Scheduler.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. #include <AK/TemporaryChange.h>
  2. #include <Kernel/Arch/i386/PIT.h>
  3. #include <Kernel/Devices/PCSpeaker.h>
  4. #include <Kernel/FileSystem/FileDescription.h>
  5. #include <Kernel/Process.h>
  6. #include <Kernel/RTC.h>
  7. #include <Kernel/Scheduler.h>
  8. SchedulerData* g_scheduler_data;
  9. void Scheduler::init_thread(Thread& thread)
  10. {
  11. g_scheduler_data->m_nonrunnable_threads.append(thread);
  12. }
  13. void Scheduler::update_state_for_thread(Thread& thread)
  14. {
  15. auto& list = g_scheduler_data->thread_list_for_state(thread.state());
  16. if (list.contains(thread))
  17. return;
  18. list.append(thread);
  19. }
  20. //#define LOG_EVERY_CONTEXT_SWITCH
  21. //#define SCHEDULER_DEBUG
  22. //#define SCHEDULER_RUNNABLE_DEBUG
  23. static u32 time_slice_for(ThreadPriority priority)
  24. {
  25. // One time slice unit == 1ms
  26. switch (priority) {
  27. case ThreadPriority::High:
  28. return 50;
  29. case ThreadPriority::Normal:
  30. return 15;
  31. case ThreadPriority::Low:
  32. return 5;
  33. case ThreadPriority::Idle:
  34. return 1;
  35. }
  36. ASSERT_NOT_REACHED();
  37. }
  38. Thread* current;
  39. Thread* g_last_fpu_thread;
  40. Thread* g_finalizer;
  41. static Process* s_colonel_process;
  42. u64 g_uptime;
  43. static u64 s_beep_timeout;
  44. struct TaskRedirectionData {
  45. u16 selector;
  46. TSS32 tss;
  47. };
  48. static TaskRedirectionData s_redirection;
  49. static bool s_active;
  50. bool Scheduler::is_active()
  51. {
  52. return s_active;
  53. }
  54. void Scheduler::beep()
  55. {
  56. PCSpeaker::tone_on(440);
  57. s_beep_timeout = g_uptime + 100;
  58. }
  59. Thread::JoinBlocker::JoinBlocker(Thread& joinee)
  60. : m_joinee(joinee)
  61. {
  62. ASSERT(m_joinee.m_joiner == nullptr);
  63. m_joinee.m_joiner = current;
  64. current->m_joinee = &joinee;
  65. }
  66. bool Thread::JoinBlocker::should_unblock(Thread& joiner, time_t, long)
  67. {
  68. return !joiner.m_joinee;
  69. }
  70. Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
  71. : m_blocked_description(description)
  72. {}
  73. const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
  74. {
  75. return m_blocked_description;
  76. }
  77. Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
  78. : FileDescriptionBlocker(description)
  79. {
  80. }
  81. bool Thread::AcceptBlocker::should_unblock(Thread&, time_t, long)
  82. {
  83. auto& socket = *blocked_description().socket();
  84. return socket.can_accept();
  85. }
  86. Thread::ReceiveBlocker::ReceiveBlocker(const FileDescription& description)
  87. : FileDescriptionBlocker(description)
  88. {
  89. }
  90. bool Thread::ReceiveBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
  91. {
  92. auto& socket = *blocked_description().socket();
  93. // FIXME: Block until the amount of data wanted is available.
  94. bool timed_out = now_sec > socket.receive_deadline().tv_sec || (now_sec == socket.receive_deadline().tv_sec && now_usec >= socket.receive_deadline().tv_usec);
  95. if (timed_out || blocked_description().can_read())
  96. return true;
  97. return false;
  98. }
  99. Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
  100. : FileDescriptionBlocker(description)
  101. {
  102. }
  103. bool Thread::ConnectBlocker::should_unblock(Thread&, time_t, long)
  104. {
  105. auto& socket = *blocked_description().socket();
  106. return socket.setup_state() == Socket::SetupState::Completed;
  107. }
  108. Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
  109. : FileDescriptionBlocker(description)
  110. {
  111. }
  112. bool Thread::WriteBlocker::should_unblock(Thread&, time_t, long)
  113. {
  114. return blocked_description().can_write();
  115. }
  116. Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
  117. : FileDescriptionBlocker(description)
  118. {
  119. }
  120. bool Thread::ReadBlocker::should_unblock(Thread&, time_t, long)
  121. {
  122. // FIXME: Block until the amount of data wanted is available.
