MemoryManager.cpp 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. #include "CMOS.h"
  10. //#define MM_DEBUG
  11. //#define PAGE_FAULT_DEBUG
  12. static MemoryManager* s_the;
  13. unsigned MemoryManager::s_user_physical_pages_in_existence;
  14. unsigned MemoryManager::s_super_physical_pages_in_existence;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager()
  20. {
  21. // FIXME: This is not the best way to do memory map detection.
  22. // Rewrite to use BIOS int 15,e820 once we have VM86 support.
  23. word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15);
  24. word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17);
  25. kprintf("%u kB base memory\n", base_memory);
  26. kprintf("%u kB extended memory\n", ext_memory);
  27. m_ram_size = ext_memory * 1024;
  28. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  29. m_page_table_zero = (dword*)0x6000;
  30. initialize_paging();
  31. kprintf("MM initialized.\n");
  32. }
  33. MemoryManager::~MemoryManager()
  34. {
  35. }
  36. PageDirectory::PageDirectory(PhysicalAddress paddr)
  37. {
  38. m_directory_page = PhysicalPage::create_eternal(paddr, true);
  39. }
  40. PageDirectory::PageDirectory()
  41. {
  42. MM.populate_page_directory(*this);
  43. }
  44. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  45. {
  46. page_directory.m_directory_page = allocate_supervisor_physical_page();
  47. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  48. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  49. for (int i = 768; i < 1024; ++i)
  50. page_directory.entries()[i] = kernel_page_directory().entries()[i];
  51. }
  52. void MemoryManager::initialize_paging()
  53. {
  54. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  55. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  56. memset(m_page_table_zero, 0, PAGE_SIZE);
  57. #ifdef MM_DEBUG
  58. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  59. #endif
  60. #ifdef MM_DEBUG
  61. dbgprintf("MM: Protect against null dereferences\n");
  62. #endif
  63. // Make null dereferences crash.
  64. map_protected(LinearAddress(0), PAGE_SIZE);
  65. #ifdef MM_DEBUG
  66. dbgprintf("MM: Identity map bottom 4MB\n");
  67. #endif
  68. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  69. // Every process shares these mappings.
  70. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  71. // Basic memory map:
  72. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  73. // (last page before 1MB) Used by quickmap_page().
  74. // 1 MB -> 2 MB kmalloc_eternal() space.
  75. // 2 MB -> 3 MB kmalloc() space.
  76. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  77. // 4 MB -> (max) MB Userspace physical pages (available for allocation!)
  78. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  79. m_free_supervisor_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), true));
  80. dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
  81. for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
  82. m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), false));
  83. m_quickmap_addr = LinearAddress((1 * MB) - PAGE_SIZE);
  84. #ifdef MM_DEBUG
  85. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  86. dbgprintf("MM: Installing page directory\n");
  87. #endif
  88. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  89. asm volatile(
  90. "movl %%cr0, %%eax\n"
  91. "orl $0x80000001, %%eax\n"
  92. "movl %%eax, %%cr0\n"
  93. :::"%eax", "memory");
  94. #ifdef MM_DEBUG
  95. dbgprintf("MM: Paging initialized.\n");
  96. #endif
  97. }
  98. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  99. {
  100. ASSERT(!page_directory.m_physical_pages.contains(index));
  101. auto physical_page = allocate_supervisor_physical_page();
  102. if (!physical_page)
  103. return nullptr;
  104. page_directory.m_physical_pages.set(index, physical_page.copy_ref());
  105. return physical_page;
  106. }
  107. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  108. {
  109. InterruptDisabler disabler;
  110. // FIXME: ASSERT(laddr is 4KB aligned);
  111. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  112. auto pte_address = laddr.offset(offset);
  113. auto pte = ensure_pte(page_directory, pte_address);
  114. pte.set_physical_page_base(0);
  115. pte.set_user_allowed(false);
