MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager()
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  22. m_page_table_zero = (PageTableEntry*)0x6000;
  23. m_page_table_one = (PageTableEntry*)0x7000;
  24. initialize_paging();
  25. kprintf("MM initialized.\n");
  26. }
  27. MemoryManager::~MemoryManager()
  28. {
  29. }
  30. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  31. {
  32. page_directory.m_directory_page = allocate_supervisor_physical_page();
  33. page_directory.entries()[0].copy_from({}, kernel_page_directory().entries()[0]);
  34. page_directory.entries()[1].copy_from({}, kernel_page_directory().entries()[1]);
  35. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  36. for (int i = 768; i < 1024; ++i)
  37. page_directory.entries()[i].copy_from({}, kernel_page_directory().entries()[i]);
  38. }
  39. void MemoryManager::initialize_paging()
  40. {
  41. memset(m_page_table_zero, 0, PAGE_SIZE);
  42. memset(m_page_table_one, 0, PAGE_SIZE);
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  45. #endif
  46. #ifdef MM_DEBUG
  47. dbgprintf("MM: Protect against null dereferences\n");
  48. #endif
  49. // Make null dereferences crash.
  50. map_protected(VirtualAddress(0), PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Identity map bottom 5MB\n");
  53. #endif
  54. // The bottom 5 MB (except for the null page) are identity mapped & supervisor only.
  55. // Every process shares these mappings.
  56. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (5 * MB) - PAGE_SIZE);
  57. // Basic memory map:
  58. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  59. // (last page before 1MB) Used by quickmap_page().
  60. // 1 MB -> 3 MB kmalloc_eternal() space.
  61. // 3 MB -> 4 MB kmalloc() space.
  62. // 4 MB -> 5 MB Supervisor physical pages (available for allocation!)
  63. // 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
  64. // 0xc0000000-0xffffffff Kernel-only virtual address space
  65. #ifdef MM_DEBUG
  66. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  67. #endif
  68. m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
  69. RefPtr<PhysicalRegion> region;
  70. bool region_is_super = false;
  71. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  72. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  73. (u32)(mmap->addr >> 32),
  74. (u32)(mmap->addr & 0xffffffff),
  75. (u32)(mmap->len >> 32),
  76. (u32)(mmap->len & 0xffffffff),
  77. (u32)mmap->type);
  78. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  79. continue;
  80. // FIXME: Maybe make use of stuff below the 1MB mark?
  81. if (mmap->addr < (1 * MB))
  82. continue;
  83. if ((mmap->addr + mmap->len) > 0xffffffff)
  84. continue;
  85. auto diff = (u32)mmap->addr % PAGE_SIZE;
  86. if (diff != 0) {
  87. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  88. diff = PAGE_SIZE - diff;
  89. mmap->addr += diff;
  90. mmap->len -= diff;
  91. }
  92. if ((mmap->len % PAGE_SIZE) != 0) {
  93. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  94. mmap->len -= mmap->len % PAGE_SIZE;
  95. }
  96. if (mmap->len < PAGE_SIZE) {
  97. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  98. continue;
  99. }
  100. #ifdef MM_DEBUG
  101. kprintf("MM: considering memory at %p - %p\n",
  102. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  103. #endif
  104. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  105. auto addr = PhysicalAddress(page_base);
  106. if (page_base < 4 * MB) {
  107. // nothing
  108. } else if (page_base >= 4 * MB && page_base < 5 * MB) {
  109. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  110. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  111. region = m_super_physical_regions.last();
  112. region_is_super = true;
  113. } else {
  114. region->expand(region->lower(), addr);
  115. }
  116. } else {
  117. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  118. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  119. region = &m_user_physical_regions.last();
  120. region_is_super = false;
  121. } else {
  122. region->expand(region->lower(), addr);
  123. }
  124. }
  125. }
  126. }
  127. for (auto& region : m_super_physical_regions)
  128. m_super_physical_pages += region.finalize_capacity();
  129. for (auto& region : m_user_physical_regions)
  130. m_user_physical_pages += region.finalize_capacity();
  131. #ifdef MM_DEBUG
  132. dbgprintf("MM: Installing page directory\n");
  133. #endif
  134. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  135. asm volatile(
  136. "mov %cr4, %eax\n"
  137. "orl $0x10, %eax\n"
  138. "mov %eax, %cr4\n");
  139. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  140. asm volatile(
