MathObject.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Runtime/GlobalObject.h>
  30. #include <LibJS/Runtime/MathObject.h>
  31. #include <math.h>
  32. namespace JS {
  33. MathObject::MathObject(GlobalObject& global_object)
  34. : Object(*global_object.object_prototype())
  35. {
  36. }
  37. void MathObject::initialize(GlobalObject& global_object)
  38. {
  39. auto& vm = this->vm();
  40. Object::initialize(global_object);
  41. u8 attr = Attribute::Writable | Attribute::Configurable;
  42. define_native_function(vm.names.abs, abs, 1, attr);
  43. define_native_function(vm.names.random, random, 0, attr);
  44. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  45. define_native_function(vm.names.floor, floor, 1, attr);
  46. define_native_function(vm.names.ceil, ceil, 1, attr);
  47. define_native_function(vm.names.round, round, 1, attr);
  48. define_native_function(vm.names.max, max, 2, attr);
  49. define_native_function(vm.names.min, min, 2, attr);
  50. define_native_function(vm.names.trunc, trunc, 1, attr);
  51. define_native_function(vm.names.sin, sin, 1, attr);
  52. define_native_function(vm.names.cos, cos, 1, attr);
  53. define_native_function(vm.names.tan, tan, 1, attr);
  54. define_native_function(vm.names.pow, pow, 2, attr);
  55. define_native_function(vm.names.exp, exp, 1, attr);
  56. define_native_function(vm.names.expm1, expm1, 1, attr);
  57. define_native_function(vm.names.sign, sign, 1, attr);
  58. define_native_function(vm.names.clz32, clz32, 1, attr);
  59. define_native_function(vm.names.acosh, acosh, 1, attr);
  60. define_native_function(vm.names.asinh, asinh, 1, attr);
  61. define_native_function(vm.names.atan, atan, 1, attr);
  62. define_native_function(vm.names.atanh, atanh, 1, attr);
  63. define_native_function(vm.names.log1p, log1p, 1, attr);
  64. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  65. define_property(vm.names.E, Value(M_E), 0);
  66. define_property(vm.names.LN2, Value(M_LN2), 0);
  67. define_property(vm.names.LN10, Value(M_LN10), 0);
  68. define_property(vm.names.LOG2E, Value(log2(M_E)), 0);
  69. define_property(vm.names.LOG10E, Value(log10(M_E)), 0);
  70. define_property(vm.names.PI, Value(M_PI), 0);
  71. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  72. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  73. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  74. }
  75. MathObject::~MathObject()
  76. {
  77. }
  78. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  79. {
  80. auto number = vm.argument(0).to_number(global_object);
  81. if (vm.exception())
  82. return {};
  83. if (number.is_nan())
  84. return js_nan();
  85. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  86. }
  87. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  88. {
  89. #ifdef __serenity__
  90. double r = (double)arc4random() / (double)UINT32_MAX;
  91. #else
  92. double r = (double)rand() / (double)RAND_MAX;
  93. #endif
  94. return Value(r);
  95. }
  96. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  97. {
  98. auto number = vm.argument(0).to_number(global_object);
  99. if (vm.exception())
  100. return {};
  101. if (number.is_nan())
  102. return js_nan();
  103. return Value(::sqrt(number.as_double()));
  104. }
  105. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  106. {
  107. auto number = vm.argument(0).to_number(global_object);
  108. if (vm.exception())
  109. return {};
  110. if (number.is_nan())
  111. return js_nan();
  112. return Value(::floor(number.as_double()));
  113. }
  114. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  115. {
  116. auto number = vm.argument(0).to_number(global_object);
  117. if (vm.exception())
  118. return {};
  119. if (number.is_nan())
  120. return js_nan();
  121. auto number_double = number.as_double();
  122. if (number_double < 0 && number_double > -1)
  123. return Value(-0.f);
  124. return Value(::ceil(number.as_double()));
  125. }
  126. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  127. {
  128. auto number = vm.argument(0).to_number(global_object);
  129. if (vm.exception())
  130. return {};
  131. if (number.is_nan())
  132. return js_nan();
  133. return Value(::round(number.as_double()));
  134. }
  135. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  136. {
  137. if (!vm.argument_count())
  138. return js_negative_infinity();
  139. auto max = vm.argument(0).to_number(global_object);
  140. if (vm.exception())
  141. return {};
  142. for (size_t i = 1; i < vm.argument_count(); ++i) {
  143. auto cur = vm.argument(i).to_number(global_object);
  144. if (vm.exception())
  145. return {};
  146. max = Value(cur.as_double() > max.as_double() ? cur : max);
  147. }
  148. return max;
  149. }
  150. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  151. {
  152. if (!vm.argument_count())
  153. return js_infinity();