  116. pte.set_present(true);
  117. pte.set_writable(true);
  118. flush_tlb(pte_address);
  119. }
  120. }
  121. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  122. {
  123. ASSERT_INTERRUPTS_DISABLED();
  124. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  125. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  126. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  127. if (!pde.is_present()) {
  128. #ifdef MM_DEBUG
  129. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  130. #endif
  131. if (page_directory_index == 0) {
  132. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  133. pde.set_page_table_base((dword)m_page_table_zero);
  134. pde.set_user_allowed(false);
  135. pde.set_present(true);
  136. pde.set_writable(true);
  137. } else {
  138. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  139. auto page_table = allocate_page_table(page_directory, page_directory_index);
  140. #ifdef MM_DEBUG
  141. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  142. &page_directory,
  143. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  144. page_directory.cr3(),
  145. page_directory_index,
  146. laddr.get(),
  147. page_table->paddr().get());
  148. #endif
  149. pde.set_page_table_base(page_table->paddr().get());
  150. pde.set_user_allowed(true);
  151. pde.set_present(true);
  152. pde.set_writable(true);
  153. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  154. }
  155. }
  156. return PageTableEntry(&pde.page_table_base()[page_table_index]);
  157. }
  158. void MemoryManager::map_protected(LinearAddress laddr, size_t length)
  159. {
  160. InterruptDisabler disabler;
  161. // FIXME: ASSERT(linearAddress is 4KB aligned);
  162. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  163. auto pte_address = laddr.offset(offset);
  164. auto pte = ensure_pte(kernel_page_directory(), pte_address);
  165. pte.set_physical_page_base(pte_address.get());
  166. pte.set_user_allowed(false);
  167. pte.set_present(false);
  168. pte.set_writable(false);
  169. flush_tlb(pte_address);
  170. }
  171. }
  172. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  173. {
  174. InterruptDisabler disabler;
  175. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  176. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  177. auto pte_address = laddr.offset(offset);
  178. auto pte = ensure_pte(page_directory, pte_address);
  179. pte.set_physical_page_base(pte_address.get());
  180. pte.set_user_allowed(false);
  181. pte.set_present(true);
  182. pte.set_writable(true);
  183. page_directory.flush(pte_address);
  184. }
  185. }
  186. void MemoryManager::initialize()
  187. {
  188. s_the = new MemoryManager;
  189. }
  190. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  191. {
  192. ASSERT_INTERRUPTS_DISABLED();
  193. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  194. for (auto& region : process.m_regions) {
  195. if (region->contains(laddr))
  196. return region.ptr();
  197. }
  198. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  199. return nullptr;
  200. }
  201. const Region* MemoryManager::region_from_laddr(const Process& process, LinearAddress laddr)
  202. {
  203. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  204. for (auto& region : process.m_regions) {
  205. if (region->contains(laddr))
  206. return region.ptr();
  207. }
  208. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  209. return nullptr;
  210. }
  211. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  212. {
  213. ASSERT_INTERRUPTS_DISABLED();
  214. auto& vmo = region.vmo();
  215. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  216. sti();
  217. LOCKER(vmo.m_paging_lock);
  218. cli();
  219. if (!vmo_page.is_null()) {
  220. #ifdef PAGE_FAULT_DEBUG
  221. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  222. #endif
  223. remap_region_page(region, page_index_in_region, true);
  224. return true;
  225. }
  226. auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
  227. #ifdef PAGE_FAULT_DEBUG
  228. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  229. #endif
  230. region.m_cow_map.set(page_index_in_region, false);
  231. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  232. remap_region_page(region, page_index_in_region, true);
  233. return true;
  234. }
