Thread.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. #include <Kernel/Thread.h>
  2. #include <Kernel/Scheduler.h>
  3. #include <Kernel/system.h>
  4. #include <Kernel/Process.h>
  5. #include <Kernel/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. InlineLinkedList<Thread>* g_threads;
  8. static const dword default_kernel_stack_size = 16384;
  9. static const dword default_userspace_stack_size = 65536;
  10. Thread::Thread(Process& process)
  11. : m_process(process)
  12. , m_tid(process.m_next_tid++)
  13. {
  14. dbgprintf("Thread: New thread TID=%u in %s(%u)\n", m_tid, process.name().characters(), process.pid());
  15. set_default_signal_dispositions();
  16. memset(&m_fpu_state, 0, sizeof(FPUState));
  17. memset(&m_tss, 0, sizeof(m_tss));
  18. // Only IF is set when a process boots.
  19. m_tss.eflags = 0x0202;
  20. word cs, ds, ss;
  21. if (m_process.is_ring0()) {
  22. cs = 0x08;
  23. ds = 0x10;
  24. ss = 0x10;
  25. } else {
  26. cs = 0x1b;
  27. ds = 0x23;
  28. ss = 0x23;
  29. }
  30. m_tss.ds = ds;
  31. m_tss.es = ds;
  32. m_tss.fs = ds;
  33. m_tss.gs = ds;
  34. m_tss.ss = ss;
  35. m_tss.cs = cs;
  36. m_tss.cr3 = m_process.page_directory().cr3();
  37. if (m_process.is_ring0()) {
  38. // FIXME: This memory is leaked.
  39. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  40. dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
  41. m_stack_top0 = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
  42. m_tss.esp = m_stack_top0;
  43. } else {
  44. // Ring3 processes need a separate stack for Ring0.
  45. m_kernel_stack = kmalloc(default_kernel_stack_size);
  46. m_stack_top0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
  47. m_tss.ss0 = 0x10;
  48. m_tss.esp0 = m_stack_top0;
  49. }
  50. // HACK: Ring2 SS in the TSS is the current PID.
  51. m_tss.ss2 = m_process.pid();
  52. m_far_ptr.offset = 0x98765432;
  53. InterruptDisabler disabler;
  54. g_threads->prepend(this);
  55. }
  56. Thread::~Thread()
  57. {
  58. dbgprintf("~Thread{%p}\n", this);
  59. {
  60. InterruptDisabler disabler;
  61. g_threads->remove(this);
  62. }
  63. if (g_last_fpu_thread == this)
  64. g_last_fpu_thread = nullptr;
  65. if (selector())
  66. gdt_free_entry(selector());
  67. if (m_kernel_stack) {
  68. kfree(m_kernel_stack);
  69. m_kernel_stack = nullptr;
  70. }
  71. if (m_kernel_stack_for_signal_handler) {
  72. kfree(m_kernel_stack_for_signal_handler);
  73. m_kernel_stack_for_signal_handler = nullptr;
  74. }
  75. }
  76. void Thread::unblock()
  77. {
  78. if (current == this) {
  79. system.nblocked--;
  80. m_state = Thread::Running;
  81. return;
  82. }
  83. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  84. system.nblocked--;
  85. m_state = Thread::Runnable;
  86. }
  87. void Thread::snooze_until(Alarm& alarm)
  88. {
  89. m_snoozing_alarm = &alarm;
  90. block(Thread::BlockedSnoozing);
  91. Scheduler::yield();
  92. }
  93. void Thread::block(Thread::State new_state)
  94. {
  95. if (state() != Thread::Running) {
  96. kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
  97. }
  98. ASSERT(state() == Thread::Running);
  99. system.nblocked++;
  100. m_was_interrupted_while_blocked = false;
  101. set_state(new_state);
  102. }
  103. void block(Thread::State state)
  104. {
  105. current->block(state);
  106. Scheduler::yield();
  107. }
  108. void sleep(dword ticks)
  109. {
  110. ASSERT(current->state() == Thread::Running);
  111. current->set_wakeup_time(system.uptime + ticks);
  112. current->block(Thread::BlockedSleep);
  113. Scheduler::yield();
  114. }
  115. const char* to_string(Thread::State state)
  116. {
  117. switch (state) {
  118. case Thread::Invalid: return "Invalid";
  119. case Thread::Runnable: return "Runnable";
  120. case Thread::Running: return "Running";
  121. case Thread::Dying: return "Dying";
  122. case Thread::Dead: return "Dead";
  123. case Thread::Stopped: return "Stopped";
