Device.cpp 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727
  1. /*
  2. * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
  3. * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
  4. * Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/AnyOf.h>
  9. #include <AK/Error.h>
  10. #include <AK/Math.h>
  11. #include <AK/NumericLimits.h>
  12. #include <AK/SIMDExtras.h>
  13. #include <AK/SIMDMath.h>
  14. #include <AK/String.h>
  15. #include <LibCore/ElapsedTimer.h>
  16. #include <LibGfx/Painter.h>
  17. #include <LibGfx/Vector2.h>
  18. #include <LibGfx/Vector3.h>
  19. #include <LibSoftGPU/Config.h>
  20. #include <LibSoftGPU/Device.h>
  21. #include <LibSoftGPU/Image.h>
  22. #include <LibSoftGPU/PixelConverter.h>
  23. #include <LibSoftGPU/PixelQuad.h>
  24. #include <LibSoftGPU/SIMD.h>
  25. #include <LibSoftGPU/Shader.h>
  26. #include <LibSoftGPU/ShaderCompiler.h>
  27. #include <math.h>
  28. namespace SoftGPU {
  29. static i64 g_num_rasterized_triangles;
  30. static i64 g_num_pixels;
  31. static i64 g_num_pixels_shaded;
  32. static i64 g_num_pixels_blended;
  33. static i64 g_num_sampler_calls;
  34. static i64 g_num_stencil_writes;
  35. static i64 g_num_quads;
  36. using AK::abs;
  37. using AK::SIMD::any;
  38. using AK::SIMD::exp;
  39. using AK::SIMD::expand4;
  40. using AK::SIMD::f32x4;
  41. using AK::SIMD::i32x4;
  42. using AK::SIMD::load4_masked;
  43. using AK::SIMD::maskbits;
  44. using AK::SIMD::maskcount;
  45. using AK::SIMD::store4_masked;
  46. using AK::SIMD::to_f32x4;
  47. using AK::SIMD::to_u32x4;
  48. using AK::SIMD::u32x4;
  49. static constexpr int subpixel_factor = 1 << SUBPIXEL_BITS;
  50. // Returns positive values for counter-clockwise rotation of vertices. Note that it returns the
  51. // area of a parallelogram with sides {a, b} and {b, c}, so _double_ the area of the triangle {a, b, c}.
  52. constexpr static i32 edge_function(IntVector2 const& a, IntVector2 const& b, IntVector2 const& c)
  53. {
  54. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  55. }
  56. constexpr static i32x4 edge_function4(IntVector2 const& a, IntVector2 const& b, Vector2<i32x4> const& c)
  57. {
  58. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  59. }
  60. template<typename T, typename U>
  61. constexpr static auto interpolate(T const& v0, T const& v1, T const& v2, Vector3<U> const& barycentric_coords)
  62. {
  63. return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
  64. }
  65. static GPU::ColorType to_argb32(FloatVector4 const& color)
  66. {
  67. auto clamped = color.clamped(0.0f, 1.0f);
  68. auto r = static_cast<u8>(clamped.x() * 255);
  69. auto g = static_cast<u8>(clamped.y() * 255);
  70. auto b = static_cast<u8>(clamped.z() * 255);
  71. auto a = static_cast<u8>(clamped.w() * 255);
  72. return a << 24 | r << 16 | g << 8 | b;
  73. }
  74. ALWAYS_INLINE static u32x4 to_argb32(Vector4<f32x4> const& color)
  75. {
  76. auto clamped = color.clamped(expand4(0.0f), expand4(1.0f));
  77. auto r = to_u32x4(clamped.x() * 255);
  78. auto g = to_u32x4(clamped.y() * 255);
  79. auto b = to_u32x4(clamped.z() * 255);
  80. auto a = to_u32x4(clamped.w() * 255);
  81. return a << 24 | r << 16 | g << 8 | b;
  82. }
  83. static Vector4<f32x4> to_vec4(u32x4 bgra)
  84. {
  85. auto constexpr one_over_255 = expand4(1.0f / 255);
  86. return {
  87. to_f32x4((bgra >> 16) & 0xff) * one_over_255,
  88. to_f32x4((bgra >> 8) & 0xff) * one_over_255,
  89. to_f32x4(bgra & 0xff) * one_over_255,
  90. to_f32x4((bgra >> 24) & 0xff) * one_over_255,
  91. };
  92. }
  93. void Device::setup_blend_factors()
  94. {
  95. m_alpha_blend_factors = {};
  96. switch (m_options.blend_source_factor) {
  97. case GPU::BlendFactor::Zero:
  98. break;
  99. case GPU::BlendFactor::One:
  100. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  101. break;
  102. case GPU::BlendFactor::SrcColor:
  103. m_alpha_blend_factors.src_factor_src_color = 1;
  104. break;
  105. case GPU::BlendFactor::OneMinusSrcColor:
  106. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  107. m_alpha_blend_factors.src_factor_src_color = -1;
  108. break;
  109. case GPU::BlendFactor::SrcAlpha:
  110. m_alpha_blend_factors.src_factor_src_alpha = 1;
  111. break;
  112. case GPU::BlendFactor::OneMinusSrcAlpha:
  113. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  114. m_alpha_blend_factors.src_factor_src_alpha = -1;
  115. break;
  116. case GPU::BlendFactor::DstAlpha:
  117. m_alpha_blend_factors.src_factor_dst_alpha = 1;
  118. break;
  119. case GPU::BlendFactor::OneMinusDstAlpha:
  120. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  121. m_alpha_blend_factors.src_factor_dst_alpha = -1;
  122. break;
  123. case GPU::BlendFactor::DstColor:
  124. m_alpha_blend_factors.src_factor_dst_color = 1;
  125. break;
  126. case GPU::BlendFactor::OneMinusDstColor:
  127. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  128. m_alpha_blend_factors.src_factor_dst_color = -1;
  129. break;
  130. case GPU::BlendFactor::SrcAlphaSaturate:
  131. default:
  132. VERIFY_NOT_REACHED();
  133. }
  134. switch (m_options.blend_destination_factor) {
  135. case GPU::BlendFactor::Zero:
  136. break;
  137. case GPU::BlendFactor::One:
  138. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  139. break;
  140. case GPU::BlendFactor::SrcColor:
  141. m_alpha_blend_factors.dst_factor_src_color = 1;
  142. break;
  143. case GPU::BlendFactor::OneMinusSrcColor:
  144. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  145. m_alpha_blend_factors.dst_factor_src_color = -1;
  146. break;
  147. case GPU::BlendFactor::SrcAlpha:
  148. m_alpha_blend_factors.dst_factor_src_alpha = 1;
  149. break;
  150. case GPU::BlendFactor::OneMinusSrcAlpha:
  151. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  152. m_alpha_blend_factors.dst_factor_src_alpha = -1;
  153. break;
  154. case GPU::BlendFactor::DstAlpha:
  155. m_alpha_blend_factors.dst_factor_dst_alpha = 1;
  156. break;
  157. case GPU::BlendFactor::OneMinusDstAlpha:
  158. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  159. m_alpha_blend_factors.dst_factor_dst_alpha = -1;
  160. break;
  161. case GPU::BlendFactor::DstColor:
  162. m_alpha_blend_factors.dst_factor_dst_color = 1;
  163. break;
  164. case GPU::BlendFactor::OneMinusDstColor:
  165. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  166. m_alpha_blend_factors.dst_factor_dst_color = -1;
  167. break;
  168. case GPU::BlendFactor::SrcAlphaSaturate:
  169. default:
  170. VERIFY_NOT_REACHED();
  171. }
  172. }
  173. ALWAYS_INLINE static void test_alpha(PixelQuad& quad, GPU::AlphaTestFunction alpha_test_function, f32x4 const& reference_value)
  174. {
  175. auto const alpha = quad.get_output_float(SHADER_OUTPUT_FIRST_COLOR + 3);
  176. switch (alpha_test_function) {
  177. case GPU::AlphaTestFunction::Always:
  178. quad.mask &= expand4(~0);
  179. break;
  180. case GPU::AlphaTestFunction::Equal:
  181. quad.mask &= alpha == reference_value;
  182. break;
  183. case GPU::AlphaTestFunction::Greater:
  184. quad.mask &= alpha > reference_value;
  185. break;
  186. case GPU::AlphaTestFunction::GreaterOrEqual:
  187. quad.mask &= alpha >= reference_value;
  188. break;
  189. case GPU::AlphaTestFunction::Less:
  190. quad.mask &= alpha < reference_value;
  191. break;
  192. case GPU::AlphaTestFunction::LessOrEqual:
  193. quad.mask &= alpha <= reference_value;
  194. break;
  195. case GPU::AlphaTestFunction::NotEqual:
  196. quad.mask &= alpha != reference_value;
  197. break;
  198. case GPU::AlphaTestFunction::Never:
  199. default:
  200. VERIFY_NOT_REACHED();
  201. }
  202. }
  203. template<typename CB1, typename CB2, typename CB3>
  204. ALWAYS_INLINE void Device::rasterize(Gfx::IntRect& render_bounds, CB1 set_coverage_mask, CB2 set_quad_depth, CB3 set_quad_attributes)
  205. {
  206. // Return if alpha testing is a no-op
  207. if (m_options.enable_alpha_test && m_options.alpha_test_func == GPU::AlphaTestFunction::Never)
  208. return;
  209. auto const alpha_test_ref_value = expand4(m_options.alpha_test_ref_value);
  210. // Buffers
  211. auto color_buffer = m_frame_buffer->color_buffer();
  212. auto depth_buffer = m_frame_buffer->depth_buffer();
  213. auto stencil_buffer = m_frame_buffer->stencil_buffer();
  214. // Stencil configuration and writing
  215. auto const& stencil_configuration = m_stencil_configuration[GPU::Face::Front];
  216. auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask;
  217. auto write_to_stencil = [](GPU::StencilType* stencil_ptrs[4], i32x4 stencil_value, GPU::StencilOperation op, GPU::StencilType reference_value, GPU::StencilType write_mask, i32x4 pixel_mask) {
