Thread.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. #include <Kernel/Thread.h>
  2. #include <Kernel/Scheduler.h>
  3. #include <Kernel/Process.h>
  4. #include <Kernel/VM/MemoryManager.h>
  5. #include <LibC/signal_numbers.h>
  6. InlineLinkedList<Thread>* g_threads;
  7. static const dword default_kernel_stack_size = 16384;
  8. static const dword default_userspace_stack_size = 65536;
  9. Thread::Thread(Process& process)
  10. : m_process(process)
  11. , m_tid(process.m_next_tid++)
  12. {
  13. dbgprintf("Thread: New thread TID=%u in %s(%u)\n", m_tid, process.name().characters(), process.pid());
  14. set_default_signal_dispositions();
  15. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  16. memset(&m_tss, 0, sizeof(m_tss));
  17. // Only IF is set when a process boots.
  18. m_tss.eflags = 0x0202;
  19. word cs, ds, ss;
  20. if (m_process.is_ring0()) {
  21. cs = 0x08;
  22. ds = 0x10;
  23. ss = 0x10;
  24. } else {
  25. cs = 0x1b;
  26. ds = 0x23;
  27. ss = 0x23;
  28. }
  29. m_tss.ds = ds;
  30. m_tss.es = ds;
  31. m_tss.fs = ds;
  32. m_tss.gs = ds;
  33. m_tss.ss = ss;
  34. m_tss.cs = cs;
  35. m_tss.cr3 = m_process.page_directory().cr3();
  36. if (m_process.is_ring0()) {
  37. // FIXME: This memory is leaked.
  38. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  39. dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
  40. m_stack_top0 = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
  41. m_tss.esp = m_stack_top0;
  42. } else {
  43. // Ring3 processes need a separate stack for Ring0.
  44. m_kernel_stack = kmalloc(default_kernel_stack_size);
  45. m_stack_top0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
  46. m_tss.ss0 = 0x10;
  47. m_tss.esp0 = m_stack_top0;
  48. }
  49. // HACK: Ring2 SS in the TSS is the current PID.
  50. m_tss.ss2 = m_process.pid();
  51. m_far_ptr.offset = 0x98765432;
  52. if (m_process.pid() != 0) {
  53. InterruptDisabler disabler;
  54. g_threads->prepend(this);
  55. }
  56. }
  57. Thread::~Thread()
  58. {
  59. dbgprintf("~Thread{%p}\n", this);
  60. kfree_aligned(m_fpu_state);
  61. {
  62. InterruptDisabler disabler;
  63. g_threads->remove(this);
  64. }
  65. if (g_last_fpu_thread == this)
  66. g_last_fpu_thread = nullptr;
  67. if (selector())
  68. gdt_free_entry(selector());
  69. if (m_kernel_stack) {
  70. kfree(m_kernel_stack);
  71. m_kernel_stack = nullptr;
  72. }
  73. if (m_kernel_stack_for_signal_handler) {
  74. kfree(m_kernel_stack_for_signal_handler);
  75. m_kernel_stack_for_signal_handler = nullptr;
  76. }
  77. }
  78. void Thread::unblock()
  79. {
  80. if (current == this) {
  81. m_state = Thread::Running;
  82. return;
  83. }
  84. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  85. m_state = Thread::Runnable;
  86. }
  87. void Thread::snooze_until(Alarm& alarm)
  88. {
  89. m_snoozing_alarm = &alarm;
  90. block(Thread::BlockedSnoozing);
  91. Scheduler::yield();
  92. }
  93. void Thread::block(Thread::State new_state)
  94. {
  95. bool did_unlock = process().big_lock().unlock_if_locked();
  96. if (state() != Thread::Running) {
  97. kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
  98. }
  99. ASSERT(state() == Thread::Running);
  100. m_was_interrupted_while_blocked = false;
  101. set_state(new_state);
  102. Scheduler::yield();
  103. if (did_unlock)
  104. process().big_lock().lock();
  105. }
  106. void Thread::sleep(dword ticks)
  107. {
  108. ASSERT(state() == Thread::Running);
  109. current->set_wakeup_time(g_uptime + ticks);
  110. current->block(Thread::BlockedSleep);
  111. }
  112. const char* to_string(Thread::State state)
  113. {
  114. switch (state) {
  115. case Thread::Invalid: return "Invalid";
  116. case Thread::Runnable: return "Runnable";
  117. case Thread::Running: return "Running";
  118. case Thread::Dying: return "Dying";
  119. case Thread::Dead: return "Dead";
  120. case Thread::Stopped: return "Stopped";