  123. return blocked_description().can_read();
  124. }
  125. Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
  126. : m_block_until_condition(move(condition))
  127. , m_state_string(state_string)
  128. {
  129. ASSERT(m_block_until_condition);
  130. }
  131. bool Thread::ConditionBlocker::should_unblock(Thread&, time_t, long)
  132. {
  133. return m_block_until_condition();
  134. }
  135. Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
  136. : m_wakeup_time(wakeup_time)
  137. {
  138. }
  139. bool Thread::SleepBlocker::should_unblock(Thread&, time_t, long)
  140. {
  141. return m_wakeup_time <= g_uptime;
  142. }
  143. Thread::SelectBlocker::SelectBlocker(const timeval& tv, bool select_has_timeout, const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
  144. : m_select_timeout(tv)
  145. , m_select_has_timeout(select_has_timeout)
  146. , m_select_read_fds(read_fds)
  147. , m_select_write_fds(write_fds)
  148. , m_select_exceptional_fds(except_fds)
  149. {
  150. }
  151. bool Thread::SelectBlocker::should_unblock(Thread& thread, time_t now_sec, long now_usec)
  152. {
  153. if (m_select_has_timeout) {
  154. if (now_sec > m_select_timeout.tv_sec || (now_sec == m_select_timeout.tv_sec && now_usec >= m_select_timeout.tv_usec))
  155. return true;
  156. }
  157. auto& process = thread.process();
  158. for (int fd : m_select_read_fds) {
  159. if (process.m_fds[fd].description->can_read())
  160. return true;
  161. }
  162. for (int fd : m_select_write_fds) {
  163. if (process.m_fds[fd].description->can_write())
  164. return true;
  165. }
  166. return false;
  167. }
  168. Thread::WaitBlocker::WaitBlocker(int wait_options, pid_t& waitee_pid)
  169. : m_wait_options(wait_options)
  170. , m_waitee_pid(waitee_pid)
  171. {
  172. }
  173. bool Thread::WaitBlocker::should_unblock(Thread& thread, time_t, long)
  174. {
  175. bool should_unblock = false;
  176. if (m_waitee_pid != -1) {
  177. auto* peer = Process::from_pid(m_waitee_pid);
  178. if (!peer)
  179. return true;
  180. }
  181. thread.process().for_each_child([&](Process& child) {
  182. if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
  183. return IterationDecision::Continue;
  184. bool child_exited = child.is_dead();
  185. bool child_stopped = child.main_thread().state() == Thread::State::Stopped;
  186. bool wait_finished = ((m_wait_options & WEXITED) && child_exited)
  187. || ((m_wait_options & WSTOPPED) && child_stopped);
  188. if (!wait_finished)
  189. return IterationDecision::Continue;
  190. m_waitee_pid = child.pid();
  191. should_unblock = true;
  192. return IterationDecision::Break;
  193. });
  194. return should_unblock;
  195. }
  196. Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
  197. : m_reason(reason)
  198. {}
  199. bool Thread::SemiPermanentBlocker::should_unblock(Thread&, time_t, long)
  200. {
  201. // someone else has to unblock us
  202. return false;
  203. }
  204. // Called by the scheduler on threads that are blocked for some reason.
  205. // Make a decision as to whether to unblock them or not.
  206. void Thread::consider_unblock(time_t now_sec, long now_usec)
  207. {
  208. switch (state()) {
  209. case Thread::Invalid:
  210. case Thread::Runnable:
  211. case Thread::Running:
  212. case Thread::Dead:
  213. case Thread::Stopped:
  214. /* don't know, don't care */
  215. return;
  216. case Thread::Blocked:
  217. ASSERT(m_blocker != nullptr);
  218. if (m_blocker->should_unblock(*this, now_sec, now_usec))
  219. unblock();
  220. return;
  221. case Thread::Skip1SchedulerPass:
  222. set_state(Thread::Skip0SchedulerPasses);
  223. return;
  224. case Thread::Skip0SchedulerPasses:
  225. set_state(Thread::Runnable);
  226. return;
  227. case Thread::Dying:
  228. ASSERT(g_finalizer);
  229. if (g_finalizer->is_blocked())
  230. g_finalizer->unblock();
  231. return;
  232. }
  233. }
  234. bool Scheduler::pick_next()
  235. {
  236. ASSERT_INTERRUPTS_DISABLED();
  237. ASSERT(!s_active);
  238. TemporaryChange<bool> change(s_active, true);
  239. ASSERT(s_active);
  240. if (!current) {
  241. // XXX: The first ever context_switch() goes to the idle process.