  235. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  236. {
  237. ASSERT_INTERRUPTS_DISABLED();
  238. auto& vmo = region.vmo();
  239. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  240. #ifdef PAGE_FAULT_DEBUG
  241. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  242. #endif
  243. region.m_cow_map.set(page_index_in_region, false);
  244. remap_region_page(region, page_index_in_region, true);
  245. return true;
  246. }
  247. #ifdef PAGE_FAULT_DEBUG
  248. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  249. #endif
  250. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  251. auto physical_page = allocate_physical_page(ShouldZeroFill::No);
  252. byte* dest_ptr = quickmap_page(*physical_page);
  253. const byte* src_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  254. #ifdef PAGE_FAULT_DEBUG
  255. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  256. #endif
  257. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  258. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  259. unquickmap_page();
  260. region.m_cow_map.set(page_index_in_region, false);
  261. remap_region_page(region, page_index_in_region, true);
  262. return true;
  263. }
  264. bool Region::page_in()
  265. {
  266. ASSERT(m_page_directory);
  267. ASSERT(!vmo().is_anonymous());
  268. ASSERT(vmo().inode());
  269. #ifdef MM_DEBUG
  270. dbgprintf("MM: page_in %u pages\n", page_count());
  271. #endif
  272. for (size_t i = 0; i < page_count(); ++i) {
  273. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  274. if (vmo_page.is_null()) {
  275. bool success = MM.page_in_from_inode(*this, i);
  276. if (!success)
  277. return false;
  278. }
  279. MM.remap_region_page(*this, i, true);
  280. }
  281. return true;
  282. }
  283. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  284. {
  285. ASSERT(region.page_directory());
  286. auto& vmo = region.vmo();
  287. ASSERT(!vmo.is_anonymous());
  288. ASSERT(vmo.inode());
  289. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  290. InterruptFlagSaver saver;
  291. sti();
  292. LOCKER(vmo.m_paging_lock);
  293. cli();
  294. if (!vmo_page.is_null()) {
  295. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  296. remap_region_page(region, page_index_in_region, true);
  297. return true;
  298. }
  299. #ifdef MM_DEBUG
  300. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  301. #endif
  302. sti();
  303. byte page_buffer[PAGE_SIZE];
  304. auto& inode = *vmo.inode();
  305. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
  306. if (nread < 0) {
  307. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  308. return false;
  309. }
  310. if (nread < PAGE_SIZE) {
  311. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  312. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  313. }
  314. cli();
  315. vmo_page = allocate_physical_page(ShouldZeroFill::No);
  316. if (vmo_page.is_null()) {
  317. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  318. return false;
  319. }
  320. remap_region_page(region, page_index_in_region, true);
  321. byte* dest_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  322. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  323. return true;
  324. }
  325. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  326. {
  327. ASSERT_INTERRUPTS_DISABLED();
  328. ASSERT(current);
  329. #ifdef PAGE_FAULT_DEBUG
  330. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  331. #endif
  332. ASSERT(fault.laddr() != m_quickmap_addr);
  333. auto* region = region_from_laddr(current->process(), fault.laddr());
  334. if (!region) {
  335. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  336. return PageFaultResponse::ShouldCrash;
  337. }
  338. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  339. if (fault.is_not_present()) {
  340. if (region->vmo().inode()) {
  341. #ifdef PAGE_FAULT_DEBUG
  342. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  343. #endif
  344. page_in_from_inode(*region, page_index_in_region);
  345. return PageFaultResponse::Continue;
  346. } else {
  347. #ifdef PAGE_FAULT_DEBUG
  348. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  349. #endif
  350. zero_page(*region, page_index_in_region);
  351. return PageFaultResponse::Continue;
  352. }
  353. } else if (fault.is_protection_violation()) {