  121. case Thread::Skip1SchedulerPass: return "Skip1";
  122. case Thread::Skip0SchedulerPasses: return "Skip0";
  123. case Thread::BlockedSleep: return "Sleep";
  124. case Thread::BlockedWait: return "Wait";
  125. case Thread::BlockedRead: return "Read";
  126. case Thread::BlockedWrite: return "Write";
  127. case Thread::BlockedSignal: return "Signal";
  128. case Thread::BlockedSelect: return "Select";
  129. case Thread::BlockedLurking: return "Lurking";
  130. case Thread::BlockedConnect: return "Connect";
  131. case Thread::BlockedReceive: return "Receive";
  132. case Thread::BlockedSnoozing: return "Snoozing";
  133. }
  134. kprintf("to_string(Thread::State): Invalid state: %u\n", state);
  135. ASSERT_NOT_REACHED();
  136. return nullptr;
  137. }
  138. void Thread::finalize()
  139. {
  140. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  141. m_blocked_socket = nullptr;
  142. set_state(Thread::State::Dead);
  143. if (this == &m_process.main_thread())
  144. m_process.finalize();
  145. }
  146. void Thread::finalize_dying_threads()
  147. {
  148. Vector<Thread*, 32> dying_threads;
  149. {
  150. InterruptDisabler disabler;
  151. for_each_in_state(Thread::State::Dying, [&] (Thread& thread) {
  152. dying_threads.append(&thread);
  153. });
  154. }
  155. for (auto* thread : dying_threads)
  156. thread->finalize();
  157. }
  158. bool Thread::tick()
  159. {
  160. ++m_ticks;
  161. if (tss().cs & 3)
  162. ++m_process.m_ticks_in_user;
  163. else
  164. ++m_process.m_ticks_in_kernel;
  165. return --m_ticks_left;
  166. }
  167. void Thread::send_signal(byte signal, Process* sender)
  168. {
  169. ASSERT(signal < 32);
  170. if (sender)
  171. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  172. else
  173. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  174. InterruptDisabler disabler;
  175. m_pending_signals |= 1 << signal;
  176. }
  177. bool Thread::has_unmasked_pending_signals() const
  178. {
  179. return m_pending_signals & ~m_signal_mask;
  180. }
  181. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  182. {
  183. ASSERT_INTERRUPTS_DISABLED();
  184. dword signal_candidates = m_pending_signals & ~m_signal_mask;
  185. ASSERT(signal_candidates);
  186. byte signal = 0;
  187. for (; signal < 32; ++signal) {
  188. if (signal_candidates & (1 << signal)) {
  189. break;
  190. }
  191. }
  192. return dispatch_signal(signal);
  193. }
  194. enum class DefaultSignalAction {
  195. Terminate,
  196. Ignore,
  197. DumpCore,
  198. Stop,
  199. Continue,
  200. };
  201. DefaultSignalAction default_signal_action(byte signal)
  202. {
  203. ASSERT(signal && signal < NSIG);
  204. switch (signal) {
  205. case SIGHUP:
  206. case SIGINT:
  207. case SIGKILL:
  208. case SIGPIPE:
  209. case SIGALRM:
  210. case SIGUSR1:
  211. case SIGUSR2:
  212. case SIGVTALRM:
  213. case SIGSTKFLT:
  214. case SIGIO:
  215. case SIGPROF:
  216. case SIGTERM:
  217. case SIGPWR:
  218. return DefaultSignalAction::Terminate;
  219. case SIGCHLD:
  220. case SIGURG:
  221. case SIGWINCH:
  222. return DefaultSignalAction::Ignore;
  223. case SIGQUIT:
  224. case SIGILL:
  225. case SIGTRAP:
  226. case SIGABRT:
  227. case SIGBUS:
  228. case SIGFPE:
  229. case SIGSEGV:
  230. case SIGXCPU:
  231. case SIGXFSZ:
  232. case SIGSYS:
  233. return DefaultSignalAction::DumpCore;
  234. case SIGCONT:
  235. return DefaultSignalAction::Continue;
  236. case SIGSTOP:
  237. case SIGTSTP:
  238. case SIGTTIN:
  239. case SIGTTOU:
  240. return DefaultSignalAction::Stop;
  241. }
  242. ASSERT_NOT_REACHED();
  243. }
  244. ShouldUnblockThread Thread::dispatch_signal(byte signal)
  245. {
  246. ASSERT_INTERRUPTS_DISABLED();
  247. ASSERT(signal < 32);
  248. #ifdef SIGNAL_DEBUG
  249. kprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  250. #endif
  251. auto& action = m_signal_action_data[signal];
  252. // FIXME: Implement SA_SIGINFO signal handlers.
