Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/errno_numbers.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinlock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<SpinlockProtected<Process::List>> s_processes;
  44. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  45. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  46. static Singleton<MutexProtected<String>> s_hostname;
  47. MutexProtected<String>& hostname()
  48. {
  49. return *s_hostname;
  50. }
  51. SpinlockProtected<Process::List>& processes()
  52. {
  53. return *s_processes;
  54. }
  55. ProcessID Process::allocate_pid()
  56. {
  57. // Overflow is UB, and negative PIDs wreck havoc.
  58. // TODO: Handle PID overflow
  59. // For example: Use an Atomic<u32>, mask the most significant bit,
  60. // retry if PID is already taken as a PID, taken as a TID,
  61. // takes as a PGID, taken as a SID, or zero.
  62. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  63. }
  64. UNMAP_AFTER_INIT void Process::initialize()
  65. {
  66. g_modules = new HashMap<String, OwnPtr<Module>>;
  67. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  68. // Note: This is called before scheduling is initialized, and before APs are booted.
  69. // So we can "safely" bypass the lock here.
  70. reinterpret_cast<String&>(hostname()) = "courage";
  71. create_signal_trampoline();
  72. }
  73. NonnullRefPtrVector<Process> Process::all_processes()
  74. {
  75. NonnullRefPtrVector<Process> output;
  76. processes().with([&](const auto& list) {
  77. output.ensure_capacity(list.size_slow());
  78. for (const auto& process : list)
  79. output.append(NonnullRefPtr<Process>(process));
  80. });
  81. return output;
  82. }
  83. bool Process::in_group(GroupID gid) const
  84. {
  85. return this->gid() == gid || extra_gids().contains_slow(gid);
  86. }
  87. void Process::kill_threads_except_self()
  88. {
  89. InterruptDisabler disabler;
  90. if (thread_count() <= 1)
  91. return;
  92. auto current_thread = Thread::current();
  93. for_each_thread([&](Thread& thread) {
  94. if (&thread == current_thread)
  95. return;
  96. if (auto state = thread.state(); state == Thread::State::Dead
  97. || state == Thread::State::Dying)
  98. return;
  99. // We need to detach this thread in case it hasn't been joined
  100. thread.detach();
  101. thread.set_should_die();
  102. });
  103. u32 dropped_lock_count = 0;
  104. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  105. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  106. }
  107. void Process::kill_all_threads()
  108. {
  109. for_each_thread([&](Thread& thread) {
  110. // We need to detach this thread in case it hasn't been joined
  111. thread.detach();
  112. thread.set_should_die();
  113. });
  114. }
  115. void Process::register_new(Process& process)
  116. {
  117. // Note: this is essentially the same like process->ref()
  118. RefPtr<Process> new_process = process;
  119. processes().with([&](auto& list) {
  120. list.prepend(process);
  121. });
  122. }
  123. KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, String const& path, UserID uid, GroupID gid, Vector<String> arguments, Vector<String> environment, TTY* tty)
  124. {
  125. auto parts = path.split('/');
  126. if (arguments.is_empty()) {
  127. arguments.append(parts.last());
  128. }
  129. auto process = TRY(Process::try_create(first_thread, parts.take_last(), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  130. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  131. first_thread = nullptr;
  132. return ENOMEM;
  133. }
  134. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  135. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  136. auto setup_description = [&process, &description](int fd) {
  137. process->m_fds.m_fds_metadatas[fd].allocate();
  138. process->m_fds[fd].set(*description);
  139. };
  140. setup_description(0);
  141. setup_description(1);
  142. setup_description(2);
  143. if (auto result = process->exec(path, move(arguments), move(environment)); result.is_error()) {
  144. dbgln("Failed to exec {}: {}", path, result);
  145. first_thread = nullptr;
  146. return result;
  147. }
  148. register_new(*process);
  149. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  150. process->ref();
  151. return process;
  152. }
  153. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  154. {
  155. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  156. if (process_or_error.is_error())
  157. return {};
  158. auto process = process_or_error.release_value();
  159. first_thread->regs().set_ip((FlatPtr)entry);
  160. #if ARCH(I386)
  161. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  162. #else
  163. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  164. #endif
  165. if (do_register == RegisterProcess::Yes)
  166. register_new(*process);
  167. SpinlockLocker lock(g_scheduler_lock);
  168. first_thread->set_affinity(affinity);
  169. first_thread->set_state(Thread::State::Runnable);
  170. return process;
  171. }
  172. void Process::protect_data()
  173. {
  174. m_protected_data_refs.unref([&]() {
  175. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  176. });
  177. }
  178. void Process::unprotect_data()
  179. {
  180. m_protected_data_refs.ref([&]() {
  181. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  182. });
  183. }
  184. KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, String const& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  185. {
  186. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  187. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  188. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  189. return process;
  190. }
  191. Process::Process(const String& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  192. : m_name(move(name))
  193. , m_is_kernel_process(is_kernel_process)
  194. , m_executable(move(executable))
  195. , m_cwd(move(cwd))
  196. , m_tty(tty)
  197. , m_wait_blocker_set(*this)
  198. {
  199. // Ensure that we protect the process data when exiting the constructor.