  354. if (region->m_cow_map.get(page_index_in_region)) {
  355. #ifdef PAGE_FAULT_DEBUG
  356. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  357. #endif
  358. bool success = copy_on_write(*region, page_index_in_region);
  359. ASSERT(success);
  360. return PageFaultResponse::Continue;
  361. }
  362. kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.laddr().get());
  363. } else {
  364. ASSERT_NOT_REACHED();
  365. }
  366. return PageFaultResponse::ShouldCrash;
  367. }
  368. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
  369. {
  370. InterruptDisabler disabler;
  371. if (1 > m_free_physical_pages.size()) {
  372. kprintf("FUCK! No physical pages available.\n");
  373. ASSERT_NOT_REACHED();
  374. return { };
  375. }
  376. #ifdef MM_DEBUG
  377. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  378. #endif
  379. auto physical_page = m_free_physical_pages.take_last();
  380. if (should_zero_fill == ShouldZeroFill::Yes) {
  381. auto* ptr = (dword*)quickmap_page(*physical_page);
  382. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  383. unquickmap_page();
  384. }
  385. return physical_page;
  386. }
  387. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  388. {
  389. InterruptDisabler disabler;
  390. if (1 > m_free_supervisor_physical_pages.size()) {
  391. kprintf("FUCK! No physical pages available.\n");
  392. ASSERT_NOT_REACHED();
  393. return { };
  394. }
  395. #ifdef MM_DEBUG
  396. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  397. #endif
  398. auto physical_page = m_free_supervisor_physical_pages.take_last();
  399. fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  400. return physical_page;
  401. }
  402. void MemoryManager::enter_process_paging_scope(Process& process)
  403. {
  404. ASSERT(current);
  405. InterruptDisabler disabler;
  406. current->tss().cr3 = process.page_directory().cr3();
  407. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  408. }
  409. void MemoryManager::enter_kernel_paging_scope()
  410. {
  411. InterruptDisabler disabler;
  412. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()):"memory");
  413. }
  414. void MemoryManager::flush_entire_tlb()
  415. {
  416. asm volatile(
  417. "mov %%cr3, %%eax\n"
  418. "mov %%eax, %%cr3\n"
  419. ::: "%eax", "memory"
  420. );
  421. }
  422. void MemoryManager::flush_tlb(LinearAddress laddr)
  423. {
  424. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  425. }
  426. void MemoryManager::map_for_kernel(LinearAddress laddr, PhysicalAddress paddr)
  427. {
  428. auto pte = ensure_pte(kernel_page_directory(), laddr);
  429. pte.set_physical_page_base(paddr.get());
  430. pte.set_present(true);
  431. pte.set_writable(true);
  432. pte.set_user_allowed(false);
  433. flush_tlb(laddr);
  434. }
  435. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  436. {
  437. ASSERT_INTERRUPTS_DISABLED();
  438. ASSERT(!m_quickmap_in_use);
  439. m_quickmap_in_use = true;
  440. auto page_laddr = m_quickmap_addr;
  441. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  442. pte.set_physical_page_base(physical_page.paddr().get());
  443. pte.set_present(true);
  444. pte.set_writable(true);
  445. pte.set_user_allowed(false);
  446. flush_tlb(page_laddr);
  447. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  448. #ifdef MM_DEBUG
  449. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  450. #endif
  451. return page_laddr.as_ptr();
  452. }
  453. void MemoryManager::unquickmap_page()
  454. {
  455. ASSERT_INTERRUPTS_DISABLED();
  456. ASSERT(m_quickmap_in_use);
  457. auto page_laddr = m_quickmap_addr;
  458. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  459. #ifdef MM_DEBUG
  460. auto old_physical_address = pte.physical_page_base();
  461. #endif
  462. pte.set_physical_page_base(0);
  463. pte.set_present(false);
  464. pte.set_writable(false);
  465. flush_tlb(page_laddr);
  466. #ifdef MM_DEBUG
  467. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  468. #endif
  469. m_quickmap_in_use = false;
  470. }
  471. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  472. {
  473. ASSERT(region.page_directory());
  474. InterruptDisabler disabler;
  475. auto page_laddr = region.laddr().offset(page_index_in_region * PAGE_SIZE);
  476. auto pte = ensure_pte(*region.page_directory(), page_laddr);