  218. if (write_mask == 0 || op == GPU::StencilOperation::Keep)
  219. return;
  220. switch (op) {
  221. case GPU::StencilOperation::Decrement:
  222. stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask);
  223. break;
  224. case GPU::StencilOperation::DecrementWrap:
  225. stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask);
  226. break;
  227. case GPU::StencilOperation::Increment:
  228. stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask);
  229. break;
  230. case GPU::StencilOperation::IncrementWrap:
  231. stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask);
  232. break;
  233. case GPU::StencilOperation::Invert:
  234. stencil_value ^= write_mask;
  235. break;
  236. case GPU::StencilOperation::Replace:
  237. stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask);
  238. break;
  239. case GPU::StencilOperation::Zero:
  240. stencil_value &= ~write_mask;
  241. break;
  242. default:
  243. VERIFY_NOT_REACHED();
  244. }
  245. INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask));
  246. store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask);
  247. };
  248. // Limit rendering to framebuffer and scissor rects
  249. render_bounds.intersect(m_frame_buffer->rect());
  250. if (m_options.scissor_enabled)
  251. render_bounds.intersect(m_options.scissor_box);
  252. // Quad bounds
  253. auto const render_bounds_left = render_bounds.left();
  254. auto const render_bounds_right = render_bounds.right();
  255. auto const render_bounds_top = render_bounds.top();
  256. auto const render_bounds_bottom = render_bounds.bottom();
  257. auto const qx0 = render_bounds_left & ~1;
  258. auto const qx1 = render_bounds_right & ~1;
  259. auto const qy0 = render_bounds_top & ~1;
  260. auto const qy1 = render_bounds_bottom & ~1;
  261. // Rasterize all quads
  262. // FIXME: this could be embarrassingly parallel
  263. for (int qy = qy0; qy <= qy1; qy += 2) {
  264. for (int qx = qx0; qx <= qx1; qx += 2) {
  265. PixelQuad quad;
  266. quad.screen_coordinates = {
  267. i32x4 { qx, qx + 1, qx, qx + 1 },
  268. i32x4 { qy, qy, qy + 1, qy + 1 },
  269. };
  270. // Set coverage mask and test against render bounds
  271. set_coverage_mask(quad);
  272. quad.mask &= quad.screen_coordinates.x() >= render_bounds_left
  273. && quad.screen_coordinates.x() <= render_bounds_right
  274. && quad.screen_coordinates.y() >= render_bounds_top
  275. && quad.screen_coordinates.y() <= render_bounds_bottom;
  276. auto coverage_bits = maskbits(quad.mask);
  277. if (coverage_bits == 0)
  278. continue;
  279. INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
  280. INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
  281. // Stencil testing
  282. GPU::StencilType* stencil_ptrs[4];
  283. i32x4 stencil_value;
  284. if (m_options.enable_stencil_test) {
  285. stencil_ptrs[0] = coverage_bits & 1 ? &stencil_buffer->scanline(qy)[qx] : nullptr;
  286. stencil_ptrs[1] = coverage_bits & 2 ? &stencil_buffer->scanline(qy)[qx + 1] : nullptr;
  287. stencil_ptrs[2] = coverage_bits & 4 ? &stencil_buffer->scanline(qy + 1)[qx] : nullptr;
  288. stencil_ptrs[3] = coverage_bits & 8 ? &stencil_buffer->scanline(qy + 1)[qx + 1] : nullptr;
  289. stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask);
  290. stencil_value &= stencil_configuration.test_mask;
  291. i32x4 stencil_test_passed;
  292. switch (stencil_configuration.test_function) {
  293. case GPU::StencilTestFunction::Always:
  294. stencil_test_passed = expand4(~0);
  295. break;
  296. case GPU::StencilTestFunction::Equal:
  297. stencil_test_passed = stencil_value == stencil_reference_value;
  298. break;
  299. case GPU::StencilTestFunction::Greater:
  300. stencil_test_passed = stencil_value > stencil_reference_value;
  301. break;
  302. case GPU::StencilTestFunction::GreaterOrEqual:
  303. stencil_test_passed = stencil_value >= stencil_reference_value;
  304. break;
  305. case GPU::StencilTestFunction::Less:
  306. stencil_test_passed = stencil_value < stencil_reference_value;
  307. break;
  308. case GPU::StencilTestFunction::LessOrEqual:
  309. stencil_test_passed = stencil_value <= stencil_reference_value;
  310. break;
  311. case GPU::StencilTestFunction::Never:
  312. stencil_test_passed = expand4(0);
  313. break;
  314. case GPU::StencilTestFunction::NotEqual:
  315. stencil_test_passed = stencil_value != stencil_reference_value;
  316. break;
  317. default:
  318. VERIFY_NOT_REACHED();
  319. }
  320. // Update stencil buffer for pixels that failed the stencil test
  321. write_to_stencil(
  322. stencil_ptrs,
  323. stencil_value,
  324. stencil_configuration.on_stencil_test_fail,
  325. stencil_reference_value,
  326. stencil_configuration.write_mask,
  327. quad.mask & ~stencil_test_passed);
  328. // Update coverage mask + early quad rejection
  329. quad.mask &= stencil_test_passed;
  330. coverage_bits = maskbits(quad.mask);
  331. if (coverage_bits == 0)
  332. continue;
  333. }
  334. // Depth testing
  335. GPU::DepthType* depth_ptrs[4] = {
  336. coverage_bits & 1 ? &depth_buffer->scanline(qy)[qx] : nullptr,
  337. coverage_bits & 2 ? &depth_buffer->scanline(qy)[qx + 1] : nullptr,
  338. coverage_bits & 4 ? &depth_buffer->scanline(qy + 1)[qx] : nullptr,
  339. coverage_bits & 8 ? &depth_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  340. };
  341. if (m_options.enable_depth_test) {
  342. set_quad_depth(quad);
  343. auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  344. i32x4 depth_test_passed;
  345. switch (m_options.depth_func) {
  346. case GPU::DepthTestFunction::Always:
  347. depth_test_passed = expand4(~0);
  348. break;
  349. case GPU::DepthTestFunction::Never:
  350. depth_test_passed = expand4(0);
  351. break;
  352. case GPU::DepthTestFunction::Greater:
  353. depth_test_passed = quad.depth > depth;
  354. break;
  355. case GPU::DepthTestFunction::GreaterOrEqual:
  356. depth_test_passed = quad.depth >= depth;
  357. break;
  358. case GPU::DepthTestFunction::NotEqual:
  359. depth_test_passed = quad.depth != depth;
  360. break;
  361. case GPU::DepthTestFunction::Equal:
  362. depth_test_passed = quad.depth == depth;
  363. break;
  364. case GPU::DepthTestFunction::LessOrEqual:
  365. depth_test_passed = quad.depth <= depth;
  366. break;
  367. case GPU::DepthTestFunction::Less:
  368. depth_test_passed = quad.depth < depth;
  369. break;
  370. default:
  371. VERIFY_NOT_REACHED();
  372. }
  373. // Update stencil buffer for pixels that failed the depth test
  374. if (m_options.enable_stencil_test) {
  375. write_to_stencil(
  376. stencil_ptrs,
  377. stencil_value,
  378. stencil_configuration.on_depth_test_fail,
  379. stencil_reference_value,
  380. stencil_configuration.write_mask,
  381. quad.mask & ~depth_test_passed);
  382. }
  383. // Update coverage mask + early quad rejection
  384. quad.mask &= depth_test_passed;
  385. coverage_bits = maskbits(quad.mask);
  386. if (coverage_bits == 0)
  387. continue;
  388. }
  389. // Update stencil buffer for passed pixels
  390. if (m_options.enable_stencil_test) {
  391. write_to_stencil(
  392. stencil_ptrs,
  393. stencil_value,
  394. stencil_configuration.on_pass,
  395. stencil_reference_value,
  396. stencil_configuration.write_mask,
  397. quad.mask);
  398. }
  399. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
  400. set_quad_attributes(quad);
  401. shade_fragments(quad);
  402. // Alpha testing
  403. if (m_options.enable_alpha_test) {
  404. test_alpha(quad, m_options.alpha_test_func, alpha_test_ref_value);
  405. coverage_bits = maskbits(quad.mask);
  406. if (coverage_bits == 0)
  407. continue;
  408. }
  409. // Write to depth buffer
  410. if (m_options.enable_depth_test && m_options.enable_depth_write)
  411. store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  412. // We will not update the color buffer at all
  413. if ((m_options.color_mask == 0) || !m_options.enable_color_write)
  414. continue;
  415. GPU::ColorType* color_ptrs[4] = {
  416. coverage_bits & 1 ? &color_buffer->scanline(qy)[qx] : nullptr,
  417. coverage_bits & 2 ? &color_buffer->scanline(qy)[qx + 1] : nullptr,
  418. coverage_bits & 4 ? &color_buffer->scanline(qy + 1)[qx] : nullptr,
  419. coverage_bits & 8 ? &color_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  420. };
  421. u32x4 dst_u32;
  422. if (m_options.enable_blending || m_options.color_mask != 0xffffffff)
  423. dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  424. auto out_color = quad.get_output_vector4(SHADER_OUTPUT_FIRST_COLOR);
  425. if (m_options.enable_blending) {