  200. ProtectedDataMutationScope scope { *this };
  201. m_protected_values.pid = allocate_pid();
  202. m_protected_values.ppid = ppid;
  203. m_protected_values.uid = uid;
  204. m_protected_values.gid = gid;
  205. m_protected_values.euid = uid;
  206. m_protected_values.egid = gid;
  207. m_protected_values.suid = uid;
  208. m_protected_values.sgid = gid;
  209. auto maybe_procfs_traits = ProcessProcFSTraits::try_create({}, make_weak_ptr());
  210. // NOTE: This can fail, but it should be very, *very* rare.
  211. VERIFY(!maybe_procfs_traits.is_error());
  212. m_procfs_traits = maybe_procfs_traits.release_value();
  213. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  214. }
  215. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  216. {
  217. m_space = move(preallocated_space);
  218. auto create_first_thread = [&] {
  219. if (fork_parent) {
  220. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  221. return Thread::current()->try_clone(*this);
  222. }
  223. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  224. return Thread::try_create(*this);
  225. };
  226. first_thread = TRY(create_first_thread());
  227. if (!fork_parent) {
  228. // FIXME: Figure out if this is really necessary.
  229. first_thread->detach();
  230. }
  231. return KSuccess;
  232. }
  233. Process::~Process()
  234. {
  235. unprotect_data();
  236. VERIFY(thread_count() == 0); // all threads should have been finalized
  237. VERIFY(!m_alarm_timer);
  238. PerformanceManager::add_process_exit_event(*this);
  239. }
  240. bool Process::unref() const
  241. {
  242. // NOTE: We need to obtain the process list lock before doing anything,
  243. // because otherwise someone might get in between us lowering the
  244. // refcount and acquiring the lock.
  245. auto did_hit_zero = processes().with([&](auto& list) {
  246. auto new_ref_count = deref_base();
  247. if (new_ref_count > 0)
  248. return false;
  249. if (m_list_node.is_in_list())
  250. list.remove(*const_cast<Process*>(this));
  251. return true;
  252. });
  253. if (did_hit_zero)
  254. delete this;
  255. return did_hit_zero;
  256. }
  257. // Make sure the compiler doesn't "optimize away" this function:
  258. extern void signal_trampoline_dummy() __attribute__((used));
  259. void signal_trampoline_dummy()
  260. {
  261. #if ARCH(I386)
  262. // The trampoline preserves the current eax, pushes the signal code and
  263. // then calls the signal handler. We do this because, when interrupting a
  264. // blocking syscall, that syscall may return some special error code in eax;
  265. // This error code would likely be overwritten by the signal handler, so it's
  266. // necessary to preserve it here.