  253. ASSERT(!(action.flags & SA_SIGINFO));
  254. // Mark this signal as handled.
  255. m_pending_signals &= ~(1 << signal);
  256. if (signal == SIGSTOP) {
  257. set_state(Stopped);
  258. return ShouldUnblockThread::No;
  259. }
  260. if (signal == SIGCONT && state() == Stopped)
  261. set_state(Runnable);
  262. auto handler_laddr = action.handler_or_sigaction;
  263. if (handler_laddr.is_null()) {
  264. switch (default_signal_action(signal)) {
  265. case DefaultSignalAction::Stop:
  266. set_state(Stopped);
  267. return ShouldUnblockThread::No;
  268. case DefaultSignalAction::DumpCore:
  269. case DefaultSignalAction::Terminate:
  270. m_process.terminate_due_to_signal(signal);
  271. return ShouldUnblockThread::No;
  272. case DefaultSignalAction::Ignore:
  273. return ShouldUnblockThread::No;
  274. case DefaultSignalAction::Continue:
  275. return ShouldUnblockThread::Yes;
  276. }
  277. ASSERT_NOT_REACHED();
  278. }
  279. if (handler_laddr.as_ptr() == SIG_IGN) {
  280. #ifdef SIGNAL_DEBUG
  281. kprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
  282. #endif
  283. return ShouldUnblockThread::Yes;
  284. }
  285. dword old_signal_mask = m_signal_mask;
  286. dword new_signal_mask = action.mask;
  287. if (action.flags & SA_NODEFER)
  288. new_signal_mask &= ~(1 << signal);
  289. else
  290. new_signal_mask |= 1 << signal;
  291. m_signal_mask |= new_signal_mask;
  292. Scheduler::prepare_to_modify_tss(*this);
  293. word ret_cs = m_tss.cs;
  294. dword ret_eip = m_tss.eip;
  295. dword ret_eflags = m_tss.eflags;
  296. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  297. ProcessPagingScope paging_scope(m_process);
  298. m_process.create_signal_trampolines_if_needed();
  299. if (interrupting_in_kernel) {
  300. #ifdef SIGNAL_DEBUG
  301. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  302. #endif
  303. ASSERT(is_blocked());
  304. m_tss_to_resume_kernel = m_tss;
  305. #ifdef SIGNAL_DEBUG
  306. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip, m_tss_to_resume_kernel.ss, m_tss_to_resume_kernel.esp, m_tss_to_resume_kernel.eflags, m_tss_to_resume_kernel.cr3);
  307. #endif
  308. if (!m_signal_stack_user_region) {
  309. m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Signal stack (user)");
  310. ASSERT(m_signal_stack_user_region);
  311. }
  312. if (!m_kernel_stack_for_signal_handler) {
  313. m_kernel_stack_for_signal_handler = kmalloc(default_kernel_stack_size);
  314. ASSERT(m_kernel_stack_for_signal_handler);
  315. }
  316. m_tss.ss = 0x23;
  317. m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get();
  318. m_tss.ss0 = 0x10;
  319. m_tss.esp0 = (dword)m_kernel_stack_for_signal_handler + default_kernel_stack_size;
  320. push_value_on_stack(0);
  321. } else {
  322. push_value_on_stack(ret_eip);
  323. push_value_on_stack(ret_eflags);
  324. // PUSHA
  325. dword old_esp = m_tss.esp;
  326. push_value_on_stack(m_tss.eax);
  327. push_value_on_stack(m_tss.ecx);
  328. push_value_on_stack(m_tss.edx);
  329. push_value_on_stack(m_tss.ebx);
  330. push_value_on_stack(old_esp);
  331. push_value_on_stack(m_tss.ebp);
  332. push_value_on_stack(m_tss.esi);
  333. push_value_on_stack(m_tss.edi);
  334. // Align the stack.