  242. // This to setup a reliable place we can return to.
  243. return context_switch(s_colonel_process->main_thread());
  244. }
  245. struct timeval now;
  246. kgettimeofday(now);
  247. auto now_sec = now.tv_sec;
  248. auto now_usec = now.tv_usec;
  249. // Check and unblock threads whose wait conditions have been met.
  250. Scheduler::for_each_nonrunnable([&](Thread& thread) {
  251. thread.consider_unblock(now_sec, now_usec);
  252. return IterationDecision::Continue;
  253. });
  254. Process::for_each([&](Process& process) {
  255. if (process.is_dead()) {
  256. if (current != &process.main_thread() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
  257. auto name = process.name();
  258. auto pid = process.pid();
  259. auto exit_status = Process::reap(process);
  260. dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status);
  261. }
  262. return IterationDecision::Continue;
  263. }
  264. if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
  265. process.m_alarm_deadline = 0;
  266. process.send_signal(SIGALRM, nullptr);
  267. }
  268. return IterationDecision::Continue;
  269. });
  270. // Dispatch any pending signals.
  271. // FIXME: Do we really need this to be a separate pass over the process list?
  272. Thread::for_each_living([](Thread& thread) -> IterationDecision {
  273. if (!thread.has_unmasked_pending_signals())
  274. return IterationDecision::Continue;
  275. // FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
  276. // For now, avoid dispatching signals to "current" and do it in a scheduling pass
  277. // while some other process is interrupted. Otherwise a mess will be made.
  278. if (&thread == current)
  279. return IterationDecision::Continue;
  280. // We know how to interrupt blocked processes, but if they are just executing
  281. // at some random point in the kernel, let them continue. They'll be in userspace
  282. // sooner or later and we can deliver the signal then.
  283. // FIXME: Maybe we could check when returning from a syscall if there's a pending
  284. // signal and dispatch it then and there? Would that be doable without the
  285. // syscall effectively being "interrupted" despite having completed?
  286. if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
  287. return IterationDecision::Continue;
  288. // NOTE: dispatch_one_pending_signal() may unblock the process.
  289. bool was_blocked = thread.is_blocked();
  290. if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
  291. return IterationDecision::Continue;
  292. if (was_blocked) {
  293. dbgprintf("Unblock %s(%u) due to signal\n", thread.process().name().characters(), thread.pid());
  294. ASSERT(thread.m_blocker != nullptr);
  295. thread.m_blocker->set_interrupted_by_signal();
  296. thread.unblock();
  297. }
  298. return IterationDecision::Continue;
  299. });
  300. #ifdef SCHEDULER_RUNNABLE_DEBUG
  301. dbgprintf("Non-runnables:\n");
  302. Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
  303. auto& process = thread.process();
  304. dbgprintf("[K%x] %-12s %s(%u:%u) @ %w:%x\n", &process, thread.state_string(), process.name().characters(), process.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
  305. return IterationDecision::Continue;
  306. });
  307. dbgprintf("Runnables:\n");
  308. Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
  309. auto& process = thread.process();
  310. dbgprintf("[K%x] %-12s %s(%u:%u) @ %w:%x\n", &process, thread.state_string(), process.name().characters(), process.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
  311. return IterationDecision::Continue;
  312. });
  313. #endif
  314. auto& runnable_list = g_scheduler_data->m_runnable_threads;
  315. if (runnable_list.is_empty())
  316. return context_switch(s_colonel_process->main_thread());
  317. auto* previous_head = runnable_list.first();
  318. for (;;) {
  319. // Move head to tail.
