NetworkTask.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. #include <Kernel/Lock.h>
  2. #include <Kernel/Net/ARP.h>
  3. #include <Kernel/Net/E1000NetworkAdapter.h>
  4. #include <Kernel/Net/EtherType.h>
  5. #include <Kernel/Net/EthernetFrameHeader.h>
  6. #include <Kernel/Net/ICMP.h>
  7. #include <Kernel/Net/IPv4.h>
  8. #include <Kernel/Net/IPv4Socket.h>
  9. #include <Kernel/Net/LoopbackAdapter.h>
  10. #include <Kernel/Net/TCP.h>
  11. #include <Kernel/Net/TCPSocket.h>
  12. #include <Kernel/Net/UDP.h>
  13. #include <Kernel/Net/UDPSocket.h>
  14. #include <Kernel/Process.h>
  15. //#define ETHERNET_DEBUG
  16. //#define ETHERNET_VERY_DEBUG
  17. //#define IPV4_DEBUG
  18. //#define ICMP_DEBUG
  19. //#define UDP_DEBUG
  20. //#define TCP_DEBUG
  21. static void handle_arp(const EthernetFrameHeader&, int frame_size);
  22. static void handle_ipv4(const EthernetFrameHeader&, int frame_size);
  23. static void handle_icmp(const EthernetFrameHeader&, int frame_size);
  24. static void handle_udp(const EthernetFrameHeader&, int frame_size);
  25. static void handle_tcp(const EthernetFrameHeader&, int frame_size);
  26. Lockable<HashMap<IPv4Address, MACAddress>>& arp_table()
  27. {
  28. static Lockable<HashMap<IPv4Address, MACAddress>>* the;
  29. if (!the)
  30. the = new Lockable<HashMap<IPv4Address, MACAddress>>;
  31. return *the;
  32. }
  33. void NetworkTask_main()
  34. {
  35. LoopbackAdapter::the();
  36. auto adapter = E1000NetworkAdapter::the();
  37. if (!adapter)
  38. dbgprintf("E1000 network card not found!\n");
  39. if (adapter)
  40. adapter->set_ipv4_address(IPv4Address(192, 168, 5, 2));
  41. auto dequeue_packet = [&]() -> Optional<KBuffer> {
  42. auto packet = LoopbackAdapter::the().dequeue_packet();
  43. if (packet.has_value()) {
  44. dbgprintf("Receive loopback packet (%d bytes)\n", packet.value().size());
  45. return packet.value();
  46. }
  47. if (adapter && adapter->has_queued_packets())
  48. return adapter->dequeue_packet();
  49. return {};
  50. };
  51. kprintf("NetworkTask: Enter main loop.\n");
  52. for (;;) {
  53. auto packet_maybe_null = dequeue_packet();
  54. if (!packet_maybe_null.has_value()) {
  55. (void)current->block_until("Networking", [] {
  56. if (LoopbackAdapter::the().has_queued_packets())
  57. return true;
  58. if (auto* e1000 = E1000NetworkAdapter::the()) {
  59. if (e1000->has_queued_packets())
  60. return true;
  61. }
  62. return false;
  63. });
  64. continue;
  65. }
  66. auto& packet = packet_maybe_null.value();
  67. if (packet.size() < (int)(sizeof(EthernetFrameHeader))) {
  68. kprintf("NetworkTask: Packet is too small to be an Ethernet packet! (%d)\n", packet.size());
  69. continue;
  70. }
  71. auto& eth = *(const EthernetFrameHeader*)packet.data();
  72. #ifdef ETHERNET_DEBUG
  73. kprintf("NetworkTask: From %s to %s, ether_type=%w, packet_length=%u\n",
  74. eth.source().to_string().characters(),
  75. eth.destination().to_string().characters(),
  76. eth.ether_type(),
  77. packet.size());
  78. #endif
  79. #ifdef ETHERNET_VERY_DEBUG
  80. u8* data = packet.data();
  81. for (size_t i = 0; i < packet.size(); i++) {
  82. kprintf("%b", data[i]);
  83. switch (i % 16) {
  84. case 7:
  85. kprintf(" ");
  86. break;
  87. case 15:
  88. kprintf("\n");
  89. break;
  90. default:
  91. kprintf(" ");
  92. break;
  93. }
  94. }
  95. kprintf("\n");
  96. #endif
  97. switch (eth.ether_type()) {
  98. case EtherType::ARP:
  99. handle_arp(eth, packet.size());
  100. break;
  101. case EtherType::IPv4:
  102. handle_ipv4(eth, packet.size());
  103. break;
  104. }
  105. }
  106. }
  107. void handle_arp(const EthernetFrameHeader& eth, int frame_size)
  108. {
  109. constexpr int minimum_arp_frame_size = sizeof(EthernetFrameHeader) + sizeof(ARPPacket);
  110. if (frame_size < minimum_arp_frame_size) {
  111. kprintf("handle_arp: Frame too small (%d, need %d)\n", frame_size, minimum_arp_frame_size);
  112. return;
  113. }
  114. auto& packet = *static_cast<const ARPPacket*>(eth.payload());
  115. if (packet.hardware_type() != 1 || packet.hardware_address_length() != sizeof(MACAddress)) {
  116. kprintf("handle_arp: Hardware type not ethernet (%w, len=%u)\n",
  117. packet.hardware_type(),
  118. packet.hardware_address_length());
  119. return;
  120. }
  121. if (packet.protocol_type() != EtherType::IPv4 || packet.protocol_address_length() != sizeof(IPv4Address)) {
  122. kprintf("handle_arp: Protocol type not IPv4 (%w, len=%u)\n",
  123. packet.hardware_type(),
  124. packet.protocol_address_length());
  125. return;
  126. }
  127. #ifdef ARP_DEBUG
  128. kprintf("handle_arp: operation=%w, sender=%s/%s, target=%s/%s\n",
  129. packet.operation(),
  130. packet.sender_hardware_address().to_string().characters(),
  131. packet.sender_protocol_address().to_string().characters(),
  132. packet.target_hardware_address().to_string().characters(),
  133. packet.target_protocol_address().to_string().characters());
  134. #endif
  135. if (packet.operation() == ARPOperation::Request) {
  136. // Who has this IP address?