  335. m_tss.esp -= 12;
  336. }
  337. // PUSH old_signal_mask
  338. push_value_on_stack(old_signal_mask);
  339. m_tss.cs = 0x1b;
  340. m_tss.ds = 0x23;
  341. m_tss.es = 0x23;
  342. m_tss.fs = 0x23;
  343. m_tss.gs = 0x23;
  344. m_tss.eip = handler_laddr.get();
  345. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  346. push_value_on_stack(signal);
  347. if (interrupting_in_kernel)
  348. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  349. else
  350. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  351. ASSERT((m_tss.esp % 16) == 0);
  352. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  353. set_state(Skip1SchedulerPass);
  354. #ifdef SIGNAL_DEBUG
  355. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  356. #endif
  357. return ShouldUnblockThread::Yes;
  358. }
  359. void Thread::set_default_signal_dispositions()
  360. {
  361. // FIXME: Set up all the right default actions. See signal(7).
  362. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  363. m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  364. m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  365. }
  366. void Thread::push_value_on_stack(dword value)
  367. {
  368. m_tss.esp -= 4;
  369. dword* stack_ptr = (dword*)m_tss.esp;
  370. *stack_ptr = value;
  371. }
  372. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  373. {
  374. auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
  375. ASSERT(region);
  376. m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
  377. m_tss.esp = m_stack_top3;
  378. char* stack_base = (char*)region->laddr().get();
  379. int argc = arguments.size();
  380. char** argv = (char**)stack_base;
  381. char** env = argv + arguments.size() + 1;
  382. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  383. size_t total_blob_size = 0;
  384. for (auto& a : arguments)
  385. total_blob_size += a.length() + 1;
  386. for (auto& e : environment)
  387. total_blob_size += e.length() + 1;
  388. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  389. // FIXME: It would be better if this didn't make us panic.
  390. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  391. for (int i = 0; i < arguments.size(); ++i) {
  392. argv[i] = bufptr;
  393. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  394. bufptr += arguments[i].length();
  395. *(bufptr++) = '\0';
  396. }
  397. argv[arguments.size()] = nullptr;
  398. for (int i = 0; i < environment.size(); ++i) {
  399. env[i] = bufptr;
  400. memcpy(bufptr, environment[i].characters(), environment[i].length());
  401. bufptr += environment[i].length();
  402. *(bufptr++) = '\0';
  403. }
  404. env[environment.size()] = nullptr;
  405. // NOTE: The stack needs to be 16-byte aligned.
  406. push_value_on_stack((dword)env);
  407. push_value_on_stack((dword)argv);
  408. push_value_on_stack((dword)argc);
  409. push_value_on_stack(0);
  410. }
  411. void Thread::make_userspace_stack_for_secondary_thread(void *argument)
  412. {
  413. auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("Thread %u Stack", tid()));
  414. ASSERT(region);
  415. m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
  416. m_tss.esp = m_stack_top3;
  417. // NOTE: The stack needs to be 16-byte aligned.
  418. push_value_on_stack((dword)argument);
  419. push_value_on_stack(0);
  420. }
  421. Thread* Thread::clone(Process& process)
  422. {
  423. auto* clone = new Thread(process);
  424. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  425. clone->m_signal_mask = m_signal_mask;
  426. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  427. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  428. clone->m_has_used_fpu = m_has_used_fpu;
  429. return clone;
  430. }
  431. KResult Thread::wait_for_connect(Socket& socket)
  432. {
  433. if (socket.is_connected())
  434. return KSuccess;
  435. m_blocked_socket = socket;
  436. block(Thread::State::BlockedConnect);
  437. Scheduler::yield();
  438. m_blocked_socket = nullptr;
  439. if (!socket.is_connected())
  440. return KResult(-ECONNREFUSED);
  441. return KSuccess;
  442. }
  443. void Thread::initialize()
  444. {
  445. g_threads = new InlineLinkedList<Thread>;
  446. Scheduler::initialize();
  447. }
  448. Vector<Thread*> Thread::all_threads()
  449. {
  450. Vector<Thread*> threads;
  451. InterruptDisabler disabler;
  452. for (auto* thread = g_threads->head(); thread; thread = thread->next())
  453. threads.append(thread);
  454. return threads;
  455. }
  456. bool Thread::is_thread(void* ptr)
  457. {
  458. ASSERT_INTERRUPTS_DISABLED();
  459. for (auto* thread = g_threads->head(); thread; thread = thread->next()) {
  460. if (thread == ptr)
  461. return true;
  462. }
  463. return false;
  464. }