  141. "movl %%cr0, %%eax\n"
  142. "orl $0x80000001, %%eax\n"
  143. "movl %%eax, %%cr0\n" ::
  144. : "%eax", "memory");
  145. #ifdef MM_DEBUG
  146. dbgprintf("MM: Paging initialized.\n");
  147. #endif
  148. }
  149. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  150. {
  151. ASSERT_INTERRUPTS_DISABLED();
  152. u32 page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  153. u32 page_table_index = (vaddr.get() >> 12) & 0x3ff;
  154. PageDirectoryEntry& pde = page_directory.entries()[page_directory_index];
  155. if (!pde.is_present()) {
  156. #ifdef MM_DEBUG
  157. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  158. #endif
  159. if (page_directory_index == 0) {
  160. ASSERT(&page_directory == m_kernel_page_directory);
  161. pde.set_page_table_base((u32)m_page_table_zero);
  162. pde.set_user_allowed(false);
  163. pde.set_present(true);
  164. pde.set_writable(true);
  165. pde.set_global(true);
  166. } else if (page_directory_index == 1) {
  167. ASSERT(&page_directory == m_kernel_page_directory);
  168. pde.set_page_table_base((u32)m_page_table_one);
  169. pde.set_user_allowed(false);
  170. pde.set_present(true);
  171. pde.set_writable(true);
  172. pde.set_global(true);
  173. } else {
  174. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  175. auto page_table = allocate_supervisor_physical_page();
  176. #ifdef MM_DEBUG
  177. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  178. &page_directory,
  179. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  180. page_directory.cr3(),
  181. page_directory_index,
  182. vaddr.get(),
  183. page_table->paddr().get());
  184. #endif
  185. pde.set_page_table_base(page_table->paddr().get());
  186. pde.set_user_allowed(true);
  187. pde.set_present(true);
  188. pde.set_writable(true);
  189. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  190. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  191. }
  192. }
  193. return pde.page_table_base()[page_table_index];
  194. }
  195. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  196. {
  197. InterruptDisabler disabler;
  198. ASSERT(vaddr.is_page_aligned());
  199. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  200. auto pte_address = vaddr.offset(offset);
  201. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  202. pte.set_physical_page_base(pte_address.get());
  203. pte.set_user_allowed(false);
  204. pte.set_present(false);
  205. pte.set_writable(false);
  206. flush_tlb(pte_address);
  207. }
  208. }
  209. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  210. {
  211. InterruptDisabler disabler;
  212. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  213. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  214. auto pte_address = vaddr.offset(offset);
  215. auto& pte = ensure_pte(page_directory, pte_address);
  216. pte.set_physical_page_base(pte_address.get());
  217. pte.set_user_allowed(false);
  218. pte.set_present(true);
  219. pte.set_writable(true);
  220. page_directory.flush(pte_address);
  221. }
  222. }
  223. void MemoryManager::initialize()
  224. {
  225. s_the = new MemoryManager;
  226. }
  227. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  228. {
  229. if (vaddr.get() < 0xc0000000)
  230. return nullptr;
  231. for (auto& region : MM.m_kernel_regions) {
  232. if (region.contains(vaddr))
  233. return &region;
  234. }
  235. return nullptr;
  236. }
  237. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  238. {
  239. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  240. for (auto& region : process.m_regions) {
  241. if (region.contains(vaddr))
  242. return &region;
  243. }
  244. dbg() << process << " Couldn't find user region for " << vaddr;
  245. return nullptr;
  246. }
  247. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  248. {
  249. ASSERT_INTERRUPTS_DISABLED();
  250. if (auto* region = kernel_region_from_vaddr(vaddr))
  251. return region;
  252. return user_region_from_vaddr(process, vaddr);
  253. }
  254. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  255. {
  256. if (auto* region = kernel_region_from_vaddr(vaddr))
  257. return region;
  258. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  259. }
  260. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  261. {
  262. ASSERT_INTERRUPTS_DISABLED();
  263. ASSERT(region.vmobject().is_anonymous());
  264. auto& vmobject = region.vmobject();
  265. auto& vmobject_physical_page_entry = vmobject.physical_pages()[region.first_page_index() + page_index_in_region];
  266. // NOTE: We don't need to acquire the VMObject's lock.
  267. // This function is already exclusive due to interrupts being blocked.