  477. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  478. ASSERT(physical_page);
  479. pte.set_physical_page_base(physical_page->paddr().get());
  480. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  481. if (region.m_cow_map.get(page_index_in_region))
  482. pte.set_writable(false);
  483. else
  484. pte.set_writable(region.is_writable());
  485. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  486. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  487. pte.set_user_allowed(user_allowed);
  488. region.page_directory()->flush(page_laddr);
  489. #ifdef MM_DEBUG
  490. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  491. #endif
  492. }
  493. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  494. {
  495. InterruptDisabler disabler;
  496. ASSERT(region.page_directory() == &page_directory);
  497. map_region_at_address(page_directory, region, region.laddr(), true);
  498. }
  499. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  500. {
  501. InterruptDisabler disabler;
  502. region.set_page_directory(page_directory);
  503. auto& vmo = region.vmo();
  504. #ifdef MM_DEBUG
  505. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  506. #endif
  507. for (size_t i = 0; i < region.page_count(); ++i) {
  508. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  509. auto pte = ensure_pte(page_directory, page_laddr);
  510. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  511. if (physical_page) {
  512. pte.set_physical_page_base(physical_page->paddr().get());
  513. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  514. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  515. if (region.m_cow_map.get(region.first_page_index() + i))
  516. pte.set_writable(false);
  517. else
  518. pte.set_writable(region.is_writable());
  519. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  520. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  521. } else {
  522. pte.set_physical_page_base(0);
  523. pte.set_present(false);
  524. pte.set_writable(region.is_writable());
  525. }
  526. pte.set_user_allowed(user_allowed);
  527. page_directory.flush(page_laddr);
  528. #ifdef MM_DEBUG
  529. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  530. #endif
  531. }
  532. }
  533. bool MemoryManager::unmap_region(Region& region)
  534. {
  535. ASSERT(region.page_directory());
  536. InterruptDisabler disabler;
  537. for (size_t i = 0; i < region.page_count(); ++i) {
  538. auto laddr = region.laddr().offset(i * PAGE_SIZE);
  539. auto pte = ensure_pte(*region.page_directory(), laddr);
  540. pte.set_physical_page_base(0);
  541. pte.set_present(false);
  542. pte.set_writable(false);
  543. pte.set_user_allowed(false);
  544. region.page_directory()->flush(laddr);
  545. #ifdef MM_DEBUG
  546. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  547. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  548. #endif
  549. }
  550. region.release_page_directory();
  551. return true;
  552. }
  553. bool MemoryManager::map_region(Process& process, Region& region)
  554. {
  555. map_region_at_address(process.page_directory(), region, region.laddr(), true);
  556. return true;
  557. }
  558. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  559. {
  560. auto* region = region_from_laddr(process, laddr);
  561. return region && region->is_readable();
  562. }
  563. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  564. {
  565. auto* region = region_from_laddr(process, laddr);
  566. return region && region->is_writable();
  567. }
  568. Retained<Region> Region::clone()
  569. {
  570. ASSERT(current);
  571. if (m_shared || (m_readable && !m_writable)) {
  572. dbgprintf("%s<%u> Region::clone(): sharing %s (L%x)\n",
  573. current->process().name().characters(),
  574. current->pid(),
  575. m_name.characters(),
  576. laddr().get());
  577. // Create a new region backed by the same VMObject.
  578. return adopt(*new Region(laddr(), size(), m_vmo.copy_ref(), m_offset_in_vmo, String(m_name), m_readable, m_writable));
  579. }
  580. dbgprintf("%s<%u> Region::clone(): cowing %s (L%x)\n",
  581. current->process().name().characters(),
  582. current->pid(),
  583. m_name.characters(),
  584. laddr().get());
  585. // Set up a COW region. The parent (this) region becomes COW as well!
