Region.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/FileSystem/Inode.h>
  10. #include <Kernel/Memory/AnonymousVMObject.h>
  11. #include <Kernel/Memory/MemoryManager.h>
  12. #include <Kernel/Memory/PageDirectory.h>
  13. #include <Kernel/Memory/Region.h>
  14. #include <Kernel/Memory/SharedInodeVMObject.h>
  15. #include <Kernel/Panic.h>
  16. #include <Kernel/Process.h>
  17. #include <Kernel/Thread.h>
  18. namespace Kernel::Memory {
  19. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  20. : m_range(range)
  21. , m_offset_in_vmobject(offset_in_vmobject)
  22. , m_vmobject(move(vmobject))
  23. , m_name(move(name))
  24. , m_access(access | ((access & 0x7) << 4))
  25. , m_shared(shared)
  26. , m_cacheable(cacheable == Cacheable::Yes)
  27. {
  28. VERIFY(m_range.base().is_page_aligned());
  29. VERIFY(m_range.size());
  30. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  31. m_vmobject->add_region(*this);
  32. MM.register_region(*this);
  33. }
  34. Region::~Region()
  35. {
  36. m_vmobject->remove_region(*this);
  37. MM.unregister_region(*this);
  38. if (m_page_directory) {
  39. SpinlockLocker page_lock(m_page_directory->get_lock());
  40. SpinlockLocker lock(s_mm_lock);
  41. unmap(ShouldDeallocateVirtualRange::Yes);
  42. VERIFY(!m_page_directory);
  43. }
  44. }
  45. KResultOr<NonnullOwnPtr<Region>> Region::try_clone()
  46. {
  47. VERIFY(Process::has_current());
  48. if (m_shared) {
  49. VERIFY(!m_stack);
  50. if (vmobject().is_inode())
  51. VERIFY(vmobject().is_shared_inode());
  52. // Create a new region backed by the same VMObject.
  53. auto maybe_region = Region::try_create_user_accessible(
  54. m_range, m_vmobject, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  55. if (maybe_region.is_error()) {
  56. dbgln("Region::clone: Unable to allocate new Region");
  57. return maybe_region.error();
  58. }
  59. auto region = maybe_region.release_value();
  60. region->set_mmap(m_mmap);
  61. region->set_shared(m_shared);
  62. region->set_syscall_region(is_syscall_region());
  63. return region;
  64. }
  65. if (vmobject().is_inode())
  66. VERIFY(vmobject().is_private_inode());
  67. auto maybe_vmobject_clone = vmobject().try_clone();
  68. if (maybe_vmobject_clone.is_error())
  69. return maybe_vmobject_clone.error();
  70. auto vmobject_clone = maybe_vmobject_clone.release_value();
  71. // Set up a COW region. The parent (this) region becomes COW as well!
  72. remap();
  73. auto maybe_clone_region = Region::try_create_user_accessible(
  74. m_range, vmobject_clone, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  75. if (maybe_clone_region.is_error()) {
  76. dbgln("Region::clone: Unable to allocate new Region for COW");
  77. return maybe_clone_region.error();
  78. }
  79. auto clone_region = maybe_clone_region.release_value();
  80. if (m_stack) {
  81. VERIFY(is_readable());
  82. VERIFY(is_writable());
  83. VERIFY(vmobject().is_anonymous());
  84. clone_region->set_stack(true);
  85. }
  86. clone_region->set_syscall_region(is_syscall_region());
  87. clone_region->set_mmap(m_mmap);
  88. return clone_region;
  89. }
  90. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  91. {
  92. if (m_vmobject.ptr() == obj.ptr())
  93. return;
  94. m_vmobject->remove_region(*this);
  95. m_vmobject = move(obj);
  96. m_vmobject->add_region(*this);
  97. }
  98. size_t Region::cow_pages() const
  99. {
  100. if (!vmobject().is_anonymous())
  101. return 0;
  102. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  103. }
  104. size_t Region::amount_dirty() const
  105. {
  106. if (!vmobject().is_inode())
  107. return amount_resident();
  108. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  109. }
  110. size_t Region::amount_resident() const
  111. {
  112. size_t bytes = 0;
  113. for (size_t i = 0; i < page_count(); ++i) {
  114. auto* page = physical_page(i);
  115. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  116. bytes += PAGE_SIZE;
  117. }
  118. return bytes;
  119. }
  120. size_t Region::amount_shared() const
  121. {
  122. size_t bytes = 0;
  123. for (size_t i = 0; i < page_count(); ++i) {
  124. auto* page = physical_page(i);
  125. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  126. bytes += PAGE_SIZE;
  127. }
  128. return bytes;
  129. }
  130. KResultOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  131. {
  132. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  133. }
  134. KResultOr<NonnullOwnPtr<Region>> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  135. {
  136. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  137. }
  138. bool Region::should_cow(size_t page_index) const
  139. {
  140. if (!vmobject().is_anonymous())
  141. return false;
  142. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  143. }
  144. void Region::set_should_cow(size_t page_index, bool cow)
  145. {
  146. VERIFY(!m_shared);
  147. if (vmobject().is_anonymous())
  148. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  149. }
  150. bool Region::map_individual_page_impl(size_t page_index)
  151. {
  152. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  153. auto page_vaddr = vaddr_from_page_index(page_index);
  154. bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
  155. if (is_mmap() && !user_allowed) {
  156. PANIC("About to map mmap'ed page at a kernel address");
  157. }
  158. // NOTE: We have to take the MM lock for PTE's to stay valid while we use them.