  426. INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
  427. // Blend color values from pixel_staging into color_buffer
  428. auto const& src = out_color;
  429. auto dst = to_vec4(dst_u32);
  430. auto src_factor = expand4(m_alpha_blend_factors.src_constant)
  431. + src * m_alpha_blend_factors.src_factor_src_color
  432. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.src_factor_src_alpha
  433. + dst * m_alpha_blend_factors.src_factor_dst_color
  434. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.src_factor_dst_alpha;
  435. auto dst_factor = expand4(m_alpha_blend_factors.dst_constant)
  436. + src * m_alpha_blend_factors.dst_factor_src_color
  437. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.dst_factor_src_alpha
  438. + dst * m_alpha_blend_factors.dst_factor_dst_color
  439. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.dst_factor_dst_alpha;
  440. out_color = src * src_factor + dst * dst_factor;
  441. }
  442. auto const argb32_color = to_argb32(out_color);
  443. if (m_options.color_mask == 0xffffffff)
  444. store4_masked(argb32_color, color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  445. else
  446. store4_masked((argb32_color & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  447. }
  448. }
  449. }
  450. void Device::rasterize_line_aliased(GPU::Vertex& from, GPU::Vertex& to)
  451. {
  452. // FIXME: implement aliased lines; for now we fall back to anti-aliased logic
  453. rasterize_line_antialiased(from, to);
  454. }
  455. void Device::rasterize_line_antialiased(GPU::Vertex& from, GPU::Vertex& to)
  456. {
  457. auto const from_coords = from.window_coordinates.xy();
  458. auto const to_coords = to.window_coordinates.xy();
  459. auto const line_width = ceilf(m_options.line_width);
  460. auto const line_radius = line_width / 2;
  461. auto render_bounds = Gfx::IntRect {
  462. min(from_coords.x(), to_coords.x()),
  463. min(from_coords.y(), to_coords.y()),
  464. abs(from_coords.x() - to_coords.x()) + 1,
  465. abs(from_coords.y() - to_coords.y()) + 1,
  466. };
  467. render_bounds.inflate(line_width, line_width);
  468. auto const from_coords4 = expand4(from_coords);
  469. auto const line_vector = to_coords - from_coords;
  470. auto const line_vector4 = expand4(line_vector);
  471. auto const line_dot4 = expand4(line_vector.dot(line_vector));
  472. auto const from_depth4 = expand4(from.window_coordinates.z());
  473. auto const to_depth4 = expand4(to.window_coordinates.z());
  474. auto const from_color4 = expand4(from.color);
  475. auto const from_fog_depth4 = expand4(abs(from.eye_coordinates.z()));
  476. // Rasterize using a 2D signed distance field for a line segment
  477. // FIXME: performance-wise, this might be the absolute worst way to draw an anti-aliased line
  478. f32x4 distance_along_line;
  479. rasterize(
  480. render_bounds,
  481. [&from_coords4, &distance_along_line, &line_vector4, &line_dot4, &line_radius](auto& quad) {
  482. auto const screen_coordinates4 = to_vec2_f32x4(quad.screen_coordinates);
  483. auto const pixel_vector = screen_coordinates4 - from_coords4;
  484. distance_along_line = AK::SIMD::clamp(pixel_vector.dot(line_vector4) / line_dot4, 0.f, 1.f);
  485. auto distance_to_line = length(pixel_vector - line_vector4 * distance_along_line) - line_radius;
  486. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  487. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_line + 0.5f, 0.f, 1.f);
  488. quad.mask = quad.coverage > 0.f;
  489. },
  490. [&from_depth4, &to_depth4, &distance_along_line](auto& quad) {
  491. quad.depth = mix(from_depth4, to_depth4, distance_along_line);
  492. },
  493. [&from_color4, &from, &from_fog_depth4](auto& quad) {
  494. // FIXME: interpolate color, tex coords and fog depth along the distance of the line
  495. // in clip space (i.e. NOT distance_from_line)
  496. quad.set_input(SHADER_INPUT_VERTEX_COLOR, from_color4);
  497. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  498. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(from.tex_coords[i]));
  499. quad.fog_depth = from_fog_depth4;
  500. });
  501. }
  502. void Device::rasterize_line(GPU::Vertex& from, GPU::Vertex& to)
  503. {
  504. if (m_options.line_smooth)
  505. rasterize_line_antialiased(from, to);
  506. else
  507. rasterize_line_aliased(from, to);
  508. }
  509. void Device::rasterize_point_aliased(GPU::Vertex& point)
  510. {
  511. // Determine aliased point width
  512. constexpr size_t maximum_aliased_point_size = 64;
  513. auto point_width = clamp(round_to<int>(m_options.point_size), 1, maximum_aliased_point_size);
  514. // Determine aliased center coordinates
  515. IntVector2 point_center;
  516. if (point_width % 2 == 1)
  517. point_center = point.window_coordinates.xy().to_type<int>();
  518. else
  519. point_center = (point.window_coordinates.xy() + FloatVector2 { .5f, .5f }).to_type<int>();
  520. // Aliased points are rects; calculate boundaries around center
  521. auto point_rect = Gfx::IntRect {
  522. point_center.x() - point_width / 2,
  523. point_center.y() - point_width / 2,
  524. point_width,
  525. point_width,
  526. };
  527. // Rasterize the point as a rect
  528. rasterize(
  529. point_rect,
  530. [](auto& quad) {
  531. // We already passed in point_rect, so this doesn't matter
  532. quad.mask = expand4(~0);
  533. },
  534. [&point](auto& quad) {
  535. quad.depth = expand4(point.window_coordinates.z());
  536. },
  537. [&point](auto& quad) {
  538. quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(point.color));
  539. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  540. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(point.tex_coords[i]));
  541. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  542. });
  543. }
  544. void Device::rasterize_point_antialiased(GPU::Vertex& point)
  545. {
  546. auto const center = point.window_coordinates.xy();
  547. auto const center4 = expand4(center);
  548. auto const radius = m_options.point_size / 2;
  549. auto render_bounds = Gfx::IntRect {
  550. center.x() - radius,
  551. center.y() - radius,
  552. radius * 2 + 1,
  553. radius * 2 + 1,
  554. };
  555. // Rasterize using a 2D signed distance field for a circle
  556. rasterize(
  557. render_bounds,
  558. [&center4, &radius](auto& quad) {
  559. auto screen_coords = to_vec2_f32x4(quad.screen_coordinates);
  560. auto distance_to_point = length(center4 - screen_coords) - radius;
  561. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  562. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_point + .5f, 0.f, 1.f);
  563. quad.mask = quad.coverage > 0.f;
  564. },
  565. [&point](auto& quad) {
  566. quad.depth = expand4(point.window_coordinates.z());
  567. },
  568. [&point](auto& quad) {
  569. quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(point.color));
  570. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  571. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(point.tex_coords[i]));
  572. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  573. });
  574. }
  575. void Device::rasterize_point(GPU::Vertex& point)
  576. {
  577. if (m_options.point_smooth)
  578. rasterize_point_antialiased(point);
  579. else
  580. rasterize_point_aliased(point);
  581. }
  582. void Device::rasterize_triangle(Triangle& triangle)
  583. {
  584. INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);
  585. auto v0 = (triangle.vertices[0].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  586. auto v1 = (triangle.vertices[1].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  587. auto v2 = (triangle.vertices[2].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  588. auto triangle_area = edge_function(v0, v1, v2);
  589. if (triangle_area == 0)
  590. return;
  591. // Perform face culling
  592. if (m_options.enable_culling) {
  593. bool is_front = (m_options.front_face == GPU::WindingOrder::CounterClockwise ? triangle_area > 0 : triangle_area < 0);
  594. if (!is_front && m_options.cull_back)
  595. return;
  596. if (is_front && m_options.cull_front)
  597. return;
  598. }
  599. // Force counter-clockwise ordering of vertices
  600. if (triangle_area < 0) {
  601. swap(triangle.vertices[0], triangle.vertices[1]);
  602. swap(v0, v1);
  603. triangle_area *= -1;
  604. }
  605. auto const& vertex0 = triangle.vertices[0];
  606. auto const& vertex1 = triangle.vertices[1];
  607. auto const& vertex2 = triangle.vertices[2];
  608. auto const one_over_area = 1.0f / triangle_area;
  609. // This function calculates the 3 edge values for the pixel relative to the triangle.