  586. for (size_t i = 0; i < page_count(); ++i)
  587. m_cow_map.set(i, true);
  588. MM.remap_region(current->process().page_directory(), *this);
  589. return adopt(*new Region(laddr(), size(), m_vmo->clone(), m_offset_in_vmo, String(m_name), m_readable, m_writable, true));
  590. }
  591. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  592. : m_laddr(a)
  593. , m_size(s)
  594. , m_vmo(VMObject::create_anonymous(s))
  595. , m_name(move(n))
  596. , m_readable(r)
  597. , m_writable(w)
  598. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  599. {
  600. m_vmo->set_name(m_name);
  601. MM.register_region(*this);
  602. }
  603. Region::Region(LinearAddress a, size_t s, RetainPtr<Inode>&& inode, String&& n, bool r, bool w)
  604. : m_laddr(a)
  605. , m_size(s)
  606. , m_vmo(VMObject::create_file_backed(move(inode)))
  607. , m_name(move(n))
  608. , m_readable(r)
  609. , m_writable(w)
  610. , m_cow_map(Bitmap::create(m_vmo->page_count()))
  611. {
  612. MM.register_region(*this);
  613. }
  614. Region::Region(LinearAddress a, size_t s, Retained<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  615. : m_laddr(a)
  616. , m_size(s)
  617. , m_offset_in_vmo(offset_in_vmo)
  618. , m_vmo(move(vmo))
  619. , m_name(move(n))
  620. , m_readable(r)
  621. , m_writable(w)
  622. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  623. {
  624. MM.register_region(*this);
  625. }
  626. Region::~Region()
  627. {
  628. if (m_page_directory) {
  629. MM.unmap_region(*this);
  630. ASSERT(!m_page_directory);
  631. }
  632. MM.unregister_region(*this);
  633. }
  634. Retained<PhysicalPage> PhysicalPage::create_eternal(PhysicalAddress paddr, bool supervisor)
  635. {
  636. void* slot = kmalloc_eternal(sizeof(PhysicalPage));
  637. new (slot) PhysicalPage(paddr, supervisor);
  638. return adopt(*(PhysicalPage*)slot);
  639. }
  640. Retained<PhysicalPage> PhysicalPage::create(PhysicalAddress paddr, bool supervisor)
  641. {
  642. void* slot = kmalloc(sizeof(PhysicalPage));
  643. new (slot) PhysicalPage(paddr, supervisor, false);
  644. return adopt(*(PhysicalPage*)slot);
  645. }
  646. PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor, bool may_return_to_freelist)
  647. : m_may_return_to_freelist(may_return_to_freelist)
  648. , m_supervisor(supervisor)
  649. , m_paddr(paddr)
  650. {
  651. if (supervisor)
  652. ++MemoryManager::s_super_physical_pages_in_existence;
  653. else
  654. ++MemoryManager::s_user_physical_pages_in_existence;
  655. }
  656. void PhysicalPage::return_to_freelist()
  657. {
  658. ASSERT((paddr().get() & ~PAGE_MASK) == 0);
  659. InterruptDisabler disabler;
  660. m_retain_count = 1;
  661. if (m_supervisor)
  662. MM.m_free_supervisor_physical_pages.append(adopt(*this));
  663. else
  664. MM.m_free_physical_pages.append(adopt(*this));
  665. #ifdef MM_DEBUG
  666. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  667. #endif
  668. }
  669. Retained<VMObject> VMObject::create_file_backed(RetainPtr<Inode>&& inode)
  670. {
  671. InterruptDisabler disabler;
  672. if (inode->vmo())
  673. return *inode->vmo();
  674. auto vmo = adopt(*new VMObject(move(inode)));
  675. vmo->inode()->set_vmo(*vmo);
  676. return vmo;
  677. }
  678. Retained<VMObject> VMObject::create_anonymous(size_t size)
  679. {
  680. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  681. return adopt(*new VMObject(size));
  682. }
  683. Retained<VMObject> VMObject::create_for_physical_range(PhysicalAddress paddr, size_t size)
  684. {
  685. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  686. auto vmo = adopt(*new VMObject(paddr, size));
  687. vmo->m_allow_cpu_caching = false;
  688. return vmo;
  689. }
  690. Retained<VMObject> VMObject::clone()
  691. {
  692. return adopt(*new VMObject(*this));
  693. }
  694. VMObject::VMObject(VMObject& other)
  695. : m_name(other.m_name)
  696. , m_anonymous(other.m_anonymous)
  697. , m_inode_offset(other.m_inode_offset)
  698. , m_size(other.m_size)
  699. , m_inode(other.m_inode)