  267. asm(
  268. ".intel_syntax noprefix\n"
  269. ".globl asm_signal_trampoline\n"
  270. "asm_signal_trampoline:\n"
  271. "push ebp\n"
  272. "mov ebp, esp\n"
  273. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  274. "sub esp, 4\n" // align the stack to 16 bytes
  275. "mov eax, [ebp+12]\n" // push the signal code
  276. "push eax\n"
  277. "call [ebp+8]\n" // call the signal handler
  278. "add esp, 8\n"
  279. "mov eax, %P0\n"
  280. "int 0x82\n" // sigreturn syscall
  281. ".globl asm_signal_trampoline_end\n"
  282. "asm_signal_trampoline_end:\n"
  283. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  284. #elif ARCH(X86_64)
  285. // The trampoline preserves the current rax, pushes the signal code and
  286. // then calls the signal handler. We do this because, when interrupting a
  287. // blocking syscall, that syscall may return some special error code in eax;
  288. // This error code would likely be overwritten by the signal handler, so it's
  289. // necessary to preserve it here.
  290. asm(
  291. ".intel_syntax noprefix\n"
  292. ".globl asm_signal_trampoline\n"
  293. "asm_signal_trampoline:\n"
  294. "push rbp\n"
  295. "mov rbp, rsp\n"
  296. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  297. "sub rsp, 8\n" // align the stack to 16 bytes
  298. "mov rdi, [rbp+24]\n" // push the signal code
  299. "call [rbp+16]\n" // call the signal handler
  300. "add rsp, 8\n"
  301. "mov rax, %P0\n"
  302. "int 0x82\n" // sigreturn syscall
  303. ".globl asm_signal_trampoline_end\n"
  304. "asm_signal_trampoline_end:\n"
  305. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  306. #endif
  307. }
  308. extern "C" char const asm_signal_trampoline[];
  309. extern "C" char const asm_signal_trampoline_end[];
  310. void create_signal_trampoline()
  311. {
  312. // NOTE: We leak this region.
  313. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  314. g_signal_trampoline_region->set_syscall_region(true);
  315. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  316. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  317. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  318. g_signal_trampoline_region->set_writable(false);
  319. g_signal_trampoline_region->remap();
  320. }
  321. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  322. {
  323. VERIFY(!is_dead());
  324. VERIFY(&Process::current() == this);
  325. if (out_of_memory) {
  326. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  327. } else {
  328. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  329. auto* symbol = symbolicate_kernel_address(ip);
  330. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  331. } else {
  332. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  333. }
  334. dump_backtrace();
  335. }
  336. {
  337. ProtectedDataMutationScope scope { *this };
  338. m_protected_values.termination_signal = signal;
  339. }
  340. set_should_generate_coredump(!out_of_memory);
  341. address_space().dump_regions();
  342. VERIFY(is_user_process());
  343. die();
  344. // We can not return from here, as there is nowhere
  345. // to unwind to, so die right away.
  346. Thread::current()->die_if_needed();
  347. VERIFY_NOT_REACHED();
  348. }
  349. RefPtr<Process> Process::from_pid(ProcessID pid)
  350. {
  351. return processes().with([&](const auto& list) -> RefPtr<Process> {
  352. for (auto& process : list) {
  353. if (process.pid() == pid)
  354. return &process;
  355. }
  356. return {};
  357. });
  358. }
  359. const Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i) const
  360. {
  361. SpinlockLocker lock(m_fds_lock);
  362. if (m_fds_metadatas.size() <= i)
  363. return nullptr;
  364. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  365. return &metadata;
  366. return nullptr;
  367. }
  368. Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i)
  369. {
  370. SpinlockLocker lock(m_fds_lock);
  371. if (m_fds_metadatas.size() <= i)
  372. return nullptr;
  373. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  374. return &metadata;
  375. return nullptr;
  376. }
  377. const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
  378. {
  379. SpinlockLocker lock(m_fds_lock);
  380. VERIFY(m_fds_metadatas[i].is_allocated());
  381. return m_fds_metadatas[i];
  382. }
  383. Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
  384. {
  385. SpinlockLocker lock(m_fds_lock);
  386. VERIFY(m_fds_metadatas[i].is_allocated());
  387. return m_fds_metadatas[i];
  388. }
  389. KResultOr<NonnullRefPtr<FileDescription>> Process::FileDescriptions::file_description(int fd) const
  390. {
  391. SpinlockLocker lock(m_fds_lock);
  392. if (fd < 0)
  393. return EBADF;
  394. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  395. return EBADF;
  396. RefPtr description = m_fds_metadatas[fd].description();
  397. if (!description)
  398. return EBADF;
  399. return description.release_nonnull();
  400. }
  401. void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
  402. {
  403. SpinlockLocker lock(m_fds_lock);
  404. for (auto& file_description_metadata : m_fds_metadatas) {
  405. callback(file_description_metadata);
  406. }
  407. }
  408. void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
  409. {
  410. SpinlockLocker lock(m_fds_lock);