  610. auto calculate_edge_values4 = [v0, v1, v2](Vector2<i32x4> const& p) -> Vector3<i32x4> {
  611. return {
  612. edge_function4(v1, v2, p),
  613. edge_function4(v2, v0, p),
  614. edge_function4(v0, v1, p),
  615. };
  616. };
  617. // Zero is used in testing against edge values below, applying the "top-left rule". If a pixel
  618. // lies exactly on an edge shared by two triangles, we only render that pixel if the edge in
  619. // question is a "top" or "left" edge. By setting either a 1 or 0, we effectively change the
  620. // comparisons against the edge values below from "> 0" into ">= 0".
  621. IntVector3 const zero {
  622. (v2.y() < v1.y() || (v2.y() == v1.y() && v2.x() < v1.x())) ? 0 : 1,
  623. (v0.y() < v2.y() || (v0.y() == v2.y() && v0.x() < v2.x())) ? 0 : 1,
  624. (v1.y() < v0.y() || (v1.y() == v0.y() && v1.x() < v0.x())) ? 0 : 1,
  625. };
  626. // This function tests whether a point as identified by its 3 edge values lies within the triangle
  627. auto test_point4 = [zero](Vector3<i32x4> const& edges) -> i32x4 {
  628. return edges.x() >= zero.x()
  629. && edges.y() >= zero.y()
  630. && edges.z() >= zero.z();
  631. };
  632. // Calculate render bounds based on the triangle's vertices
  633. Gfx::IntRect render_bounds;
  634. render_bounds.set_left(min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  635. render_bounds.set_right(max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  636. render_bounds.set_top(min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  637. render_bounds.set_bottom(max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  638. // Calculate depth of fragment for fog;
  639. // OpenGL 1.5 chapter 3.10: "An implementation may choose to approximate the
  640. // eye-coordinate distance from the eye to each fragment center by |Ze|."
  641. Vector3<f32x4> fog_depth;
  642. if (m_options.fog_enabled) {
  643. fog_depth = {
  644. expand4(abs(vertex0.eye_coordinates.z())),
  645. expand4(abs(vertex1.eye_coordinates.z())),
  646. expand4(abs(vertex2.eye_coordinates.z())),
  647. };
  648. }
  649. auto const half_pixel_offset = Vector2<i32x4> { expand4(subpixel_factor / 2), expand4(subpixel_factor / 2) };
  650. auto const window_w_coordinates = Vector3<f32x4> {
  651. expand4(vertex0.window_coordinates.w()),
  652. expand4(vertex1.window_coordinates.w()),
  653. expand4(vertex2.window_coordinates.w()),
  654. };
  655. // Calculate depth offset to apply
  656. float depth_offset = 0.f;
  657. if (m_options.depth_offset_enabled) {
  658. // OpenGL 2.0 § 3.5.5 allows us to approximate the maximum slope
  659. auto delta_z = max(
  660. max(
  661. abs(vertex0.window_coordinates.z() - vertex1.window_coordinates.z()),
  662. abs(vertex1.window_coordinates.z() - vertex2.window_coordinates.z())),
  663. abs(vertex2.window_coordinates.z() - vertex0.window_coordinates.z()));
  664. auto depth_max_slope = max(delta_z / render_bounds.width(), delta_z / render_bounds.height());
  665. // Calculate total depth offset
  666. depth_offset = depth_max_slope * m_options.depth_offset_factor + NumericLimits<float>::epsilon() * m_options.depth_offset_constant;
  667. }
  668. auto const window_z_coordinates = Vector3<f32x4> {
  669. expand4(vertex0.window_coordinates.z() + depth_offset),
  670. expand4(vertex1.window_coordinates.z() + depth_offset),
  671. expand4(vertex2.window_coordinates.z() + depth_offset),
  672. };
  673. rasterize(
  674. render_bounds,
  675. [&](auto& quad) {
  676. auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor + half_pixel_offset);
  677. quad.mask = test_point4(edge_values);
  678. quad.barycentrics = {
  679. to_f32x4(edge_values.x()),
  680. to_f32x4(edge_values.y()),
  681. to_f32x4(edge_values.z()),
  682. };
  683. },
  684. [&](auto& quad) {
  685. // Determine each edge's ratio to the total area
  686. quad.barycentrics = quad.barycentrics * one_over_area;
  687. // Because the Z coordinates were divided by W, we can interpolate between them
  688. quad.depth = AK::SIMD::clamp(window_z_coordinates.dot(quad.barycentrics), 0.f, 1.f);
  689. },
  690. [&](auto& quad) {
  691. auto const interpolated_reciprocal_w = window_w_coordinates.dot(quad.barycentrics);
  692. quad.barycentrics = quad.barycentrics * window_w_coordinates / interpolated_reciprocal_w;
  693. // FIXME: make this more generic. We want to interpolate more than just color and uv
  694. if (m_options.shade_smooth)
  695. quad.set_input(SHADER_INPUT_VERTEX_COLOR, interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics));
  696. else
  697. quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(vertex0.color));
  698. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  699. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics));
  700. if (m_options.fog_enabled)
  701. quad.fog_depth = fog_depth.dot(quad.barycentrics);
  702. });
  703. }
  704. Device::Device(Gfx::IntSize size)
  705. : m_frame_buffer(FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size).release_value_but_fixme_should_propagate_errors())
  706. , m_shader_processor(m_samplers)
  707. {
  708. m_options.scissor_box = m_frame_buffer->rect();
  709. m_options.viewport = m_frame_buffer->rect();
  710. }
  711. GPU::DeviceInfo Device::info() const
  712. {
  713. return {
  714. .vendor_name = "SerenityOS",
  715. .device_name = "SoftGPU",
  716. .num_texture_units = GPU::NUM_TEXTURE_UNITS,
  717. .num_lights = NUM_LIGHTS,
  718. .max_clip_planes = MAX_CLIP_PLANES,
  719. .max_texture_size = MAX_TEXTURE_SIZE,
  720. .max_texture_lod_bias = MAX_TEXTURE_LOD_BIAS,
  721. .stencil_bits = sizeof(GPU::StencilType) * 8,
  722. .supports_npot_textures = true,
  723. .supports_texture_clamp_to_edge = true,
  724. .supports_texture_env_add = true,
  725. };
  726. }
  727. static void generate_texture_coordinates(GPU::Vertex const& vertex, FloatVector4& tex_coord, GPU::TextureUnitConfiguration const& texture_unit_configuration)
  728. {
  729. auto generate_coordinate = [&](size_t config_index) -> float {
  730. auto const& tex_coord_generation = texture_unit_configuration.tex_coord_generation[config_index];
  731. switch (tex_coord_generation.mode) {
  732. case GPU::TexCoordGenerationMode::ObjectLinear: {
  733. auto coefficients = tex_coord_generation.coefficients;
  734. return coefficients.dot(vertex.position);
  735. }
  736. case GPU::TexCoordGenerationMode::EyeLinear: {
  737. auto coefficients = tex_coord_generation.coefficients;
  738. return coefficients.dot(vertex.eye_coordinates);
  739. }
  740. case GPU::TexCoordGenerationMode::SphereMap: {
  741. auto const eye_unit = vertex.eye_coordinates.normalized();
  742. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  743. auto const normal = vertex.normal;
  744. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  745. reflection.set_z(reflection.z() + 1);
  746. auto const reflection_value = reflection[config_index];
  747. return reflection_value / (2 * reflection.length()) + 0.5f;
  748. }
  749. case GPU::TexCoordGenerationMode::ReflectionMap: {
  750. auto const eye_unit = vertex.eye_coordinates.normalized();
  751. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  752. auto const normal = vertex.normal;
  753. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  754. return reflection[config_index];
  755. }
  756. case GPU::TexCoordGenerationMode::NormalMap: {
  757. return vertex.normal[config_index];
  758. }
  759. }
  760. VERIFY_NOT_REACHED();
  761. };
  762. auto const enabled_coords = texture_unit_configuration.tex_coord_generation_enabled;
  763. if (enabled_coords == GPU::TexCoordGenerationCoordinate::None)
  764. return;
  765. tex_coord = {
  766. ((enabled_coords & GPU::TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(0) : tex_coord.x(),
  767. ((enabled_coords & GPU::TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(1) : tex_coord.y(),
  768. ((enabled_coords & GPU::TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(2) : tex_coord.z(),
  769. ((enabled_coords & GPU::TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(3) : tex_coord.w(),
  770. };
  771. }
  772. void Device::calculate_vertex_lighting(GPU::Vertex& vertex) const
  773. {
  774. if (!m_options.lighting_enabled)
  775. return;
  776. auto const& material = m_materials.at(0);
  777. auto ambient = material.ambient;
  778. auto diffuse = material.diffuse;
  779. auto emissive = material.emissive;
  780. auto specular = material.specular;
  781. if (m_options.color_material_enabled
  782. && (m_options.color_material_face == GPU::ColorMaterialFace::Front || m_options.color_material_face == GPU::ColorMaterialFace::FrontAndBack)) {
  783. switch (m_options.color_material_mode) {
  784. case GPU::ColorMaterialMode::Ambient:
  785. ambient = vertex.color;
  786. break;
  787. case GPU::ColorMaterialMode::AmbientAndDiffuse:
  788. ambient = vertex.color;
  789. diffuse = vertex.color;
  790. break;
  791. case GPU::ColorMaterialMode::Diffuse:
  792. diffuse = vertex.color;
  793. break;
  794. case GPU::ColorMaterialMode::Emissive:
  795. emissive = vertex.color;
  796. break;
  797. case GPU::ColorMaterialMode::Specular:
  798. specular = vertex.color;
  799. break;
  800. }
  801. }
  802. FloatVector4 result_color = emissive + ambient * m_lighting_model.scene_ambient_color;
  803. for (auto const& light : m_lights) {
  804. if (!light.is_enabled)
  805. continue;
  806. // We need to save the length here because the attenuation factor requires a non-normalized vector!