  700. , m_physical_pages(other.m_physical_pages)
  701. {
  702. MM.register_vmo(*this);
  703. }
  704. VMObject::VMObject(size_t size)
  705. : m_anonymous(true)
  706. , m_size(size)
  707. {
  708. MM.register_vmo(*this);
  709. m_physical_pages.resize(page_count());
  710. }
  711. VMObject::VMObject(PhysicalAddress paddr, size_t size)
  712. : m_anonymous(true)
  713. , m_size(size)
  714. {
  715. MM.register_vmo(*this);
  716. for (size_t i = 0; i < size; i += PAGE_SIZE) {
  717. m_physical_pages.append(PhysicalPage::create(paddr.offset(i), false));
  718. }
  719. ASSERT(m_physical_pages.size() == page_count());
  720. }
  721. VMObject::VMObject(RetainPtr<Inode>&& inode)
  722. : m_inode(move(inode))
  723. {
  724. ASSERT(m_inode);
  725. m_size = ceil_div(m_inode->size(), PAGE_SIZE) * PAGE_SIZE;
  726. m_physical_pages.resize(page_count());
  727. MM.register_vmo(*this);
  728. }
  729. VMObject::~VMObject()
  730. {
  731. if (m_inode)
  732. ASSERT(m_inode->vmo() == this);
  733. MM.unregister_vmo(*this);
  734. }
  735. template<typename Callback>
  736. void VMObject::for_each_region(Callback callback)
  737. {
  738. // FIXME: Figure out a better data structure so we don't have to walk every single region every time an inode changes.
  739. // Perhaps VMObject could have a Vector<Region*> with all of his mappers?
  740. for (auto* region : MM.m_regions) {
  741. if (&region->vmo() == this)
  742. callback(*region);
  743. }
  744. }
  745. void VMObject::inode_size_changed(Badge<Inode>, size_t old_size, size_t new_size)
  746. {
  747. (void)old_size;
  748. InterruptDisabler disabler;
  749. size_t old_page_count = page_count();
  750. m_size = new_size;
  751. if (page_count() > old_page_count) {
  752. // Add null pages and let the fault handler page these in when that day comes.
  753. for (size_t i = old_page_count; i < page_count(); ++i)
  754. m_physical_pages.append(nullptr);
  755. } else {
  756. // Prune the no-longer valid pages. I'm not sure this is actually correct behavior.
  757. for (size_t i = page_count(); i < old_page_count; ++i)
  758. m_physical_pages.take_last();
  759. }
  760. // FIXME: Consolidate with inode_contents_changed() so we only do a single walk.
  761. for_each_region([] (Region& region) {
  762. ASSERT(region.page_directory());
  763. MM.remap_region(*region.page_directory(), region);
  764. });
  765. }
  766. void VMObject::inode_contents_changed(Badge<Inode>, off_t offset, ssize_t size, const byte* data)
  767. {
  768. (void)size;
  769. (void)data;
  770. InterruptDisabler disabler;
  771. ASSERT(offset >= 0);
  772. // FIXME: Only invalidate the parts that actually changed.
  773. for (auto& physical_page : m_physical_pages)
  774. physical_page = nullptr;
  775. #if 0
  776. size_t current_offset = offset;
  777. size_t remaining_bytes = size;
  778. const byte* data_ptr = data;
  779. auto to_page_index = [] (size_t offset) -> size_t {
  780. return offset / PAGE_SIZE;
  781. };
  782. if (current_offset & PAGE_MASK) {
  783. size_t page_index = to_page_index(current_offset);
  784. size_t bytes_to_copy = min(size, PAGE_SIZE - (current_offset & PAGE_MASK));
  785. if (m_physical_pages[page_index]) {
  786. auto* ptr = MM.quickmap_page(*m_physical_pages[page_index]);
  787. memcpy(ptr, data_ptr, bytes_to_copy);
  788. MM.unquickmap_page();
  789. }
  790. current_offset += bytes_to_copy;
  791. data += bytes_to_copy;
  792. remaining_bytes -= bytes_to_copy;
  793. }
  794. for (size_t page_index = to_page_index(current_offset); page_index < m_physical_pages.size(); ++page_index) {
  795. size_t bytes_to_copy = PAGE_SIZE - (current_offset & PAGE_MASK);
  796. if (m_physical_pages[page_index]) {
  797. auto* ptr = MM.quickmap_page(*m_physical_pages[page_index]);
  798. memcpy(ptr, data_ptr, bytes_to_copy);
  799. MM.unquickmap_page();
  800. }
  801. current_offset += bytes_to_copy;
  802. data += bytes_to_copy;
  803. }
  804. #endif
  805. // FIXME: Consolidate with inode_size_changed() so we only do a single walk.