  159. SpinlockLocker mm_locker(s_mm_lock);
  160. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  161. if (!pte)
  162. return false;
  163. auto* page = physical_page(page_index);
  164. if (!page || (!is_readable() && !is_writable())) {
  165. pte->clear();
  166. } else {
  167. pte->set_cache_disabled(!m_cacheable);
  168. pte->set_physical_page_base(page->paddr().get());
  169. pte->set_present(true);
  170. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  171. pte->set_writable(false);
  172. else
  173. pte->set_writable(is_writable());
  174. if (Processor::current().has_feature(CPUFeature::NX))
  175. pte->set_execute_disabled(!is_executable());
  176. pte->set_user_allowed(user_allowed);
  177. }
  178. return true;
  179. }
  180. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  181. {
  182. SpinlockLocker lock(vmobject().m_lock);
  183. if (!m_page_directory)
  184. return true; // not an error, region may have not yet mapped it
  185. if (!translate_vmobject_page(page_index))
  186. return true; // not an error, region doesn't map this page
  187. SpinlockLocker page_lock(m_page_directory->get_lock());
  188. VERIFY(physical_page(page_index));
  189. bool success = map_individual_page_impl(page_index);
  190. if (with_flush)
  191. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  192. return success;
  193. }
  194. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  195. {
  196. auto& vmobject = this->vmobject();
  197. bool success = true;
  198. vmobject.for_each_region([&](auto& region) {
  199. if (!region.do_remap_vmobject_page(page_index, with_flush))
  200. success = false;
  201. });
  202. return success;
  203. }
  204. void Region::unmap(ShouldDeallocateVirtualRange deallocate_range)
  205. {
  206. if (!m_page_directory)
  207. return;
  208. SpinlockLocker page_lock(m_page_directory->get_lock());
  209. SpinlockLocker lock(s_mm_lock);
  210. size_t count = page_count();
  211. for (size_t i = 0; i < count; ++i) {
  212. auto vaddr = vaddr_from_page_index(i);
  213. MM.release_pte(*m_page_directory, vaddr, i == count - 1);
  214. }
  215. MM.flush_tlb(m_page_directory, vaddr(), page_count());
  216. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  217. m_page_directory->range_allocator().deallocate(range());
  218. }
  219. m_page_directory = nullptr;
  220. }
  221. void Region::set_page_directory(PageDirectory& page_directory)
  222. {
  223. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  224. VERIFY(s_mm_lock.is_locked_by_current_processor());
  225. m_page_directory = page_directory;
  226. }
  227. bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  228. {
  229. SpinlockLocker page_lock(page_directory.get_lock());
  230. SpinlockLocker lock(s_mm_lock);
  231. // FIXME: Find a better place for this sanity check(?)