  807. auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& output_length) {
  808. FloatVector3 light_vector;
  809. if ((p1.w() != 0.f) && (p2.w() == 0.f))
  810. light_vector = p2.xyz();
  811. else if ((p1.w() == 0.f) && (p2.w() != 0.f))
  812. light_vector = -p1.xyz();
  813. else
  814. light_vector = p2.xyz() - p1.xyz();
  815. output_length = light_vector.length();
  816. if (output_length == 0.f)
  817. return light_vector;
  818. return light_vector / output_length;
  819. };
  820. auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) {
  821. return AK::max(d1.dot(d2), 0.0f);
  822. };
  823. float vertex_to_light_length = 0.f;
  824. FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vertex_to_light_length);
  825. // Light attenuation value.
  826. float light_attenuation_factor = 1.0f;
  827. if (light.position.w() != 0.0f)
  828. light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length * vertex_to_light_length));
  829. // Spotlight factor
  830. float spotlight_factor = 1.0f;
  831. if (light.spotlight_cutoff_angle != 180.0f) {
  832. auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized());
  833. auto const cos_spotlight_cutoff = AK::cos<float>(light.spotlight_cutoff_angle * AK::Pi<float> / 180.f);
  834. if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff)
  835. spotlight_factor = AK::pow<float>(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent);
  836. else
  837. spotlight_factor = 0.0f;
  838. }
  839. // FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means.
  840. (void)m_lighting_model.color_control;
  841. // FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material)
  842. (void)m_lighting_model.two_sided_lighting;
  843. // Ambient
  844. auto const ambient_component = ambient * light.ambient_intensity;
  845. // Diffuse
  846. auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light);
  847. auto const diffuse_component = diffuse * light.diffuse_intensity * normal_dot_vertex_to_light;
  848. // Specular
  849. FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f };
  850. if (normal_dot_vertex_to_light > 0.0f) {
  851. FloatVector3 half_vector_normalized;
  852. if (!m_lighting_model.viewer_at_infinity) {
  853. half_vector_normalized = vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f);
  854. } else {
  855. auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates, { 0.f, 0.f, 0.f, 1.f }, vertex_to_light_length);
  856. half_vector_normalized = vertex_to_light + vertex_to_eye_point;
  857. }
  858. half_vector_normalized.normalize();
  859. auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal, half_vector_normalized);
  860. auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess);
  861. specular_component = specular * light.specular_intensity * specular_coefficient;
  862. }
  863. auto color = ambient_component + diffuse_component + specular_component;
  864. color = color * light_attenuation_factor * spotlight_factor;
  865. result_color += color;
  866. }
  867. vertex.color = result_color;
  868. vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material"
  869. vertex.color.clamp(0.0f, 1.0f);
  870. }
  871. void Device::draw_primitives(GPU::PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform, Vector<GPU::Vertex>& vertices)
  872. {
  873. // At this point, the user has effectively specified that they are done with defining the geometry
  874. // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
  875. //
  876. // 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
  877. // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
  878. // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
  879. // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
  880. // 5. The triangle's vertices are sorted in a counter-clockwise orientation
  881. // 6. The triangles are then sent off to the rasterizer and drawn to the screen
  882. if (vertices.is_empty())
  883. return;
  884. // Set up normals transform by taking the upper left 3x3 elements from the model view matrix
  885. // See section 2.11.3 of the OpenGL 1.5 spec
  886. auto const normal_transform = model_view_transform.submatrix_from_topleft<3>().transpose().inverse();
  887. // First, transform all vertices
  888. for (auto& vertex : vertices) {
  889. vertex.eye_coordinates = model_view_transform * vertex.position;
  890. vertex.normal = normal_transform * vertex.normal;
  891. if (m_options.normalization_enabled)
  892. vertex.normal.normalize();
  893. calculate_vertex_lighting(vertex);
  894. vertex.clip_coordinates = projection_transform * vertex.eye_coordinates;
  895. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) {
  896. auto const& texture_unit_configuration = m_texture_unit_configuration[i];
  897. if (!texture_unit_configuration.enabled)
  898. continue;
  899. generate_texture_coordinates(vertex, vertex.tex_coords[i], texture_unit_configuration);
  900. vertex.tex_coords[i] = texture_unit_configuration.transformation_matrix * vertex.tex_coords[i];
  901. }
  902. }
  903. // Window coordinate calculation
  904. auto const viewport = m_options.viewport;
  905. auto const viewport_half_width = viewport.width() / 2.f;
  906. auto const viewport_half_height = viewport.height() / 2.f;
  907. auto const viewport_center_x = viewport.x() + viewport_half_width;
  908. auto const viewport_center_y = viewport.y() + viewport_half_height;
  909. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  910. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  911. auto calculate_vertex_window_coordinates = [&](GPU::Vertex& vertex) {
  912. auto const one_over_w = 1 / vertex.clip_coordinates.w();
  913. auto const ndc_coordinates = vertex.clip_coordinates.xyz() * one_over_w;
  914. vertex.window_coordinates = {
  915. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  916. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  917. depth_halfway + ndc_coordinates.z() * depth_half_range,
  918. one_over_w,
  919. };
  920. };
  921. // Process points
  922. if (primitive_type == GPU::PrimitiveType::Points) {
  923. m_clipper.clip_points_against_frustum(vertices);
  924. for (auto& vertex : vertices) {
  925. calculate_vertex_window_coordinates(vertex);
  926. rasterize_point(vertex);
  927. }
  928. return;
  929. }
  930. // Process lines, line loop and line strips
  931. auto rasterize_line_segment = [&](GPU::Vertex& from, GPU::Vertex& to) {
  932. if (!m_clipper.clip_line_against_frustum(from, to))
  933. return;
  934. calculate_vertex_window_coordinates(from);
  935. calculate_vertex_window_coordinates(to);
  936. rasterize_line(from, to);
  937. };
  938. if (primitive_type == GPU::PrimitiveType::Lines) {
  939. if (vertices.size() < 2)
  940. return;
  941. for (size_t i = 0; i < vertices.size() - 1; i += 2)
  942. rasterize_line_segment(vertices[i], vertices[i + 1]);
  943. return;
  944. } else if (primitive_type == GPU::PrimitiveType::LineLoop) {
  945. if (vertices.size() < 2)
  946. return;
  947. for (size_t i = 0; i < vertices.size(); ++i)
  948. rasterize_line_segment(vertices[i], vertices[(i + 1) % vertices.size()]);
  949. return;
  950. } else if (primitive_type == GPU::PrimitiveType::LineStrip) {
  951. if (vertices.size() < 2)
  952. return;
  953. for (size_t i = 0; i < vertices.size() - 1; ++i)
  954. rasterize_line_segment(vertices[i], vertices[i + 1]);
  955. return;
  956. }
  957. // Let's construct some triangles
  958. m_triangle_list.clear_with_capacity();
  959. m_processed_triangles.clear_with_capacity();
  960. if (primitive_type == GPU::PrimitiveType::Triangles) {
  961. Triangle triangle;
  962. if (vertices.size() < 3)
  963. return;
  964. for (size_t i = 0; i < vertices.size() - 2; i += 3) {
  965. triangle.vertices[0] = vertices.at(i);
  966. triangle.vertices[1] = vertices.at(i + 1);
  967. triangle.vertices[2] = vertices.at(i + 2);
  968. m_triangle_list.append(triangle);
  969. }
  970. } else if (primitive_type == GPU::PrimitiveType::Quads) {
  971. // We need to construct two triangles to form the quad
  972. Triangle triangle;
  973. if (vertices.size() < 4)
  974. return;