  411. for (auto& file_description_metadata : m_fds_metadatas) {
  412. callback(file_description_metadata);
  413. }
  414. }
  415. size_t Process::FileDescriptions::open_count() const
  416. {
  417. size_t count = 0;
  418. enumerate([&](auto& file_description_metadata) {
  419. if (file_description_metadata.is_valid())
  420. ++count;
  421. });
  422. return count;
  423. }
  424. KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
  425. {
  426. SpinlockLocker lock(m_fds_lock);
  427. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  428. if (!m_fds_metadatas[i].is_allocated()) {
  429. m_fds_metadatas[i].allocate();
  430. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  431. }
  432. }
  433. return EMFILE;
  434. }
  435. Time kgettimeofday()
  436. {
  437. return TimeManagement::now();
  438. }
  439. siginfo_t Process::wait_info()
  440. {
  441. siginfo_t siginfo {};
  442. siginfo.si_signo = SIGCHLD;
  443. siginfo.si_pid = pid().value();
  444. siginfo.si_uid = uid().value();
  445. if (m_protected_values.termination_signal) {
  446. siginfo.si_status = m_protected_values.termination_signal;
  447. siginfo.si_code = CLD_KILLED;
  448. } else {
  449. siginfo.si_status = m_protected_values.termination_status;
  450. siginfo.si_code = CLD_EXITED;
  451. }
  452. return siginfo;
  453. }
  454. Custody& Process::current_directory()
  455. {
  456. if (!m_cwd)
  457. m_cwd = VirtualFileSystem::the().root_custody();
  458. return *m_cwd;
  459. }
  460. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  461. {
  462. if (path_length == 0)
  463. return EINVAL;
  464. if (path_length > PATH_MAX)
  465. return ENAMETOOLONG;
  466. return try_copy_kstring_from_user(user_path, path_length);
  467. }
  468. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  469. {
  470. Userspace<char const*> path_characters((FlatPtr)path.characters);
  471. return get_syscall_path_argument(path_characters, path.length);
  472. }
  473. bool Process::dump_core()
  474. {
  475. VERIFY(is_dumpable());
  476. VERIFY(should_generate_coredump());
  477. dbgln("Generating coredump for pid: {}", pid().value());
  478. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  479. auto coredump_or_error = Coredump::try_create(*this, coredump_path);
  480. if (coredump_or_error.is_error())
  481. return false;
  482. return !coredump_or_error.value()->write().is_error();
  483. }
  484. bool Process::dump_perfcore()
  485. {
  486. VERIFY(is_dumpable());
  487. VERIFY(m_perf_event_buffer);
  488. dbgln("Generating perfcore for pid: {}", pid().value());
  489. // Try to generate a filename which isn't already used.
  490. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  491. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  492. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  493. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  494. if (description_or_error.is_error()) {
  495. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  496. return false;
  497. }
  498. auto& description = *description_or_error.value();
  499. KBufferBuilder builder;
  500. if (!m_perf_event_buffer->to_json(builder)) {
  501. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  502. return false;
  503. }
  504. auto json = builder.build();
  505. if (!json) {
  506. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  507. return false;
  508. }
  509. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  510. if (description.write(json_buffer, json->size()).is_error()) {
  511. return false;
  512. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  513. }
  514. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  515. return true;
  516. }
  517. void Process::finalize()
  518. {
  519. VERIFY(Thread::current() == g_finalizer);
  520. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  521. if (is_dumpable()) {
  522. if (m_should_generate_coredump)
  523. dump_core();
  524. if (m_perf_event_buffer) {
  525. dump_perfcore();
  526. TimeManagement::the().disable_profile_timer();
  527. }
  528. }
  529. m_threads_for_coredump.clear();
  530. if (m_alarm_timer)
  531. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  532. m_fds.clear();
  533. m_tty = nullptr;
  534. m_executable = nullptr;
  535. m_cwd = nullptr;
  536. m_arguments.clear();
  537. m_environment.clear();
  538. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  539. {
  540. // FIXME: PID/TID BUG
  541. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  542. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  543. parent_thread->send_signal(SIGCHLD, this);
  544. }
  545. }
  546. if (!!ppid()) {
  547. if (auto parent = Process::from_pid(ppid())) {
  548. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  549. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  550. }
  551. }
  552. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  553. m_space->remove_all_regions({});
  554. VERIFY(ref_count() > 0);
  555. // WaitBlockerSet::finalize will be in charge of dropping the last
  556. // reference if there are still waiters around, or whenever the last
  557. // waitable states are consumed. Unless there is no parent around
  558. // anymore, in which case we'll just drop it right away.