  320. runnable_list.append(*runnable_list.first());
  321. auto* thread = runnable_list.first();
  322. if (!thread->process().is_being_inspected() && (thread->state() == Thread::Runnable || thread->state() == Thread::Running)) {
  323. #ifdef SCHEDULER_DEBUG
  324. dbgprintf("switch to %s(%u:%u) @ %w:%x\n", thread->process().name().characters(), thread->process().pid(), thread->tid(), thread->tss().cs, thread->tss().eip);
  325. #endif
  326. return context_switch(*thread);
  327. }
  328. if (thread == previous_head) {
  329. // Back at process_head, nothing wants to run. Send in the colonel!
  330. return context_switch(s_colonel_process->main_thread());
  331. }
  332. }
  333. }
  334. bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
  335. {
  336. InterruptDisabler disabler;
  337. if (!Thread::is_thread(beneficiary))
  338. return false;
  339. (void)reason;
  340. unsigned ticks_left = current->ticks_left();
  341. if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
  342. return yield();
  343. unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(beneficiary->priority()));
  344. #ifdef SCHEDULER_DEBUG
  345. dbgprintf("%s(%u:%u) donating %u ticks to %s(%u:%u), reason=%s\n", current->process().name().characters(), current->pid(), current->tid(), ticks_to_donate, beneficiary->process().name().characters(), beneficiary->pid(), beneficiary->tid(), reason);
  346. #endif
  347. context_switch(*beneficiary);
  348. beneficiary->set_ticks_left(ticks_to_donate);
  349. switch_now();
  350. return false;
  351. }
  352. bool Scheduler::yield()
  353. {
  354. InterruptDisabler disabler;
  355. ASSERT(current);
  356. // dbgprintf("%s(%u:%u) yield()\n", current->process().name().characters(), current->pid(), current->tid());
  357. if (!pick_next())
  358. return false;
  359. // dbgprintf("yield() jumping to new process: sel=%x, %s(%u:%u)\n", current->far_ptr().selector, current->process().name().characters(), current->pid(), current->tid());
  360. switch_now();
  361. return true;
  362. }
  363. void Scheduler::pick_next_and_switch_now()
  364. {
  365. bool someone_wants_to_run = pick_next();
  366. ASSERT(someone_wants_to_run);
  367. switch_now();
  368. }
  369. void Scheduler::switch_now()
  370. {
  371. Descriptor& descriptor = get_gdt_entry(current->selector());
  372. descriptor.type = 9;
  373. flush_gdt();
  374. asm("sti\n"
  375. "ljmp *(%%eax)\n" ::"a"(&current->far_ptr()));
  376. }
  377. bool Scheduler::context_switch(Thread& thread)
  378. {
  379. thread.set_ticks_left(time_slice_for(thread.priority()));
  380. thread.did_schedule();
  381. if (current == &thread)
  382. return false;
  383. if (current) {
  384. // If the last process hasn't blocked (still marked as running),
  385. // mark it as runnable for the next round.
  386. if (current->state() == Thread::Running)
  387. current->set_state(Thread::Runnable);
  388. #ifdef LOG_EVERY_CONTEXT_SWITCH
  389. dbgprintf("Scheduler: %s(%u:%u) -> %s(%u:%u) %w:%x\n",
  390. current->process().name().characters(), current->process().pid(), current->tid(),
  391. thread.process().name().characters(), thread.process().pid(), thread.tid(),
  392. thread.tss().cs, thread.tss().eip);
  393. #endif
  394. }
  395. current = &thread;
  396. thread.set_state(Thread::Running);
  397. if (!thread.selector()) {
  398. thread.set_selector(gdt_alloc_entry());
  399. auto& descriptor = get_gdt_entry(thread.selector());
  400. descriptor.set_base(&thread.tss());
  401. descriptor.set_limit(0xffff);
  402. descriptor.dpl = 0;
  403. descriptor.segment_present = 1;
  404. descriptor.granularity = 1;
  405. descriptor.zero = 0;
  406. descriptor.operation_size = 1;
  407. descriptor.descriptor_type = 0;
  408. }
  409. if (!thread.thread_specific_data().is_null()) {
  410. auto& descriptor = thread_specific_descriptor();
  411. descriptor.set_base(thread.thread_specific_data().as_ptr());
  412. descriptor.set_limit(sizeof(ThreadSpecificData*));
  413. }
  414. auto& descriptor = get_gdt_entry(thread.selector());
  415. descriptor.type = 11; // Busy TSS
  416. flush_gdt();
  417. return true;
  418. }
  419. static void initialize_redirection()
  420. {
  421. auto& descriptor = get_gdt_entry(s_redirection.selector);
  422. descriptor.set_base(&s_redirection.tss);
  423. descriptor.set_limit(0xffff);
  424. descriptor.dpl = 0;
  425. descriptor.segment_present = 1;
  426. descriptor.granularity = 1;
  427. descriptor.zero = 0;
  428. descriptor.operation_size = 1;
  429. descriptor.descriptor_type = 0;
  430. descriptor.type = 9;
  431. flush_gdt();
  432. }
  433. void Scheduler::prepare_for_iret_to_new_process()
  434. {
  435. auto& descriptor = get_gdt_entry(s_redirection.selector);
  436. descriptor.type = 9;
  437. s_redirection.tss.backlink = current->selector();
  438. load_task_register(s_redirection.selector);
  439. }
  440. void Scheduler::prepare_to_modify_tss(Thread& thread)
  441. {
  442. // This ensures that a currently running process modifying its own TSS
  443. // in order to yield() and end up somewhere else doesn't just end up
  444. // right after the yield().
