123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 |
- /*
- * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <LibC/assert.h>
- #include <LibM/math.h>
- #include <stdint.h>
- #include <stdlib.h>
- template<size_t>
- constexpr double e_to_power();
- template<>
- constexpr double e_to_power<0>() { return 1; }
- template<size_t exponent>
- constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
- template<size_t>
- constexpr size_t factorial();
- template<>
- constexpr size_t factorial<0>() { return 1; }
- template<size_t value>
- constexpr size_t factorial() { return value * factorial<value - 1>(); }
- template<size_t>
- constexpr size_t product_even();
- template<>
- constexpr size_t product_even<2>() { return 2; }
- template<size_t value>
- constexpr size_t product_even() { return value * product_even<value - 2>(); }
- template<size_t>
- constexpr size_t product_odd();
- template<>
- constexpr size_t product_odd<1>() { return 1; }
- template<size_t value>
- constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
- extern "C" {
- double trunc(double x)
- {
- return (int64_t)x;
- }
- double cos(double angle)
- {
- return sin(angle + M_PI_2);
- }
- float cosf(float angle)
- {
- return sinf(angle + M_PI_2);
- }
- // This can also be done with a taylor expansion, but for
- // now this works pretty well (and doesn't mess anything up
- // in quake in particular, which is very Floating-Point precision
- // heavy)
- double sin(double angle)
- {
- double ret = 0.0;
- __asm__(
- "fsin"
- : "=t"(ret)
- : "0"(angle));
- return ret;
- }
- float sinf(float angle)
- {
- float ret = 0.0f;
- __asm__(
- "fsin"
- : "=t"(ret)
- : "0"(angle));
- return ret;
- }
- double pow(double x, double y)
- {
- // FIXME: Please fix me. I am naive.
- if (y == 0)
- return 1;
- if (y == 1)
- return x;
- int y_as_int = (int)y;
- if (y == (double)y_as_int) {
- double result = x;
- for (int i = 0; i < abs(y) - 1; ++i)
- result *= x;
- if (y < 0)
- result = 1.0 / result;
- return result;
- }
- return exp(y * log(x));
- }
- float powf(float x, float y)
- {
- // FIXME: Please fix me. I am naive.
- if (y == 0)
- return 1;
- if (y == 1)
- return x;
- int y_as_int = (int)y;
- if (y == (float)y_as_int) {
- float result = x;
- for (int i = 0; i < abs(y) - 1; ++i)
- result *= x;
- if (y < 0)
- result = 1.0 / result;
- return result;
- }
- return (float)exp((double)y * log((double)x));
- }
- double ldexp(double x, int exp)
- {
- // FIXME: Please fix me. I am naive.
- double val = pow(2, exp);
- return x * val;
- }
- double tanh(double x)
- {
- if (x > 0) {
- double exponentiated = exp(2 * x);
- return (exponentiated - 1) / (exponentiated + 1);
- }
- double plusX = exp(x);
- double minusX = 1 / plusX;
- return (plusX - minusX) / (plusX + minusX);
- }
- double ampsin(double angle)
- {
- double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
- double looped_angle_squared = looped_angle * looped_angle;
- double quadratic_term;
- if (looped_angle > 0) {
- quadratic_term = -looped_angle_squared;
- } else {
- quadratic_term = looped_angle_squared;
- }
- double linear_term = M_PI * looped_angle;
- return quadratic_term + linear_term;
- }
- double tan(double angle)
- {
- return ampsin(angle) / ampsin(M_PI_2 + angle);
- }
- double sqrt(double x)
- {
- double res;
- __asm__("fsqrt"
- : "=t"(res)
- : "0"(x));
- return res;
- }
- float sqrtf(float x)
- {
- float res;
- __asm__("fsqrt"
- : "=t"(res)
- : "0"(x));
- return res;
- }
- double sinh(double x)
- {
- double exponentiated = exp(x);
- if (x > 0)
- return (exponentiated * exponentiated - 1) / 2 / exponentiated;
- return (exponentiated - 1 / exponentiated) / 2;
- }
- double log10(double x)
- {
- return log(x) / M_LN10;
- }
- double log(double x)
- {
- if (x < 0)
- return __builtin_nan("");
- if (x == 0)
- return -__builtin_huge_val();
- double y = 1 + 2 * (x - 1) / (x + 1);
- double exponentiated = exp(y);
- y = y + 2 * (x - exponentiated) / (x + exponentiated);
- exponentiated = exp(y);
- y = y + 2 * (x - exponentiated) / (x + exponentiated);
- exponentiated = exp(y);
- return y + 2 * (x - exponentiated) / (x + exponentiated);
- }
- float logf(float x)
- {
- return (float)log(x);
- }
- double fmod(double index, double period)
- {
- return index - trunc(index / period) * period;
- }
- float fmodf(float index, float period)
- {