  124. case Thread::Skip1SchedulerPass: return "Skip1";
  125. case Thread::Skip0SchedulerPasses: return "Skip0";
  126. case Thread::BlockedSleep: return "Sleep";
  127. case Thread::BlockedWait: return "Wait";
  128. case Thread::BlockedRead: return "Read";
  129. case Thread::BlockedWrite: return "Write";
  130. case Thread::BlockedSignal: return "Signal";
  131. case Thread::BlockedSelect: return "Select";
  132. case Thread::BlockedLurking: return "Lurking";
  133. case Thread::BlockedConnect: return "Connect";
  134. case Thread::BlockedReceive: return "Receive";
  135. case Thread::BlockedSnoozing: return "Snoozing";
  136. }
  137. kprintf("to_string(Thread::State): Invalid state: %u\n", state);
  138. ASSERT_NOT_REACHED();
  139. return nullptr;
  140. }
  141. void Thread::finalize()
  142. {
  143. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  144. m_blocked_socket = nullptr;
  145. set_state(Thread::State::Dead);
  146. if (this == &m_process.main_thread())
  147. m_process.finalize();
  148. }
  149. void Thread::finalize_dying_threads()
  150. {
  151. Vector<Thread*> dying_threads;
  152. {
  153. InterruptDisabler disabler;
  154. for_each_in_state(Thread::State::Dying, [&] (Thread& thread) {
  155. dying_threads.append(&thread);
  156. });
  157. }
  158. for (auto* thread : dying_threads)
  159. thread->finalize();
  160. }
  161. bool Thread::tick()
  162. {
  163. ++m_ticks;
  164. if (tss().cs & 3)
  165. ++m_process.m_ticks_in_user;
  166. else
  167. ++m_process.m_ticks_in_kernel;
  168. return --m_ticks_left;
  169. }
  170. void Thread::send_signal(byte signal, Process* sender)
  171. {
  172. ASSERT(signal < 32);
  173. if (sender)
  174. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  175. else
  176. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  177. InterruptDisabler disabler;
  178. m_pending_signals |= 1 << signal;
  179. }
  180. bool Thread::has_unmasked_pending_signals() const
  181. {
  182. return m_pending_signals & ~m_signal_mask;
  183. }
  184. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  185. {
  186. ASSERT_INTERRUPTS_DISABLED();
  187. dword signal_candidates = m_pending_signals & ~m_signal_mask;
  188. ASSERT(signal_candidates);
  189. byte signal = 0;
  190. for (; signal < 32; ++signal) {
  191. if (signal_candidates & (1 << signal)) {
  192. break;
  193. }
  194. }
  195. return dispatch_signal(signal);
  196. }
  197. enum class DefaultSignalAction {
  198. Terminate,
  199. Ignore,
  200. DumpCore,
  201. Stop,
  202. Continue,
  203. };
  204. DefaultSignalAction default_signal_action(byte signal)
  205. {
  206. ASSERT(signal && signal < NSIG);
  207. switch (signal) {
  208. case SIGHUP:
  209. case SIGINT:
  210. case SIGKILL:
  211. case SIGPIPE:
  212. case SIGALRM:
  213. case SIGUSR1:
  214. case SIGUSR2:
  215. case SIGVTALRM:
  216. case SIGSTKFLT:
  217. case SIGIO:
  218. case SIGPROF:
  219. case SIGTERM:
  220. case SIGPWR:
  221. return DefaultSignalAction::Terminate;
  222. case SIGCHLD:
  223. case SIGURG:
  224. case SIGWINCH:
  225. return DefaultSignalAction::Ignore;
  226. case SIGQUIT:
  227. case SIGILL:
  228. case SIGTRAP:
  229. case SIGABRT:
  230. case SIGBUS:
  231. case SIGFPE:
  232. case SIGSEGV:
  233. case SIGXCPU:
  234. case SIGXFSZ:
  235. case SIGSYS:
  236. return DefaultSignalAction::DumpCore;
  237. case SIGCONT:
  238. return DefaultSignalAction::Continue;
  239. case SIGSTOP:
  240. case SIGTSTP:
  241. case SIGTTIN:
  242. case SIGTTOU:
  243. return DefaultSignalAction::Stop;
  244. }
  245. ASSERT_NOT_REACHED();
  246. }
  247. ShouldUnblockThread Thread::dispatch_signal(byte signal)
  248. {
  249. ASSERT_INTERRUPTS_DISABLED();
  250. ASSERT(signal < 32);
  251. #ifdef SIGNAL_DEBUG
  252. kprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  253. #endif
  254. auto& action = m_signal_action_data[signal];
  255. // FIXME: Implement SA_SIGINFO signal handlers.