  137. if (auto adapter = NetworkAdapter::from_ipv4_address(packet.target_protocol_address())) {
  138. // We do!
  139. kprintf("handle_arp: Responding to ARP request for my IPv4 address (%s)\n",
  140. adapter->ipv4_address().to_string().characters());
  141. ARPPacket response;
  142. response.set_operation(ARPOperation::Response);
  143. response.set_target_hardware_address(packet.sender_hardware_address());
  144. response.set_target_protocol_address(packet.sender_protocol_address());
  145. response.set_sender_hardware_address(adapter->mac_address());
  146. response.set_sender_protocol_address(adapter->ipv4_address());
  147. adapter->send(packet.sender_hardware_address(), response);
  148. }
  149. return;
  150. }
  151. if (packet.operation() == ARPOperation::Response) {
  152. // Someone has this IPv4 address. I guess we can try to remember that.
  153. // FIXME: Protect against ARP spamming.
  154. // FIXME: Support static ARP table entries.
  155. LOCKER(arp_table().lock());
  156. arp_table().resource().set(packet.sender_protocol_address(), packet.sender_hardware_address());
  157. kprintf("ARP table (%d entries):\n", arp_table().resource().size());
  158. for (auto& it : arp_table().resource()) {
  159. kprintf("%s :: %s\n", it.value.to_string().characters(), it.key.to_string().characters());
  160. }
  161. }
  162. }
  163. void handle_ipv4(const EthernetFrameHeader& eth, int frame_size)
  164. {
  165. constexpr int minimum_ipv4_frame_size = sizeof(EthernetFrameHeader) + sizeof(IPv4Packet);
  166. if (frame_size < minimum_ipv4_frame_size) {
  167. kprintf("handle_ipv4: Frame too small (%d, need %d)\n", frame_size, minimum_ipv4_frame_size);
  168. return;
  169. }
  170. auto& packet = *static_cast<const IPv4Packet*>(eth.payload());
  171. #ifdef IPV4_DEBUG
  172. kprintf("handle_ipv4: source=%s, target=%s\n",
  173. packet.source().to_string().characters(),
  174. packet.destination().to_string().characters());
  175. #endif
  176. switch ((IPv4Protocol)packet.protocol()) {
  177. case IPv4Protocol::ICMP:
  178. return handle_icmp(eth, frame_size);
  179. case IPv4Protocol::UDP:
  180. return handle_udp(eth, frame_size);
  181. case IPv4Protocol::TCP:
  182. return handle_tcp(eth, frame_size);
  183. default:
  184. kprintf("handle_ipv4: Unhandled protocol %u\n", packet.protocol());
  185. break;
  186. }
  187. }
  188. void handle_icmp(const EthernetFrameHeader& eth, int frame_size)
  189. {
  190. (void)frame_size;
  191. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  192. auto& icmp_header = *static_cast<const ICMPHeader*>(ipv4_packet.payload());
  193. #ifdef ICMP_DEBUG
  194. kprintf("handle_icmp: source=%s, destination=%s, type=%b, code=%b\n",
  195. ipv4_packet.source().to_string().characters(),
  196. ipv4_packet.destination().to_string().characters(),
  197. icmp_header.type(),
  198. icmp_header.code());
  199. #endif
  200. {
  201. LOCKER(IPv4Socket::all_sockets().lock());
  202. for (RefPtr<IPv4Socket> socket : IPv4Socket::all_sockets().resource()) {
  203. LOCKER(socket->lock());
  204. if (socket->protocol() != (unsigned)IPv4Protocol::ICMP)
  205. continue;
  206. socket->did_receive(ipv4_packet.source(), 0, KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  207. }
  208. }
  209. auto adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  210. if (!adapter)
  211. return;
  212. if (icmp_header.type() == ICMPType::EchoRequest) {
  213. auto& request = reinterpret_cast<const ICMPEchoPacket&>(icmp_header);
  214. kprintf("handle_icmp: EchoRequest from %s: id=%u, seq=%u\n",
  215. ipv4_packet.source().to_string().characters(),
  216. (u16)request.identifier,
  217. (u16)request.sequence_number);
  218. size_t icmp_packet_size = ipv4_packet.payload_size();
  219. auto buffer = ByteBuffer::create_zeroed(icmp_packet_size);
  220. auto& response = *(ICMPEchoPacket*)buffer.pointer();
  221. response.header.set_type(ICMPType::EchoReply);