  975. for (size_t i = 0; i < vertices.size() - 3; i += 4) {
  976. // Triangle 1
  977. triangle.vertices[0] = vertices.at(i);
  978. triangle.vertices[1] = vertices.at(i + 1);
  979. triangle.vertices[2] = vertices.at(i + 2);
  980. m_triangle_list.append(triangle);
  981. // Triangle 2
  982. triangle.vertices[0] = vertices.at(i + 2);
  983. triangle.vertices[1] = vertices.at(i + 3);
  984. triangle.vertices[2] = vertices.at(i);
  985. m_triangle_list.append(triangle);
  986. }
  987. } else if (primitive_type == GPU::PrimitiveType::TriangleFan) {
  988. Triangle triangle;
  989. triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
  990. // This is technically `n-2` triangles. We start at index 1
  991. for (size_t i = 1; i < vertices.size() - 1; i++) {
  992. triangle.vertices[1] = vertices.at(i);
  993. triangle.vertices[2] = vertices.at(i + 1);
  994. m_triangle_list.append(triangle);
  995. }
  996. } else if (primitive_type == GPU::PrimitiveType::TriangleStrip) {
  997. Triangle triangle;
  998. if (vertices.size() < 3)
  999. return;
  1000. for (size_t i = 0; i < vertices.size() - 2; i++) {
  1001. if (i % 2 == 0) {
  1002. triangle.vertices[0] = vertices.at(i);
  1003. triangle.vertices[1] = vertices.at(i + 1);
  1004. triangle.vertices[2] = vertices.at(i + 2);
  1005. } else {
  1006. triangle.vertices[0] = vertices.at(i + 1);
  1007. triangle.vertices[1] = vertices.at(i);
  1008. triangle.vertices[2] = vertices.at(i + 2);
  1009. }
  1010. m_triangle_list.append(triangle);
  1011. }
  1012. }
  1013. // Clip triangles
  1014. for (auto& triangle : m_triangle_list) {
  1015. m_clipped_vertices.clear_with_capacity();
  1016. m_clipped_vertices.append(triangle.vertices[0]);
  1017. m_clipped_vertices.append(triangle.vertices[1]);
  1018. m_clipped_vertices.append(triangle.vertices[2]);
  1019. m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
  1020. if (m_clip_planes.size() > 0)
  1021. m_clipper.clip_triangle_against_user_defined(m_clipped_vertices, m_clip_planes);
  1022. if (m_clipped_vertices.size() < 3)
  1023. continue;
  1024. for (auto& vertex : m_clipped_vertices)
  1025. calculate_vertex_window_coordinates(vertex);
  1026. Triangle tri;
  1027. tri.vertices[0] = m_clipped_vertices[0];
  1028. for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
  1029. tri.vertices[1] = m_clipped_vertices[i];
  1030. tri.vertices[2] = m_clipped_vertices[i + 1];
  1031. m_processed_triangles.append(tri);
  1032. }
  1033. }
  1034. for (auto& triangle : m_processed_triangles)
  1035. rasterize_triangle(triangle);
  1036. }
  1037. ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad)
  1038. {
  1039. if (m_current_fragment_shader) {
  1040. m_shader_processor.execute(quad, *m_current_fragment_shader);
  1041. return;
  1042. }
  1043. Array<Vector4<f32x4>, GPU::NUM_TEXTURE_UNITS> texture_stage_texel;
  1044. auto current_color = quad.get_input_vector4(SHADER_INPUT_VERTEX_COLOR);
  1045. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) {
  1046. if (!m_texture_unit_configuration[i].enabled)
  1047. continue;
  1048. auto const& sampler = m_samplers[i];
  1049. // OpenGL 2.0 ¶ 3.5.1 states (in a roundabout way) that texture coordinates must be divided by Q
  1050. auto homogeneous_texture_coordinate = quad.get_input_vector4(SHADER_INPUT_FIRST_TEXCOORD + i * 4);
  1051. auto texel = sampler.sample_2d(homogeneous_texture_coordinate.xy() / homogeneous_texture_coordinate.w());
  1052. texture_stage_texel[i] = texel;
  1053. INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);
  1054. // FIXME: implement support for GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_INTENSITY and GL_RGB internal formats
  1055. auto& fixed_function_env = sampler.config().fixed_function_texture_environment;
  1056. switch (fixed_function_env.env_mode) {
  1057. case GPU::TextureEnvMode::Add:
  1058. current_color.set_x(current_color.x() + texel.x());
  1059. current_color.set_y(current_color.y() + texel.y());
  1060. current_color.set_z(current_color.z() + texel.z());
  1061. current_color.set_w(current_color.w() * texel.w());
  1062. break;
  1063. case GPU::TextureEnvMode::Blend: {
  1064. auto blend_color = expand4(fixed_function_env.color);
  1065. current_color.set_x(mix(current_color.x(), blend_color.x(), texel.x()));
  1066. current_color.set_y(mix(current_color.y(), blend_color.y(), texel.y()));
  1067. current_color.set_z(mix(current_color.z(), blend_color.z(), texel.z()));
  1068. current_color.set_w(current_color.w() * texel.w());
  1069. break;
  1070. }
  1071. case GPU::TextureEnvMode::Combine: {
  1072. auto get_source_color = [&](GPU::TextureSource source, u8 texture_stage) {
  1073. switch (source) {
  1074. case GPU::TextureSource::Constant:
  1075. return expand4(fixed_function_env.color);
  1076. case GPU::TextureSource::Previous:
  1077. return current_color;
  1078. case GPU::TextureSource::PrimaryColor:
  1079. return quad.get_input_vector4(SHADER_INPUT_VERTEX_COLOR);
  1080. case GPU::TextureSource::Texture:
  1081. return texel;
  1082. case GPU::TextureSource::TextureStage:
  1083. return texture_stage_texel[texture_stage];
  1084. }
  1085. VERIFY_NOT_REACHED();
  1086. };
  1087. auto get_argument_value = [](GPU::TextureOperand operand, auto value) {
  1088. switch (operand) {
  1089. case GPU::TextureOperand::OneMinusSourceAlpha:
  1090. case GPU::TextureOperand::OneMinusSourceColor:
  1091. return expand4(FloatVector4 { 1.f, 1.f, 1.f, 1.f }) - value;
  1092. case GPU::TextureOperand::SourceAlpha:
  1093. case GPU::TextureOperand::SourceColor:
  1094. return value;
  1095. }
  1096. VERIFY_NOT_REACHED();
  1097. };
  1098. auto calculate_combinator = [](GPU::TextureCombinator combinator, auto arg0, auto arg1, auto arg2) {
  1099. switch (combinator) {
  1100. case GPU::TextureCombinator::Add:
  1101. return arg0 + arg1;
  1102. case GPU::TextureCombinator::AddSigned:
  1103. return arg0 + arg1 - expand4(FloatVector4 { .5f, .5f, .5f, .5f });
  1104. case GPU::TextureCombinator::Dot3RGB:
  1105. case GPU::TextureCombinator::Dot3RGBA: {
  1106. auto scalar = 4.f * ((arg0.x() - .5f) * (arg1.x() - .5f) + (arg0.y() - 0.5f) * (arg1.y() - 0.5f) + (arg0.z() - 0.5f) * (arg1.z() - 0.5f));
  1107. return Vector4<f32x4> { scalar, scalar, scalar, scalar };
  1108. }
  1109. case GPU::TextureCombinator::Interpolate:
  1110. return mix(arg0, arg1, arg2);
  1111. case GPU::TextureCombinator::Modulate:
  1112. return arg0 * arg1;
  1113. case GPU::TextureCombinator::Replace:
  1114. return arg0;
  1115. case GPU::TextureCombinator::Subtract:
  1116. return arg0 - arg1;
  1117. }
  1118. VERIFY_NOT_REACHED();
  1119. };
  1120. auto calculate_color = [&](GPU::TextureCombinator combinator, auto& operands, auto& sources, u8 texture_stage) {
  1121. auto arg0 = get_argument_value(operands[0], get_source_color(sources[0], texture_stage));
  1122. auto arg1 = get_argument_value(operands[1], get_source_color(sources[1], texture_stage));
  1123. auto arg2 = get_argument_value(operands[2], get_source_color(sources[2], texture_stage));
  1124. return calculate_combinator(combinator, arg0, arg1, arg2);
  1125. };
  1126. auto rgb_color = calculate_color(
  1127. fixed_function_env.rgb_combinator,
  1128. fixed_function_env.rgb_operand,
  1129. fixed_function_env.rgb_source,
  1130. fixed_function_env.rgb_source_texture_stage);
  1131. auto alpha_color = calculate_color(
  1132. fixed_function_env.alpha_combinator,
  1133. fixed_function_env.alpha_operand,
  1134. fixed_function_env.alpha_source,
  1135. fixed_function_env.alpha_source_texture_stage);
  1136. current_color.set_x(rgb_color.x() * fixed_function_env.rgb_scale);
  1137. current_color.set_y(rgb_color.y() * fixed_function_env.rgb_scale);
  1138. current_color.set_z(rgb_color.z() * fixed_function_env.rgb_scale);
  1139. current_color.set_w(alpha_color.w() * fixed_function_env.alpha_scale);
  1140. current_color.clamp(expand4(0.f), expand4(1.f));
  1141. break;
  1142. }
  1143. case GPU::TextureEnvMode::Decal: {
  1144. auto dst_alpha = texel.w();
  1145. current_color.set_x(mix(current_color.x(), texel.x(), dst_alpha));
  1146. current_color.set_y(mix(current_color.y(), texel.y(), dst_alpha));