  268. if (!vmobject_physical_page_entry.is_null()) {
  269. #ifdef PAGE_FAULT_DEBUG
  270. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  271. #endif
  272. region.remap_page(page_index_in_region);
  273. return true;
  274. }
  275. if (current)
  276. current->process().did_zero_fault();
  277. auto physical_page = allocate_user_physical_page(ShouldZeroFill::Yes);
  278. #ifdef PAGE_FAULT_DEBUG
  279. dbgprintf(" >> ZERO P%p\n", physical_page->paddr().get());
  280. #endif
  281. vmobject_physical_page_entry = move(physical_page);
  282. region.remap_page(page_index_in_region);
  283. return true;
  284. }
  285. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  286. {
  287. ASSERT_INTERRUPTS_DISABLED();
  288. auto& vmobject = region.vmobject();
  289. auto& vmobject_physical_page_entry = vmobject.physical_pages()[region.first_page_index() + page_index_in_region];
  290. if (vmobject_physical_page_entry->ref_count() == 1) {
  291. #ifdef PAGE_FAULT_DEBUG
  292. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  293. #endif
  294. region.set_should_cow(page_index_in_region, false);
  295. region.remap_page(page_index_in_region);
  296. return true;
  297. }
  298. if (current)
  299. current->process().did_cow_fault();
  300. #ifdef PAGE_FAULT_DEBUG
  301. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  302. #endif
  303. auto physical_page_to_copy = move(vmobject_physical_page_entry);
  304. auto physical_page = allocate_user_physical_page(ShouldZeroFill::No);
  305. u8* dest_ptr = quickmap_page(*physical_page);
  306. const u8* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  307. #ifdef PAGE_FAULT_DEBUG
  308. dbgprintf(" >> COW P%p <- P%p\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  309. #endif
  310. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  311. vmobject_physical_page_entry = move(physical_page);
  312. unquickmap_page();
  313. region.set_should_cow(page_index_in_region, false);
  314. region.remap_page(page_index_in_region);
  315. return true;
  316. }
  317. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  318. {
  319. ASSERT(region.page_directory());
  320. ASSERT(region.vmobject().is_inode());
  321. auto& vmobject = region.vmobject();
  322. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
  323. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[region.first_page_index() + page_index_in_region];
  324. InterruptFlagSaver saver;
  325. sti();
  326. LOCKER(vmobject.m_paging_lock);
  327. cli();
  328. if (!vmobject_physical_page_entry.is_null()) {
  329. #ifdef PAGE_FAULT_DEBUG
  330. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  331. #endif
  332. region.remap_page(page_index_in_region);
  333. return true;
  334. }
  335. if (current)
  336. current->process().did_inode_fault();
  337. #ifdef MM_DEBUG
  338. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  339. #endif
  340. sti();
  341. u8 page_buffer[PAGE_SIZE];
  342. auto& inode = inode_vmobject.inode();
  343. auto nread = inode.read_bytes((region.first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
  344. if (nread < 0) {
  345. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  346. return false;
  347. }
  348. if (nread < PAGE_SIZE) {
  349. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  350. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  351. }
  352. cli();
  353. vmobject_physical_page_entry = allocate_user_physical_page(ShouldZeroFill::No);
  354. if (vmobject_physical_page_entry.is_null()) {
  355. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  356. return false;
  357. }
  358. region.remap_page(page_index_in_region);
  359. u8* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  360. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  361. return true;
  362. }
  363. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  364. {
  365. if (auto* region = kernel_region_from_vaddr(vaddr))
  366. return region;
  367. auto page_directory = PageDirectory::find_by_pdb(cpu_cr3());
  368. if (!page_directory)
  369. return nullptr;
  370. ASSERT(page_directory->process());
  371. return user_region_from_vaddr(*page_directory->process(), vaddr);
  372. }
  373. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  374. {
  375. ASSERT_INTERRUPTS_DISABLED();
  376. ASSERT(current);
  377. #ifdef PAGE_FAULT_DEBUG
  378. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  379. #endif
  380. ASSERT(fault.vaddr() != m_quickmap_addr);
  381. if (fault.type() == PageFault::Type::PageNotPresent && fault.vaddr().get() >= 0xc0000000) {
  382. auto* current_page_directory = reinterpret_cast<PageDirectoryEntry*>(cpu_cr3());
  383. u32 page_directory_index = (fault.vaddr().get() >> 22) & 0x3ff;
  384. auto& kernel_pde = kernel_page_directory().entries()[page_directory_index];
  385. auto& current_pde = current_page_directory[page_directory_index];
  386. if (kernel_pde.is_present() && !current_pde.is_present()) {
  387. dbg() << "NP(kernel): Copying new kernel mapping for " << fault.vaddr() << " into current page directory";
