = PAGE_SIZE;
  71. #else
  72. size_t effective_size = size;
  73. size_t offset_from_effective_base = 0;
  74. #endif
  75. if (Checked<size_t>::addition_would_overflow(effective_size, alignment))
  76. return {};
  77. for (size_t i = 0; i < m_available_ranges.size(); ++i) {
  78. auto& available_range = m_available_ranges[i];
  79. // FIXME: This check is probably excluding some valid candidates when using a large alignment.
  80. if (available_range.size() < (effective_size + alignment))
  81. continue;
  82. FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get();
  83. FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment);
  84. Range allocated_range(VirtualAddress(aligned_base), size);
  85. VERIFY(m_total_range.contains(allocated_range));
  86. if (available_range == allocated_range) {
  87. m_available_ranges.remove(i);
  88. return allocated_range;
  89. }
  90. carve_at_index(i, allocated_range);
  91. return allocated_range;
  92. }
  93. dbgln("RangeAllocator: Failed to allocate anywhere: size={}, alignment={}", size, alignment);
  94. return {};
  95. }
  96. Optional<Range> RangeAllocator::allocate_specific(VirtualAddress base, size_t size)
  97. {
  98. if (!size)
  99. return {};
  100. VERIFY(base.is_page_aligned());
  101. VERIFY((size % PAGE_SIZE) == 0);
  102. Range allocated_range(base, size);
  103. if (!m_total_range.contains(allocated_range)) {
  104. dbgln("Unallocatable mmap request?! {:p}+{:p}", base.get(), size);
  105. return {};
  106. }
  107. for (size_t i = 0; i < m_available_ranges.size(); ++i) {
  108. auto& available_range = m_available_ranges[i];
  109. if (!available_range.contains(base, size))
  110. continue;
  111. if (available_range == allocated_range) {
  112. m_available_ranges.remove(i);
  113. return allocated_range;
  114. }
  115. carve_at_index(i, allocated_range);
  116. return allocated_range;
  117. }
  118. return {};
  119. }
  120. void RangeAllocator::deallocate(const Range& range)
  121. {
  122. VERIFY(m_total_range.contains(range));
  123. VERIFY(range.size());
  124. VERIFY((range.size() % PAGE_SIZE) == 0);
  125. VERIFY(range.base() < range.end());
  126. VERIFY(!m_available_ranges.is_empty());
  127. size_t nearby_index = 0;
  128. auto* existing_range = binary_search(
  129. m_available_ranges.span(),
  130. range,
  131. &nearby_index,
  132. [](auto& a, auto& b) { return a.base().get() - b.end().get(); });
  133. size_t inserted_index = 0;
  134. if (existing_range) {
  135. existing_range->m_size += range.size();
  136. inserted_index = nearby_index;
  137. } else {
  138. m_available_ranges.insert_before_matching(
  139. Range(range), [&](auto& entry) {
  140. return entry.base() >= range.end();
  141. },
  142. nearby_index, &inserted_index);
  143. }
  144. if (inserted_index < (m_available_ranges.size() - 1)) {
  145. // We already merged with previous. Try to merge with next.
  146. auto& inserted_range = m_available_ranges[inserted_index];
  147. auto& next_range = m_available_ranges[inserted_index + 1];
  148. if (inserted_range.end() == next_range.base()) {
  149. inserted_range.m_size += next_range.size();
  150. m_available_ranges.remove(inserted_index + 1);
  151. return;
  152. }
  153. }
  154. }
  155. }