  1147. current_color.set_z(mix(current_color.z(), texel.z(), dst_alpha));
  1148. break;
  1149. }
  1150. case GPU::TextureEnvMode::Modulate:
  1151. current_color = current_color * texel;
  1152. break;
  1153. case GPU::TextureEnvMode::Replace:
  1154. current_color = texel;
  1155. break;
  1156. }
  1157. }
  1158. // Calculate fog
  1159. // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
  1160. // FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
  1161. if (m_options.fog_enabled) {
  1162. f32x4 factor;
  1163. switch (m_options.fog_mode) {
  1164. case GPU::FogMode::Linear:
  1165. factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
  1166. break;
  1167. case GPU::FogMode::Exp: {
  1168. auto argument = -m_options.fog_density * quad.fog_depth;
  1169. factor = exp(argument);
  1170. } break;
  1171. case GPU::FogMode::Exp2: {
  1172. auto argument = m_options.fog_density * quad.fog_depth;
  1173. argument *= -argument;
  1174. factor = exp(argument);
  1175. } break;
  1176. default:
  1177. VERIFY_NOT_REACHED();
  1178. }
  1179. // Mix texel's RGB with fog's RBG - leave alpha alone
  1180. auto fog_color = expand4(m_options.fog_color);
  1181. current_color.set_x(mix(fog_color.x(), current_color.x(), factor));
  1182. current_color.set_y(mix(fog_color.y(), current_color.y(), factor));
  1183. current_color.set_z(mix(fog_color.z(), current_color.z(), factor));
  1184. }
  1185. quad.set_output(SHADER_OUTPUT_FIRST_COLOR, current_color.x());
  1186. quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 1, current_color.y());
  1187. quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 2, current_color.z());
  1188. // Multiply coverage with the fragment's alpha to obtain the final alpha value
  1189. quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 3, current_color.w() * quad.coverage);
  1190. }
  1191. void Device::resize(Gfx::IntSize size)
  1192. {
  1193. auto frame_buffer_or_error = FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size);
  1194. m_frame_buffer = MUST(frame_buffer_or_error);
  1195. }
  1196. void Device::clear_color(FloatVector4 const& color)
  1197. {
  1198. auto const fill_color = to_argb32(color);
  1199. auto clear_rect = m_frame_buffer->rect();
  1200. if (m_options.scissor_enabled)
  1201. clear_rect.intersect(m_options.scissor_box);
  1202. m_frame_buffer->color_buffer()->fill(fill_color, clear_rect);
  1203. }
  1204. void Device::clear_depth(GPU::DepthType depth)
  1205. {
  1206. auto clear_rect = m_frame_buffer->rect();
  1207. if (m_options.scissor_enabled)
  1208. clear_rect.intersect(m_options.scissor_box);
  1209. m_frame_buffer->depth_buffer()->fill(depth, clear_rect);
  1210. }
  1211. void Device::clear_stencil(GPU::StencilType value)
  1212. {
  1213. auto clear_rect = m_frame_buffer->rect();
  1214. if (m_options.scissor_enabled)
  1215. clear_rect.intersect(m_options.scissor_box);
  1216. m_frame_buffer->stencil_buffer()->fill(value, clear_rect);
  1217. }
  1218. GPU::ImageDataLayout Device::color_buffer_data_layout(Vector2<u32> size, Vector2<i32> offset)
  1219. {
  1220. return {
  1221. .pixel_type = {
  1222. .format = GPU::PixelFormat::BGRA,
  1223. .bits = GPU::PixelComponentBits::B8_8_8_8,
  1224. .data_type = GPU::PixelDataType::UnsignedInt,
  1225. .components_order = GPU::ComponentsOrder::Reversed,
  1226. },
  1227. .dimensions = {
  1228. .width = static_cast<u32>(m_frame_buffer->rect().width()),
  1229. .height = static_cast<u32>(m_frame_buffer->rect().height()),
  1230. .depth = 1,
  1231. },
  1232. .selection = {
  1233. .offset_x = offset.x(),
  1234. .offset_y = offset.y(),
  1235. .offset_z = 0,
  1236. .width = size.x(),
  1237. .height = size.y(),
  1238. .depth = 1,
  1239. },
  1240. };
  1241. }
  1242. GPU::ImageDataLayout Device::depth_buffer_data_layout(Vector2<u32> size, Vector2<i32> offset)
  1243. {
  1244. return {
  1245. .pixel_type = {
  1246. .format = GPU::PixelFormat::DepthComponent,
  1247. .bits = GPU::PixelComponentBits::AllBits,
  1248. .data_type = GPU::PixelDataType::Float,
  1249. },
  1250. .dimensions = {
  1251. .width = static_cast<u32>(m_frame_buffer->rect().width()),
  1252. .height = static_cast<u32>(m_frame_buffer->rect().height()),
  1253. .depth = 1,
  1254. },
  1255. .selection = {
  1256. .offset_x = offset.x(),
  1257. .offset_y = offset.y(),
  1258. .offset_z = 0,
  1259. .width = size.x(),
  1260. .height = size.y(),
  1261. .depth = 1,
  1262. },
  1263. };
  1264. }
  1265. void Device::blit_from_color_buffer(Gfx::Bitmap& target)
  1266. {
  1267. m_frame_buffer->color_buffer()->blit_flipped_to_bitmap(target, m_frame_buffer->rect());
  1268. if constexpr (ENABLE_STATISTICS_OVERLAY)
  1269. draw_statistics_overlay(target);
  1270. }
  1271. void Device::blit_from_color_buffer(NonnullRefPtr<GPU::Image> image, u32 level, Vector2<u32> input_size, Vector2<i32> input_offset, Vector3<i32> output_offset)
  1272. {
  1273. auto input_layout = color_buffer_data_layout(input_size, input_offset);
  1274. auto const* input_data = m_frame_buffer->color_buffer()->scanline(0);
  1275. auto const& softgpu_image = reinterpret_cast<Image*>(image.ptr());
  1276. auto output_layout = softgpu_image->image_data_layout(level, output_offset);
  1277. auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0);
  1278. PixelConverter converter { input_layout, output_layout };
  1279. auto conversion_result = converter.convert(input_data, output_data, {});
  1280. if (conversion_result.is_error())
  1281. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1282. }
  1283. void Device::blit_from_color_buffer(void* output_data, Vector2<i32> input_offset, GPU::ImageDataLayout const& output_layout)
  1284. {
  1285. auto const& output_selection = output_layout.selection;
  1286. auto input_layout = color_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset);
  1287. PixelConverter converter { input_layout, output_layout };
  1288. auto const* input_data = m_frame_buffer->color_buffer()->scanline(0);
  1289. auto conversion_result = converter.convert(input_data, output_data, {});
  1290. if (conversion_result.is_error())
  1291. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1292. }
  1293. void Device::blit_from_depth_buffer(void* output_data, Vector2<i32> input_offset, GPU::ImageDataLayout const& output_layout)
  1294. {
  1295. auto const& output_selection = output_layout.selection;
  1296. auto input_layout = depth_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset);
  1297. PixelConverter converter { input_layout, output_layout };
  1298. auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0);
  1299. auto conversion_result = converter.convert(input_data, output_data, {});
  1300. if (conversion_result.is_error())
  1301. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1302. }
  1303. void Device::blit_from_depth_buffer(NonnullRefPtr<GPU::Image> image, u32 level, Vector2<u32> input_size, Vector2<i32> input_offset, Vector3<i32> output_offset)
  1304. {
  1305. auto input_layout = depth_buffer_data_layout(input_size, input_offset);
  1306. auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0);
  1307. auto const& softgpu_image = reinterpret_cast<Image*>(image.ptr());
  1308. auto output_layout = softgpu_image->image_data_layout(level, output_offset);
  1309. auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0);
  1310. PixelConverter converter { input_layout, output_layout };
  1311. auto conversion_result = converter.convert(input_data, output_data, {});
  1312. if (conversion_result.is_error())
  1313. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1314. }
  1315. void Device::blit_to_color_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout)
  1316. {
  1317. if (!m_raster_position.valid)
  1318. return;
  1319. auto input_selection = input_layout.selection;
  1320. INCREASE_STATISTICS_COUNTER(g_num_pixels, input_selection.width * input_selection.height);
  1321. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, input_selection.width * input_selection.height);
  1322. auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height });