  154. auto min = vm.argument(0).to_number(global_object);
  155. if (vm.exception())
  156. return {};
  157. for (size_t i = 1; i < vm.argument_count(); ++i) {
  158. auto cur = vm.argument(i).to_number(global_object);
  159. if (vm.exception())
  160. return {};
  161. min = Value(cur.as_double() < min.as_double() ? cur : min);
  162. }
  163. return min;
  164. }
  165. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  166. {
  167. auto number = vm.argument(0).to_number(global_object);
  168. if (vm.exception())
  169. return {};
  170. if (number.is_nan())
  171. return js_nan();
  172. if (number.as_double() < 0)
  173. return MathObject::ceil(vm, global_object);
  174. return MathObject::floor(vm, global_object);
  175. }
  176. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  177. {
  178. auto number = vm.argument(0).to_number(global_object);
  179. if (vm.exception())
  180. return {};
  181. if (number.is_nan())
  182. return js_nan();
  183. return Value(::sin(number.as_double()));
  184. }
  185. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  186. {
  187. auto number = vm.argument(0).to_number(global_object);
  188. if (vm.exception())
  189. return {};
  190. if (number.is_nan())
  191. return js_nan();
  192. return Value(::cos(number.as_double()));
  193. }
  194. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  195. {
  196. auto number = vm.argument(0).to_number(global_object);
  197. if (vm.exception())
  198. return {};
  199. if (number.is_nan())
  200. return js_nan();
  201. return Value(::tan(number.as_double()));
  202. }
  203. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  204. {
  205. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  206. }
  207. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  208. {
  209. auto number = vm.argument(0).to_number(global_object);
  210. if (vm.exception())
  211. return {};
  212. if (number.is_nan())
  213. return js_nan();
  214. return Value(::exp(number.as_double()));
  215. }
  216. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  217. {
  218. auto number = vm.argument(0).to_number(global_object);
  219. if (vm.exception())
  220. return {};
  221. if (number.is_nan())
  222. return js_nan();
  223. return Value(::expm1(number.as_double()));
  224. }
  225. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  226. {
  227. auto number = vm.argument(0).to_number(global_object);
  228. if (vm.exception())
  229. return {};
  230. if (number.is_positive_zero())
  231. return Value(0);
  232. if (number.is_negative_zero())
  233. return Value(-0.0);
  234. if (number.as_double() > 0)
  235. return Value(1);
  236. if (number.as_double() < 0)
  237. return Value(-1);
  238. return js_nan();
  239. }
  240. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  241. {
  242. auto number = vm.argument(0).to_number(global_object);
  243. if (vm.exception())
  244. return {};
  245. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  246. return Value(32);
  247. return Value(__builtin_clz((unsigned)number.as_double()));
  248. }
  249. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  250. {
  251. auto number = vm.argument(0).to_number(global_object);
  252. if (vm.exception())
  253. return {};
  254. if (number.as_double() < 1)
  255. return JS::js_nan();
  256. return Value(::acosh(number.as_double()));
  257. }
  258. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  259. {
  260. auto number = vm.argument(0).to_number(global_object);
  261. if (vm.exception())
  262. return {};
  263. return Value(::asinh(number.as_double()));
  264. }
  265. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  266. {
  267. auto number = vm.argument(0).to_number(global_object);
  268. if (vm.exception())
  269. return {};
  270. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  271. return number;
  272. if (number.is_positive_infinity())
  273. return Value(M_PI_2);
  274. if (number.is_negative_infinity())
  275. return Value(-M_PI_2);
  276. return Value(::atan(number.as_double()));
  277. }
  278. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  279. {
  280. auto number = vm.argument(0).to_number(global_object);
  281. if (vm.exception())
  282. return {};
  283. if (number.as_double() > 1 || number.as_double() < -1)
  284. return JS::js_nan();
  285. return Value(::atanh(number.as_double()));
  286. }
  287. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  288. {
  289. auto number = vm.argument(0).to_number(global_object);
  290. if (vm.exception())
  291. return {};
  292. if (number.as_double() < -1)
  293. return JS::js_nan();
  294. return Value(::log1p(number.as_double()));
  295. }
  296. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  297. {
  298. auto number = vm.argument(0).to_number(global_object);
  299. if (vm.exception())
  300. return {};
  301. return Value(::cbrt(number.as_double()));
  302. }
  303. }