  388. current_pde.copy_from({}, kernel_pde);
  389. flush_tlb(fault.vaddr().page_base());
  390. return PageFaultResponse::Continue;
  391. }
  392. }
  393. auto* region = region_from_vaddr(fault.vaddr());
  394. if (!region) {
  395. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  396. return PageFaultResponse::ShouldCrash;
  397. }
  398. auto page_index_in_region = region->page_index_from_address(fault.vaddr());
  399. if (fault.type() == PageFault::Type::PageNotPresent) {
  400. if (region->vmobject().is_inode()) {
  401. #ifdef PAGE_FAULT_DEBUG
  402. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  403. #endif
  404. page_in_from_inode(*region, page_index_in_region);
  405. return PageFaultResponse::Continue;
  406. }
  407. #ifdef PAGE_FAULT_DEBUG
  408. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  409. #endif
  410. zero_page(*region, page_index_in_region);
  411. return PageFaultResponse::Continue;
  412. }
  413. ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
  414. if (fault.access() == PageFault::Access::Write && region->should_cow(page_index_in_region)) {
  415. #ifdef PAGE_FAULT_DEBUG
  416. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  417. #endif
  418. bool success = copy_on_write(*region, page_index_in_region);
  419. ASSERT(success);
  420. return PageFaultResponse::Continue;
  421. }
  422. kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", region, page_index_in_region, fault.vaddr().get());
  423. return PageFaultResponse::ShouldCrash;
  424. }
  425. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, bool user_accessible, bool should_commit)
  426. {
  427. InterruptDisabler disabler;
  428. ASSERT(!(size % PAGE_SIZE));
  429. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  430. ASSERT(range.is_valid());
  431. OwnPtr<Region> region;
  432. if (user_accessible)
  433. region = Region::create_user_accessible(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  434. else
  435. region = Region::create_kernel_only(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  436. region->map(kernel_page_directory());
  437. // FIXME: It would be cool if these could zero-fill on demand instead.
  438. if (should_commit)
  439. region->commit();
  440. return region;
  441. }
  442. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name)
  443. {
  444. return allocate_kernel_region(size, name, true);
  445. }
  446. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  447. {
  448. for (auto& region : m_user_physical_regions) {
  449. if (!region.contains(page)) {
  450. kprintf(
  451. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  452. page.paddr(), region.lower().get(), region.upper().get());
  453. continue;
  454. }
  455. region.return_page(move(page));
  456. --m_user_physical_pages_used;
  457. return;
  458. }
  459. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
  460. ASSERT_NOT_REACHED();
  461. }
  462. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  463. {
  464. InterruptDisabler disabler;
  465. RefPtr<PhysicalPage> page;
  466. for (auto& region : m_user_physical_regions) {
  467. page = region.take_free_page(false);
  468. if (page.is_null())
  469. continue;
  470. }
  471. if (!page) {
  472. if (m_user_physical_regions.is_empty()) {
  473. kprintf("MM: no user physical regions available (?)\n");
  474. }
  475. kprintf("MM: no user physical pages available\n");
  476. ASSERT_NOT_REACHED();
  477. return {};
  478. }
  479. #ifdef MM_DEBUG
  480. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  481. #endif
  482. if (should_zero_fill == ShouldZeroFill::Yes) {
  483. auto* ptr = (u32*)quickmap_page(*page);
  484. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  485. unquickmap_page();
  486. }
  487. ++m_user_physical_pages_used;
  488. return page;
  489. }
  490. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  491. {
  492. for (auto& region : m_super_physical_regions) {
  493. if (!region.contains(page)) {
  494. kprintf(
  495. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  496. page.paddr(), region.lower().get(), region.upper().get());
  497. continue;
  498. }
  499. region.return_page(move(page));
  500. --m_super_physical_pages_used;
  501. return;
  502. }
  503. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
  504. ASSERT_NOT_REACHED();
  505. }
  506. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  507. {
  508. InterruptDisabler disabler;
  509. RefPtr<PhysicalPage> page;
  510. for (auto& region : m_super_physical_regions) {
  511. page = region.take_free_page(true);
  512. if (page.is_null())
  513. continue;
  514. }
  515. if (!page) {
  516. if (m_super_physical_regions.is_empty()) {
  517. kprintf("MM: no super physical regions available (?)\n");
  518. }
  519. kprintf("MM: no super physical pages available\n");
  520. ASSERT_NOT_REACHED();
  521. return {};
  522. }
  523. #ifdef MM_DEBUG
  524. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  525. #endif