  559. m_wait_blocker_set.finalize();
  560. }
  561. void Process::disowned_by_waiter(Process& process)
  562. {
  563. m_wait_blocker_set.disowned_by_waiter(process);
  564. }
  565. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  566. {
  567. if (auto parent = Process::from_pid(ppid()))
  568. parent->m_wait_blocker_set.unblock(*this, flags, signal);
  569. }
  570. void Process::die()
  571. {
  572. auto expected = State::Running;
  573. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  574. // It's possible that another thread calls this at almost the same time
  575. // as we can't always instantly kill other threads (they may be blocked)
  576. // So if we already were called then other threads should stop running
  577. // momentarily and we only really need to service the first thread
  578. return;
  579. }
  580. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  581. // getting an EOF when the last process using the slave PTY dies.
  582. // If the master PTY owner relies on an EOF to know when to wait() on a
  583. // slave owner, we have to allow the PTY pair to be torn down.
  584. m_tty = nullptr;
  585. VERIFY(m_threads_for_coredump.is_empty());
  586. for_each_thread([&](auto& thread) {
  587. m_threads_for_coredump.append(thread);
  588. });
  589. processes().with([&](const auto& list) {
  590. for (auto it = list.begin(); it != list.end();) {
  591. auto& process = *it;
  592. ++it;
  593. if (process.has_tracee_thread(pid())) {
  594. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  595. process.stop_tracing();
  596. auto err = process.send_signal(SIGSTOP, this);
  597. if (err.is_error())
  598. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  599. }
  600. }
  601. });
  602. kill_all_threads();
  603. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  604. KCOVDevice::free_process();
  605. #endif
  606. }
  607. void Process::terminate_due_to_signal(u8 signal)
  608. {
  609. VERIFY_INTERRUPTS_DISABLED();
  610. VERIFY(signal < 32);
  611. VERIFY(&Process::current() == this);
  612. dbgln("Terminating {} due to signal {}", *this, signal);
  613. {
  614. ProtectedDataMutationScope scope { *this };
  615. m_protected_values.termination_status = 0;
  616. m_protected_values.termination_signal = signal;
  617. }
  618. die();
  619. }
  620. KResult Process::send_signal(u8 signal, Process* sender)
  621. {
  622. // Try to send it to the "obvious" main thread:
  623. auto receiver_thread = Thread::from_tid(pid().value());
  624. // If the main thread has died, there may still be other threads:
  625. if (!receiver_thread) {
  626. // The first one should be good enough.
  627. // Neither kill(2) nor kill(3) specify any selection precedure.
  628. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  629. receiver_thread = &thread;
  630. return IterationDecision::Break;
  631. });
  632. }
  633. if (receiver_thread) {
  634. receiver_thread->send_signal(signal, sender);
  635. return KSuccess;
  636. }
  637. return ESRCH;
  638. }
  639. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  640. {
  641. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  642. // FIXME: Do something with guard pages?
  643. auto thread_or_error = Thread::try_create(*this);
  644. if (thread_or_error.is_error())
  645. return {};
  646. auto thread = thread_or_error.release_value();
  647. thread->set_name(move(name));
  648. thread->set_affinity(affinity);
  649. thread->set_priority(priority);
  650. if (!joinable)
  651. thread->detach();
  652. auto& regs = thread->regs();
  653. regs.set_ip((FlatPtr)entry);
  654. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  655. SpinlockLocker lock(g_scheduler_lock);
  656. thread->set_state(Thread::State::Runnable);
  657. return thread;
  658. }
  659. void Process::FileDescriptionAndFlags::clear()
  660. {
  661. // FIXME: Verify Process::m_fds_lock is locked!