  806. for_each_region([] (Region& region) {
  807. ASSERT(region.page_directory());
  808. MM.remap_region(*region.page_directory(), region);
  809. });
  810. }
  811. int Region::commit()
  812. {
  813. InterruptDisabler disabler;
  814. #ifdef MM_DEBUG
  815. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), laddr().get());
  816. #endif
  817. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  818. if (!vmo().physical_pages()[i].is_null())
  819. continue;
  820. auto physical_page = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::Yes);
  821. if (!physical_page) {
  822. kprintf("MM: commit was unable to allocate a physical page\n");
  823. return -ENOMEM;
  824. }
  825. vmo().physical_pages()[i] = move(physical_page);
  826. MM.remap_region_page(*this, i, true);
  827. }
  828. return 0;
  829. }
  830. void MemoryManager::register_vmo(VMObject& vmo)
  831. {
  832. InterruptDisabler disabler;
  833. m_vmos.set(&vmo);
  834. }
  835. void MemoryManager::unregister_vmo(VMObject& vmo)
  836. {
  837. InterruptDisabler disabler;
  838. m_vmos.remove(&vmo);
  839. }
  840. void MemoryManager::register_region(Region& region)
  841. {
  842. InterruptDisabler disabler;
  843. m_regions.set(&region);
  844. }
  845. void MemoryManager::unregister_region(Region& region)
  846. {
  847. InterruptDisabler disabler;
  848. m_regions.remove(&region);
  849. }
  850. size_t Region::amount_resident() const
  851. {
  852. size_t bytes = 0;
  853. for (size_t i = 0; i < page_count(); ++i) {
  854. if (m_vmo->physical_pages()[first_page_index() + i])
  855. bytes += PAGE_SIZE;
  856. }
  857. return bytes;
  858. }
  859. size_t Region::amount_shared() const
  860. {
  861. size_t bytes = 0;
  862. for (size_t i = 0; i < page_count(); ++i) {
  863. auto& physical_page = m_vmo->physical_pages()[first_page_index() + i];
  864. if (physical_page && physical_page->retain_count() > 1)
  865. bytes += PAGE_SIZE;
  866. }
  867. return bytes;
  868. }
  869. PageDirectory::~PageDirectory()
  870. {
  871. #ifdef MM_DEBUG
  872. dbgprintf("MM: ~PageDirectory K%x\n", this);
  873. #endif
  874. }
  875. void PageDirectory::flush(LinearAddress laddr)
  876. {
  877. #ifdef MM_DEBUG
  878. dbgprintf("MM: Flush page L%x\n", laddr.get());
  879. #endif
  880. if (!current)
  881. return;
  882. if (&current->process().page_directory() == this)
  883. MM.flush_tlb(laddr);
  884. }
  885. ProcessPagingScope::ProcessPagingScope(Process& process)
  886. {
  887. ASSERT(current);
  888. MM.enter_process_paging_scope(process);
  889. }
  890. ProcessPagingScope::~ProcessPagingScope()
  891. {
  892. MM.enter_process_paging_scope(current->process());
  893. }
  894. KernelPagingScope::KernelPagingScope()
  895. {
  896. ASSERT(current);
  897. MM.enter_kernel_paging_scope();
  898. }
  899. KernelPagingScope::~KernelPagingScope()
  900. {
  901. MM.enter_process_paging_scope(current->process());
  902. }