  445. if (current == &thread)
  446. load_task_register(s_redirection.selector);
  447. }
  448. Process* Scheduler::colonel()
  449. {
  450. return s_colonel_process;
  451. }
  452. void Scheduler::initialize()
  453. {
  454. g_scheduler_data = new SchedulerData;
  455. s_redirection.selector = gdt_alloc_entry();
  456. initialize_redirection();
  457. s_colonel_process = Process::create_kernel_process("colonel", nullptr);
  458. // Make sure the colonel uses a smallish time slice.
  459. s_colonel_process->main_thread().set_priority(ThreadPriority::Idle);
  460. load_task_register(s_redirection.selector);
  461. }
  462. void Scheduler::timer_tick(RegisterDump& regs)
  463. {
  464. if (!current)
  465. return;
  466. ++g_uptime;
  467. if (s_beep_timeout && g_uptime > s_beep_timeout) {
  468. PCSpeaker::tone_off();
  469. s_beep_timeout = 0;
  470. }
  471. if (current->tick())
  472. return;
  473. auto& outgoing_tss = current->tss();
  474. if (!pick_next())
  475. return;
  476. outgoing_tss.gs = regs.gs;
  477. outgoing_tss.fs = regs.fs;
  478. outgoing_tss.es = regs.es;
  479. outgoing_tss.ds = regs.ds;
  480. outgoing_tss.edi = regs.edi;
  481. outgoing_tss.esi = regs.esi;
  482. outgoing_tss.ebp = regs.ebp;
  483. outgoing_tss.ebx = regs.ebx;
  484. outgoing_tss.edx = regs.edx;
  485. outgoing_tss.ecx = regs.ecx;
  486. outgoing_tss.eax = regs.eax;
  487. outgoing_tss.eip = regs.eip;
  488. outgoing_tss.cs = regs.cs;
  489. outgoing_tss.eflags = regs.eflags;
  490. // Compute process stack pointer.
  491. // Add 16 for CS, EIP, EFLAGS, exception code (interrupt mechanic)
  492. outgoing_tss.esp = regs.esp + 16;
  493. outgoing_tss.ss = regs.ss;
  494. if ((outgoing_tss.cs & 3) != 0) {
  495. outgoing_tss.ss = regs.ss_if_crossRing;
  496. outgoing_tss.esp = regs.esp_if_crossRing;
  497. }
  498. prepare_for_iret_to_new_process();
  499. // Set the NT (nested task) flag.
  500. asm(
  501. "pushf\n"
  502. "orl $0x00004000, (%esp)\n"
  503. "popf\n");
  504. }
  505. static bool s_should_stop_idling = false;
  506. void Scheduler::stop_idling()
  507. {
  508. if (current != &s_colonel_process->main_thread())
  509. return;
  510. s_should_stop_idling = true;
  511. }
  512. void Scheduler::idle_loop()
  513. {
  514. for (;;) {
  515. asm("hlt");
  516. if (s_should_stop_idling) {
  517. s_should_stop_idling = false;
  518. yield();
  519. }
  520. }
  521. }