  662. m_description = nullptr;
  663. m_flags = 0;
  664. }
  665. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  666. {
  667. // FIXME: Verify Process::m_fds_lock is locked!
  668. m_description = move(description);
  669. m_flags = flags;
  670. }
  671. void Process::set_tty(TTY* tty)
  672. {
  673. m_tty = tty;
  674. }
  675. KResult Process::start_tracing_from(ProcessID tracer)
  676. {
  677. auto thread_tracer = ThreadTracer::create(tracer);
  678. if (!thread_tracer)
  679. return ENOMEM;
  680. m_tracer = move(thread_tracer);
  681. return KSuccess;
  682. }
  683. void Process::stop_tracing()
  684. {
  685. m_tracer = nullptr;
  686. }
  687. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  688. {
  689. VERIFY(m_tracer.ptr());
  690. m_tracer->set_regs(regs);
  691. thread.send_urgent_signal_to_self(SIGTRAP);
  692. }
  693. bool Process::create_perf_events_buffer_if_needed()
  694. {
  695. if (!m_perf_event_buffer) {
  696. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  697. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  698. }
  699. return !!m_perf_event_buffer;
  700. }
  701. void Process::delete_perf_events_buffer()
  702. {
  703. if (m_perf_event_buffer)
  704. m_perf_event_buffer = nullptr;
  705. }
  706. bool Process::remove_thread(Thread& thread)
  707. {
  708. ProtectedDataMutationScope scope { *this };
  709. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  710. VERIFY(thread_cnt_before != 0);
  711. thread_list().with([&](auto& thread_list) {
  712. thread_list.remove(thread);
  713. });
  714. return thread_cnt_before == 1;
  715. }
  716. bool Process::add_thread(Thread& thread)
  717. {
  718. ProtectedDataMutationScope scope { *this };
  719. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  720. thread_list().with([&](auto& thread_list) {
  721. thread_list.append(thread);
  722. });
  723. return is_first;
  724. }
  725. void Process::set_dumpable(bool dumpable)
  726. {
  727. if (dumpable == m_protected_values.dumpable)
  728. return;
  729. ProtectedDataMutationScope scope { *this };
  730. m_protected_values.dumpable = dumpable;
  731. }
  732. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  733. {
  734. // Write it into the first available property slot.
  735. for (auto& slot : m_coredump_properties) {
  736. if (slot.key)
  737. continue;
  738. slot.key = move(key);
  739. slot.value = move(value);
  740. return KSuccess;
  741. }
  742. return ENOBUFS;
  743. }
  744. KResult Process::try_set_coredump_property(StringView key, StringView value)
  745. {
  746. auto key_kstring = KString::try_create(key);
  747. auto value_kstring = KString::try_create(value);
  748. if (key_kstring && value_kstring)
  749. return set_coredump_property(key_kstring.release_nonnull(), value_kstring.release_nonnull());
  750. return ENOMEM;
  751. };
  752. static constexpr StringView to_string(Pledge promise)
  753. {
  754. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  755. case Pledge::x: \
  756. return #x;
  757. switch (promise) {
  758. ENUMERATE_PLEDGE_PROMISES
  759. }
  760. #undef __ENUMERATE_PLEDGE_PROMISE
  761. VERIFY_NOT_REACHED();
  762. }
  763. void Process::require_no_promises()
  764. {
  765. if (!has_promises())
  766. return;
  767. dbgln("Has made a promise");
  768. Process::current().crash(SIGABRT, 0);
  769. VERIFY_NOT_REACHED();
  770. }
  771. void Process::require_promise(Pledge promise)
  772. {
  773. if (!has_promises())
  774. return;
  775. if (has_promised(promise))
  776. return;
  777. dbgln("Has not pledged {}", to_string(promise));
  778. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  779. crash(SIGABRT, 0);
  780. }
  781. }