  526. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  527. ++m_super_physical_pages_used;
  528. return page;
  529. }
  530. void MemoryManager::enter_process_paging_scope(Process& process)
  531. {
  532. ASSERT(current);
  533. InterruptDisabler disabler;
  534. current->tss().cr3 = process.page_directory().cr3();
  535. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  536. : "memory");
  537. }
  538. void MemoryManager::flush_entire_tlb()
  539. {
  540. asm volatile(
  541. "mov %%cr3, %%eax\n"
  542. "mov %%eax, %%cr3\n" ::
  543. : "%eax", "memory");
  544. }
  545. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  546. {
  547. asm volatile("invlpg %0"
  548. :
  549. : "m"(*(char*)vaddr.get())
  550. : "memory");
  551. }
  552. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  553. {
  554. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  555. pte.set_physical_page_base(paddr.get());
  556. pte.set_present(true);
  557. pte.set_writable(true);
  558. pte.set_user_allowed(false);
  559. pte.set_cache_disabled(cache_disabled);
  560. flush_tlb(vaddr);
  561. }
  562. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  563. {
  564. ASSERT_INTERRUPTS_DISABLED();
  565. ASSERT(!m_quickmap_in_use);
  566. m_quickmap_in_use = true;
  567. auto page_vaddr = m_quickmap_addr;
  568. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  569. pte.set_physical_page_base(physical_page.paddr().get());
  570. pte.set_present(true);
  571. pte.set_writable(true);
  572. pte.set_user_allowed(false);
  573. flush_tlb(page_vaddr);
  574. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  575. #ifdef MM_DEBUG
  576. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  577. #endif
  578. return page_vaddr.as_ptr();
  579. }
  580. void MemoryManager::unquickmap_page()
  581. {
  582. ASSERT_INTERRUPTS_DISABLED();
  583. ASSERT(m_quickmap_in_use);
  584. auto page_vaddr = m_quickmap_addr;
  585. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  586. #ifdef MM_DEBUG
  587. auto old_physical_address = pte.physical_page_base();
  588. #endif
  589. pte.set_physical_page_base(0);
  590. pte.set_present(false);
  591. pte.set_writable(false);
  592. flush_tlb(page_vaddr);
  593. #ifdef MM_DEBUG
  594. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  595. #endif
  596. m_quickmap_in_use = false;
  597. }
  598. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr)
  599. {
  600. InterruptDisabler disabler;
  601. region.set_page_directory(page_directory);
  602. auto& vmo = region.vmobject();
  603. #ifdef MM_DEBUG
  604. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  605. #endif
  606. for (size_t i = 0; i < region.page_count(); ++i) {
  607. auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
  608. auto& pte = ensure_pte(page_directory, page_vaddr);
  609. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  610. if (physical_page) {
  611. pte.set_physical_page_base(physical_page->paddr().get());
  612. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  613. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  614. if (region.should_cow(region.first_page_index() + i))
  615. pte.set_writable(false);
  616. else
  617. pte.set_writable(region.is_writable());
  618. } else {
  619. pte.set_physical_page_base(0);
  620. pte.set_present(false);
  621. pte.set_writable(region.is_writable());
  622. }
  623. pte.set_user_allowed(region.is_user_accessible());
  624. page_directory.flush(page_vaddr);
  625. #ifdef MM_DEBUG
  626. dbgprintf("MM: >> map_region_at_address (PD=%p) '%s' V%p => P%p (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  627. #endif
  628. }
  629. }
  630. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  631. {
  632. auto* region = region_from_vaddr(process, vaddr);
  633. return region && region->is_readable();
  634. }
  635. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  636. {
  637. auto* region = region_from_vaddr(process, vaddr);
  638. return region && region->is_writable();
  639. }
  640. void MemoryManager::register_vmo(VMObject& vmo)
  641. {
  642. InterruptDisabler disabler;
  643. m_vmobjects.append(&vmo);
  644. }
  645. void MemoryManager::unregister_vmo(VMObject& vmo)
  646. {
  647. InterruptDisabler disabler;
  648. m_vmobjects.remove(&vmo);
  649. }
  650. void MemoryManager::register_region(Region& region)
  651. {
  652. InterruptDisabler disabler;
  653. if (region.vaddr().get() >= 0xc0000000)
  654. m_kernel_regions.append(&region);
  655. else
  656. m_user_regions.append(&region);
  657. }
  658. void MemoryManager::unregister_region(Region& region)
  659. {
  660. InterruptDisabler disabler;
  661. if (region.vaddr().get() >= 0xc0000000)
  662. m_kernel_regions.remove(&region);
  663. else
  664. m_user_regions.remove(&region);
  665. }
  666. ProcessPagingScope::ProcessPagingScope(Process& process)
  667. {
  668. ASSERT(current);
  669. MM.enter_process_paging_scope(process);
  670. }
  671. ProcessPagingScope::~ProcessPagingScope()
  672. {
  673. MM.enter_process_paging_scope(current->process());
  674. }