  256. ASSERT(!(action.flags & SA_SIGINFO));
  257. // Mark this signal as handled.
  258. m_pending_signals &= ~(1 << signal);
  259. if (signal == SIGSTOP) {
  260. set_state(Stopped);
  261. return ShouldUnblockThread::No;
  262. }
  263. if (signal == SIGCONT && state() == Stopped)
  264. set_state(Runnable);
  265. auto handler_laddr = action.handler_or_sigaction;
  266. if (handler_laddr.is_null()) {
  267. switch (default_signal_action(signal)) {
  268. case DefaultSignalAction::Stop:
  269. set_state(Stopped);
  270. return ShouldUnblockThread::No;
  271. case DefaultSignalAction::DumpCore:
  272. case DefaultSignalAction::Terminate:
  273. m_process.terminate_due_to_signal(signal);
  274. return ShouldUnblockThread::No;
  275. case DefaultSignalAction::Ignore:
  276. return ShouldUnblockThread::No;
  277. case DefaultSignalAction::Continue:
  278. return ShouldUnblockThread::Yes;
  279. }
  280. ASSERT_NOT_REACHED();
  281. }
  282. if (handler_laddr.as_ptr() == SIG_IGN) {
  283. #ifdef SIGNAL_DEBUG
  284. kprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
  285. #endif
  286. return ShouldUnblockThread::Yes;
  287. }
  288. dword old_signal_mask = m_signal_mask;
  289. dword new_signal_mask = action.mask;
  290. if (action.flags & SA_NODEFER)
  291. new_signal_mask &= ~(1 << signal);
  292. else
  293. new_signal_mask |= 1 << signal;
  294. m_signal_mask |= new_signal_mask;
  295. Scheduler::prepare_to_modify_tss(*this);
  296. word ret_cs = m_tss.cs;
  297. dword ret_eip = m_tss.eip;
  298. dword ret_eflags = m_tss.eflags;
  299. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  300. ProcessPagingScope paging_scope(m_process);
  301. m_process.create_signal_trampolines_if_needed();
  302. if (interrupting_in_kernel) {
  303. #ifdef SIGNAL_DEBUG
  304. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  305. #endif
  306. ASSERT(is_blocked());
  307. m_tss_to_resume_kernel = m_tss;
  308. #ifdef SIGNAL_DEBUG
  309. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip, m_tss_to_resume_kernel.ss, m_tss_to_resume_kernel.esp, m_tss_to_resume_kernel.eflags, m_tss_to_resume_kernel.cr3);
  310. #endif
  311. if (!m_signal_stack_user_region) {
  312. m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Signal stack (user)");
  313. ASSERT(m_signal_stack_user_region);
  314. }
  315. if (!m_kernel_stack_for_signal_handler) {
  316. m_kernel_stack_for_signal_handler = kmalloc(default_kernel_stack_size);
  317. ASSERT(m_kernel_stack_for_signal_handler);
  318. }
  319. m_tss.ss = 0x23;
  320. m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get();
  321. m_tss.ss0 = 0x10;
  322. m_tss.esp0 = (dword)m_kernel_stack_for_signal_handler + default_kernel_stack_size;
  323. push_value_on_stack(0);
  324. } else {
  325. push_value_on_stack(ret_eip);
  326. push_value_on_stack(ret_eflags);
  327. // PUSHA
  328. dword old_esp = m_tss.esp;
  329. push_value_on_stack(m_tss.eax);
  330. push_value_on_stack(m_tss.ecx);
  331. push_value_on_stack(m_tss.edx);
  332. push_value_on_stack(m_tss.ebx);
  333. push_value_on_stack(old_esp);
  334. push_value_on_stack(m_tss.ebp);
  335. push_value_on_stack(m_tss.esi);
  336. push_value_on_stack(m_tss.edi);
  337. // Align the stack.