  232. if (is_user() && !is_shared()) {
  233. VERIFY(!vmobject().is_shared_inode());
  234. }
  235. set_page_directory(page_directory);
  236. size_t page_index = 0;
  237. while (page_index < page_count()) {
  238. if (!map_individual_page_impl(page_index))
  239. break;
  240. ++page_index;
  241. }
  242. if (page_index > 0) {
  243. if (should_flush_tlb == ShouldFlushTLB::Yes)
  244. MM.flush_tlb(m_page_directory, vaddr(), page_index);
  245. return page_index == page_count();
  246. }
  247. return false;
  248. }
  249. void Region::remap()
  250. {
  251. VERIFY(m_page_directory);
  252. auto result = map(*m_page_directory);
  253. VERIFY(result);
  254. }
  255. PageFaultResponse Region::handle_fault(PageFault const& fault)
  256. {
  257. auto page_index_in_region = page_index_from_address(fault.vaddr());
  258. if (fault.type() == PageFault::Type::PageNotPresent) {
  259. if (fault.is_read() && !is_readable()) {
  260. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  261. return PageFaultResponse::ShouldCrash;
  262. }
  263. if (fault.is_write() && !is_writable()) {
  264. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  265. return PageFaultResponse::ShouldCrash;
  266. }
  267. if (vmobject().is_inode()) {
  268. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  269. return handle_inode_fault(page_index_in_region);
  270. }
  271. auto& page_slot = physical_page_slot(page_index_in_region);
  272. if (page_slot->is_lazy_committed_page()) {
  273. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  274. VERIFY(m_vmobject->is_anonymous());
  275. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  276. if (!remap_vmobject_page(page_index_in_vmobject))
  277. return PageFaultResponse::OutOfMemory;
  278. return PageFaultResponse::Continue;
  279. }
  280. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  281. return PageFaultResponse::ShouldCrash;
  282. }
  283. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  284. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  285. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  286. auto* phys_page = physical_page(page_index_in_region);
  287. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  288. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  289. return handle_zero_fault(page_index_in_region);
  290. }
  291. return handle_cow_fault(page_index_in_region);
  292. }
  293. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  294. return PageFaultResponse::ShouldCrash;
  295. }
  296. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  297. {
  298. VERIFY_INTERRUPTS_DISABLED();
  299. VERIFY(vmobject().is_anonymous());
  300. auto& page_slot = physical_page_slot(page_index_in_region);
  301. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  302. SpinlockLocker locker(vmobject().m_lock);
  303. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  304. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  305. if (!remap_vmobject_page(page_index_in_vmobject))
  306. return PageFaultResponse::OutOfMemory;
  307. return PageFaultResponse::Continue;
  308. }
  309. auto current_thread = Thread::current();
  310. if (current_thread != nullptr)
  311. current_thread->did_zero_fault();
  312. if (page_slot->is_lazy_committed_page()) {
  313. VERIFY(m_vmobject->is_anonymous());
  314. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  315. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  316. } else {
  317. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  318. if (page_slot.is_null()) {
  319. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  320. return PageFaultResponse::OutOfMemory;
  321. }
  322. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  323. }
  324. if (!remap_vmobject_page(page_index_in_vmobject)) {
  325. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  326. return PageFaultResponse::OutOfMemory;
  327. }
  328. return PageFaultResponse::Continue;
  329. }
  330. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  331. {
  332. VERIFY_INTERRUPTS_DISABLED();
  333. auto current_thread = Thread::current();
  334. if (current_thread)
  335. current_thread->did_cow_fault();
  336. if (!vmobject().is_anonymous())
  337. return PageFaultResponse::ShouldCrash;
  338. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  339. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  340. if (!remap_vmobject_page(page_index_in_vmobject))
  341. return PageFaultResponse::OutOfMemory;
  342. return response;
  343. }
  344. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  345. {
  346. VERIFY_INTERRUPTS_DISABLED();
  347. VERIFY(vmobject().is_inode());
  348. VERIFY(!s_mm_lock.is_locked_by_current_processor());
  349. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  350. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  351. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  352. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  353. {
  354. SpinlockLocker locker(inode_vmobject.m_lock);
  355. if (!vmobject_physical_page_entry.is_null()) {
  356. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  357. if (!remap_vmobject_page(page_index_in_vmobject))
  358. return PageFaultResponse::OutOfMemory;
  359. return PageFaultResponse::Continue;
  360. }
  361. }
  362. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  363. auto current_thread = Thread::current();
  364. if (current_thread)
  365. current_thread->did_inode_fault();
  366. u8 page_buffer[PAGE_SIZE];
  367. auto& inode = inode_vmobject.inode();
  368. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  369. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  370. if (result.is_error()) {
  371. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  372. return PageFaultResponse::ShouldCrash;
  373. }
  374. auto nread = result.value();
  375. if (nread < PAGE_SIZE) {
  376. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  377. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  378. }
  379. SpinlockLocker locker(inode_vmobject.m_lock);
  380. if (!vmobject_physical_page_entry.is_null()) {
  381. // Someone else faulted in this page while we were reading from the inode.
  382. // No harm done (other than some duplicate work), remap the page here and return.
  383. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  384. if (!remap_vmobject_page(page_index_in_vmobject))
  385. return PageFaultResponse::OutOfMemory;
  386. return PageFaultResponse::Continue;
  387. }
  388. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  389. if (vmobject_physical_page_entry.is_null()) {
  390. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  391. return PageFaultResponse::OutOfMemory;
  392. }
  393. {
  394. SpinlockLocker mm_locker(s_mm_lock);
  395. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  396. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  397. MM.unquickmap_page();
  398. }
  399. if (!remap_vmobject_page(page_index_in_vmobject))
  400. return PageFaultResponse::OutOfMemory;
  401. return PageFaultResponse::Continue;
  402. }
  403. }