- return index - trunc(index / period) * period;
- }
- double exp(double exponent)
- {
- double result = 1;
- if (exponent >= 1) {
- size_t integer_part = (size_t)exponent;
- if (integer_part & 1)
- result *= e_to_power<1>();
- if (integer_part & 2)
- result *= e_to_power<2>();
- if (integer_part > 3) {
- if (integer_part & 4)
- result *= e_to_power<4>();
- if (integer_part & 8)
- result *= e_to_power<8>();
- if (integer_part & 16)
- result *= e_to_power<16>();
- if (integer_part & 32)
- result *= e_to_power<32>();
- if (integer_part >= 64)
- return __builtin_huge_val();
- }
- exponent -= integer_part;
- } else if (exponent < 0)
- return 1 / exp(-exponent);
- double taylor_series_result = 1 + exponent;
- double taylor_series_numerator = exponent * exponent;
- taylor_series_result += taylor_series_numerator / factorial<2>();
- taylor_series_numerator *= exponent;
- taylor_series_result += taylor_series_numerator / factorial<3>();
- taylor_series_numerator *= exponent;
- taylor_series_result += taylor_series_numerator / factorial<4>();
- taylor_series_numerator *= exponent;
- taylor_series_result += taylor_series_numerator / factorial<5>();
- return result * taylor_series_result;
- }
- float expf(float exponent)
- {
- return (float)exp(exponent);
- }
- double cosh(double x)
- {
- double exponentiated = exp(-x);
- if (x < 0)
- return (1 + exponentiated * exponentiated) / 2 / exponentiated;
- return (1 / exponentiated + exponentiated) / 2;
- }
- double atan2(double y, double x)
- {
- if (x > 0)
- return atan(y / x);
- if (x == 0) {
- if (y > 0)
- return M_PI_2;
- if (y < 0)
- return -M_PI_2;
- return 0;
- }
- if (y >= 0)
- return atan(y / x) + M_PI;
- return atan(y / x) - M_PI;
- }
- float atan2f(float y, float x)
- {
- return (float)atan2(y, x);
- }
- double atan(double x)
- {
- if (x < 0)
- return -atan(-x);
- if (x > 1)
- return M_PI_2 - atan(1 / x);
- double squared = x * x;
- return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
- }
- double asin(double x)
- {
- if (x > 1 || x < -1)
- return __builtin_nan("");
- if (x > 0.5 || x < -0.5)
- return 2 * atan(x / (1 + sqrt(1 - x * x)));
- double squared = x * x;
- double value = x;
- double i = x * squared;
- value += i * product_odd<1>() / product_even<2>() / 3;
- i *= squared;
- value += i * product_odd<3>() / product_even<4>() / 5;
- i *= squared;
- value += i * product_odd<5>() / product_even<6>() / 7;
- i *= squared;
- value += i * product_odd<7>() / product_even<8>() / 9;
- i *= squared;
- value += i * product_odd<9>() / product_even<10>() / 11;
- i *= squared;
- value += i * product_odd<11>() / product_even<12>() / 13;
- return value;
- }
- float asinf(float x)
- {
- return (float)asin(x);
- }
- double acos(double x)
- {
- return M_PI_2 - asin(x);
- }
- float acosf(float x)
- {
- return M_PI_2 - asinf(x);
- }
- double fabs(double value)
- {
- return value < 0 ? -value : value;
- }
- double log2(double x)
- {
- return log(x) / M_LN2;
- }
- float log2f(float x)
- {
- return log2(x);
- }
- long double log2l(long double x)
- {
- return log2(x);
- }
- double frexp(double, int*)
- {
- ASSERT_NOT_REACHED();
- return 0;
- }
- float frexpf(float, int*)
- {
- ASSERT_NOT_REACHED();
- return 0;
- }
- long double frexpl(long double, int*)
- {
- ASSERT_NOT_REACHED();
- return 0;
- }
- double round(double value)
- {
- // FIXME: Please fix me. I am naive.
- if (value >= 0.0)
- return (double)(int)(value + 0.5);
- return (double)(int)(value - 0.5);
- }
- float roundf(float value)
- {
- // FIXME: Please fix me. I am naive.
- if (value >= 0.0f)
- return (float)(int)(value + 0.5f);
- return (float)(int)(value - 0.5f);
- }
- double floor(double value)
- {
- return (int)value;
- }
- double rint(double value)
- {
- return (int)roundf(value);
- }
- float ceilf(float value)
- {
- // FIXME: Please fix me. I am naive.
- int as_int = (int)value;
- if (value == (float)as_int)
- return as_int;
- if (value < 0) {
- if (as_int == 0)
- return -0;
- return as_int;
- }
- return as_int + 1;
- }
- double ceil(double value)
- {
- // FIXME: Please fix me. I am naive.
- int as_int = (int)value;
- if (value == (double)as_int)
- return as_int;
- if (value < 0) {
- if (as_int == 0)
- return -0;
- return as_int;
- }
- return as_int + 1;
- }
- double modf(double x, double* intpart)
- {
- *intpart = (double)((int)(x));
- return x - (int)x;
- }
- }
|