  338. m_tss.esp -= 12;
  339. }
  340. // PUSH old_signal_mask
  341. push_value_on_stack(old_signal_mask);
  342. m_tss.cs = 0x1b;
  343. m_tss.ds = 0x23;
  344. m_tss.es = 0x23;
  345. m_tss.fs = 0x23;
  346. m_tss.gs = 0x23;
  347. m_tss.eip = handler_laddr.get();
  348. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  349. push_value_on_stack(signal);
  350. if (interrupting_in_kernel)
  351. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  352. else
  353. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  354. ASSERT((m_tss.esp % 16) == 0);
  355. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  356. set_state(Skip1SchedulerPass);
  357. #ifdef SIGNAL_DEBUG
  358. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  359. #endif
  360. return ShouldUnblockThread::Yes;
  361. }
  362. void Thread::set_default_signal_dispositions()
  363. {
  364. // FIXME: Set up all the right default actions. See signal(7).
  365. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  366. m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  367. m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  368. }
  369. void Thread::push_value_on_stack(dword value)
  370. {
  371. m_tss.esp -= 4;
  372. dword* stack_ptr = (dword*)m_tss.esp;
  373. *stack_ptr = value;
  374. }
  375. void Thread::make_userspace_stack(Vector<String> arguments, Vector<String> environment)
  376. {
  377. auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
  378. ASSERT(region);
  379. m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
  380. m_tss.esp = m_stack_top3;
  381. char* stack_base = (char*)region->laddr().get();
  382. int argc = arguments.size();
  383. char** argv = (char**)stack_base;
  384. char** env = argv + arguments.size() + 1;
  385. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  386. size_t total_blob_size = 0;
  387. for (auto& a : arguments)
  388. total_blob_size += a.length() + 1;
  389. for (auto& e : environment)
  390. total_blob_size += e.length() + 1;
  391. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  392. // FIXME: It would be better if this didn't make us panic.
  393. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  394. for (int i = 0; i < arguments.size(); ++i) {
  395. argv[i] = bufptr;
  396. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  397. bufptr += arguments[i].length();
  398. *(bufptr++) = '\0';
  399. }
  400. argv[arguments.size()] = nullptr;
  401. for (int i = 0; i < environment.size(); ++i) {
  402. env[i] = bufptr;
  403. memcpy(bufptr, environment[i].characters(), environment[i].length());
  404. bufptr += environment[i].length();
  405. *(bufptr++) = '\0';
  406. }
  407. env[environment.size()] = nullptr;
  408. // NOTE: The stack needs to be 16-byte aligned.
  409. push_value_on_stack((dword)env);
  410. push_value_on_stack((dword)argv);
  411. push_value_on_stack((dword)argc);
  412. push_value_on_stack(0);
  413. }
  414. Thread* Thread::clone(Process& process)
  415. {
  416. auto* clone = new Thread(process);
  417. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  418. clone->m_signal_mask = m_signal_mask;
  419. //clone->m_tss = m_tss;
  420. clone->m_fpu_state = m_fpu_state;
  421. clone->m_has_used_fpu = m_has_used_fpu;
  422. return clone;
  423. }
  424. KResult Thread::wait_for_connect(Socket& socket)
  425. {
  426. if (socket.is_connected())
  427. return KSuccess;
  428. m_blocked_socket = socket;
  429. block(Thread::State::BlockedConnect);
  430. Scheduler::yield();
  431. m_blocked_socket = nullptr;
  432. if (!socket.is_connected())
  433. return KResult(-ECONNREFUSED);
  434. return KSuccess;
  435. }
  436. void Thread::initialize()
  437. {
  438. g_threads = new InlineLinkedList<Thread>;
  439. Scheduler::initialize();
  440. }