  1323. auto output_layout = color_buffer_data_layout(
  1324. { static_cast<u32>(rasterization_rect.width()), static_cast<u32>(rasterization_rect.height()) },
  1325. { rasterization_rect.x(), rasterization_rect.y() });
  1326. PixelConverter converter { input_layout, output_layout };
  1327. auto* output_data = m_frame_buffer->color_buffer()->scanline(0);
  1328. auto conversion_result = converter.convert(input_data, output_data, {});
  1329. if (conversion_result.is_error())
  1330. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1331. }
  1332. void Device::blit_to_depth_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout)
  1333. {
  1334. if (!m_raster_position.valid)
  1335. return;
  1336. auto input_selection = input_layout.selection;
  1337. auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height });
  1338. auto output_layout = depth_buffer_data_layout(
  1339. { static_cast<u32>(rasterization_rect.width()), static_cast<u32>(rasterization_rect.height()) },
  1340. { rasterization_rect.x(), rasterization_rect.y() });
  1341. PixelConverter converter { input_layout, output_layout };
  1342. auto* output_data = m_frame_buffer->depth_buffer()->scanline(0);
  1343. auto conversion_result = converter.convert(input_data, output_data, {});
  1344. if (conversion_result.is_error())
  1345. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1346. }
  1347. void Device::draw_statistics_overlay(Gfx::Bitmap& target)
  1348. {
  1349. static Core::ElapsedTimer timer;
  1350. static String debug_string;
  1351. static int frame_counter;
  1352. frame_counter++;
  1353. i64 milliseconds = 0;
  1354. if (timer.is_valid())
  1355. milliseconds = timer.elapsed();
  1356. else
  1357. timer.start();
  1358. Gfx::Painter painter { target };
  1359. if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) {
  1360. int num_rendertarget_pixels = m_frame_buffer->rect().size().area();
  1361. StringBuilder builder;
  1362. builder.appendff("Timings : {:.1}ms {:.1}FPS\n",
  1363. static_cast<double>(milliseconds) / frame_counter,
  1364. (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0);
  1365. builder.appendff("Triangles : {}\n", g_num_rasterized_triangles);
  1366. builder.appendff("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0);
  1367. builder.appendff("Pixels : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
  1368. g_num_pixels,
  1369. g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0,
  1370. g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0,
  1371. g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0,
  1372. num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0);
  1373. builder.appendff("Sampler calls: {}\n", g_num_sampler_calls);
  1374. debug_string = builder.to_string().release_value_but_fixme_should_propagate_errors();
  1375. frame_counter = 0;
  1376. timer.start();
  1377. }
  1378. g_num_rasterized_triangles = 0;
  1379. g_num_pixels = 0;
  1380. g_num_pixels_shaded = 0;
  1381. g_num_pixels_blended = 0;
  1382. g_num_sampler_calls = 0;
  1383. g_num_stencil_writes = 0;
  1384. g_num_quads = 0;
  1385. auto& font = Gfx::FontDatabase::default_fixed_width_font();
  1386. for (int y = -1; y < 2; y++)
  1387. for (int x = -1; x < 2; x++)
  1388. if (x != 0 && y != 0)
  1389. painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);
  1390. painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
  1391. }
  1392. void Device::set_options(GPU::RasterizerOptions const& options)
  1393. {
  1394. m_options = options;
  1395. if (m_options.enable_blending)
  1396. setup_blend_factors();
  1397. }
  1398. void Device::set_light_model_params(GPU::LightModelParameters const& lighting_model)
  1399. {
  1400. m_lighting_model = lighting_model;
  1401. }
  1402. NonnullRefPtr<GPU::Image> Device::create_image(GPU::PixelFormat const& pixel_format, u32 width, u32 height, u32 depth, u32 max_levels)
  1403. {
  1404. VERIFY(width > 0);
  1405. VERIFY(height > 0);
  1406. VERIFY(depth > 0);
  1407. VERIFY(max_levels > 0);
  1408. return adopt_ref(*new Image(this, pixel_format, width, height, depth, max_levels));
  1409. }
  1410. ErrorOr<NonnullRefPtr<GPU::Shader>> Device::create_shader(GPU::IR::Shader const& intermediate_representation)
  1411. {
  1412. ShaderCompiler compiler;
  1413. auto shader = TRY(compiler.compile(this, intermediate_representation));
  1414. return shader;
  1415. }
  1416. void Device::set_sampler_config(unsigned sampler, GPU::SamplerConfig const& config)
  1417. {
  1418. VERIFY(config.bound_image.is_null() || config.bound_image->ownership_token() == this);
  1419. m_samplers[sampler].set_config(config);
  1420. }
  1421. void Device::set_light_state(unsigned int light_id, GPU::Light const& light)
  1422. {
  1423. m_lights.at(light_id) = light;
  1424. }
  1425. void Device::set_material_state(GPU::Face face, GPU::Material const& material)
  1426. {
  1427. m_materials[face] = material;
  1428. }
  1429. void Device::set_stencil_configuration(GPU::Face face, GPU::StencilConfiguration const& stencil_configuration)
  1430. {
  1431. m_stencil_configuration[face] = stencil_configuration;
  1432. }
  1433. void Device::set_texture_unit_configuration(GPU::TextureUnitIndex index, GPU::TextureUnitConfiguration const& configuration)
  1434. {
  1435. m_texture_unit_configuration[index] = configuration;
  1436. }
  1437. void Device::set_raster_position(GPU::RasterPosition const& raster_position)
  1438. {
  1439. m_raster_position = raster_position;
  1440. }
  1441. void Device::set_clip_planes(Vector<FloatVector4> const& clip_planes)
  1442. {
  1443. m_clip_planes = clip_planes;
  1444. }
  1445. void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform)
  1446. {
  1447. auto const eye_coordinates = model_view_transform * position;
  1448. auto const clip_coordinates = projection_transform * eye_coordinates;
  1449. // FIXME: implement clipping
  1450. m_raster_position.valid = true;
  1451. auto ndc_coordinates = clip_coordinates / clip_coordinates.w();
  1452. ndc_coordinates.set_w(clip_coordinates.w());
  1453. auto const viewport = m_options.viewport;
  1454. auto const viewport_half_width = viewport.width() / 2.0f;
  1455. auto const viewport_half_height = viewport.height() / 2.0f;
  1456. auto const viewport_center_x = viewport.x() + viewport_half_width;
  1457. auto const viewport_center_y = viewport.y() + viewport_half_height;
  1458. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  1459. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  1460. // FIXME: implement other raster position properties such as color and texcoords
  1461. m_raster_position.window_coordinates = {
  1462. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  1463. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  1464. depth_halfway + ndc_coordinates.z() * depth_half_range,
  1465. ndc_coordinates.w(),
  1466. };
  1467. m_raster_position.eye_coordinate_distance = eye_coordinates.length();
  1468. }
  1469. void Device::bind_fragment_shader(RefPtr<GPU::Shader> shader)
  1470. {
  1471. VERIFY(shader.is_null() || shader->ownership_token() == this);
  1472. if (shader.is_null()) {
  1473. m_current_fragment_shader = nullptr;
  1474. return;
  1475. }
  1476. auto softgpu_shader = static_ptr_cast<Shader>(shader);
  1477. m_current_fragment_shader = softgpu_shader;
  1478. }
  1479. Gfx::IntRect Device::get_rasterization_rect_of_size(Gfx::IntSize size) const
  1480. {
  1481. // Round the X and Y floating point coordinates to the nearest integer; OpenGL 1.5 spec:
  1482. // "Any fragments whose centers lie inside of this rectangle (or on its bottom or left
  1483. // boundaries) are produced in correspondence with this particular group of elements."
  1484. return {
  1485. round_to<int>(m_raster_position.window_coordinates.x()),
  1486. round_to<int>(m_raster_position.window_coordinates.y()),
  1487. size.width(),
  1488. size.height(),
  1489. };
  1490. }
  1491. }
  1492. extern "C" {
  1493. GPU::Device* serenity_gpu_create_device(Gfx::IntSize size)
  1494. {
  1495. return make<SoftGPU::Device>(size).leak_ptr();
  1496. }
  1497. }