  222. response.header.set_code(0);
  223. response.identifier = request.identifier;
  224. response.sequence_number = request.sequence_number;
  225. if (size_t icmp_payload_size = icmp_packet_size - sizeof(ICMPEchoPacket))
  226. memcpy(response.payload(), request.payload(), icmp_payload_size);
  227. response.header.set_checksum(internet_checksum(&response, icmp_packet_size));
  228. adapter->send_ipv4(eth.source(), ipv4_packet.source(), IPv4Protocol::ICMP, buffer.data(), buffer.size());
  229. }
  230. }
  231. void handle_udp(const EthernetFrameHeader& eth, int frame_size)
  232. {
  233. (void)frame_size;
  234. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  235. auto adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  236. if (!adapter) {
  237. kprintf("handle_udp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters());
  238. return;
  239. }
  240. auto& udp_packet = *static_cast<const UDPPacket*>(ipv4_packet.payload());
  241. #ifdef UDP_DEBUG
  242. kprintf("handle_udp: source=%s:%u, destination=%s:%u length=%u\n",
  243. ipv4_packet.source().to_string().characters(),
  244. udp_packet.source_port(),
  245. ipv4_packet.destination().to_string().characters(),
  246. udp_packet.destination_port(),
  247. udp_packet.length());
  248. #endif
  249. auto socket = UDPSocket::from_port(udp_packet.destination_port());
  250. if (!socket) {
  251. kprintf("handle_udp: No UDP socket for port %u\n", udp_packet.destination_port());
  252. return;
  253. }
  254. ASSERT(socket->type() == SOCK_DGRAM);
  255. ASSERT(socket->local_port() == udp_packet.destination_port());
  256. socket->did_receive(ipv4_packet.source(), udp_packet.source_port(), KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  257. }
  258. void handle_tcp(const EthernetFrameHeader& eth, int frame_size)
  259. {
  260. (void)frame_size;
  261. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  262. auto adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  263. if (!adapter) {
  264. kprintf("handle_tcp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters());
  265. return;
  266. }
  267. auto& tcp_packet = *static_cast<const TCPPacket*>(ipv4_packet.payload());
  268. size_t payload_size = ipv4_packet.payload_size() - tcp_packet.header_size();
  269. #ifdef TCP_DEBUG
  270. kprintf("handle_tcp: source=%s:%u, destination=%s:%u seq_no=%u, ack_no=%u, flags=%w (%s%s%s%s), window_size=%u, payload_size=%u\n",
  271. ipv4_packet.source().to_string().characters(),
  272. tcp_packet.source_port(),
  273. ipv4_packet.destination().to_string().characters(),
  274. tcp_packet.destination_port(),
  275. tcp_packet.sequence_number(),
  276. tcp_packet.ack_number(),
  277. tcp_packet.flags(),
  278. tcp_packet.has_syn() ? "SYN " : "",
  279. tcp_packet.has_ack() ? "ACK " : "",
  280. tcp_packet.has_fin() ? "FIN " : "",
  281. tcp_packet.has_rst() ? "RST " : "",
  282. tcp_packet.window_size(),
  283. payload_size);
  284. #endif
  285. IPv4SocketTuple tuple(ipv4_packet.destination(), tcp_packet.destination_port(), ipv4_packet.source(), tcp_packet.source_port());
  286. auto socket = TCPSocket::from_tuple(tuple);
  287. if (!socket) {
  288. kprintf("handle_tcp: No TCP socket for tuple %s\n", tuple.to_string().characters());
  289. return;
  290. }
  291. ASSERT(socket->type() == SOCK_STREAM);
  292. ASSERT(socket->local_port() == tcp_packet.destination_port());
  293. if (tcp_packet.ack_number() != socket->sequence_number()) {
  294. kprintf("handle_tcp: ack/seq mismatch: got %u, wanted %u\n", tcp_packet.ack_number(), socket->sequence_number());
  295. return;
  296. }
  297. socket->record_incoming_data(ipv4_packet.payload_size());
  298. #ifdef TCP_DEBUG
  299. kprintf("handle_tcp: state=%s\n", TCPSocket::to_string(socket->state()));
  300. #endif
  301. switch (socket->state()) {
  302. case TCPSocket::State::Closed:
  303. kprintf("handle_tcp: unexpected flags in Closed state\n");
  304. // TODO: we may want to send an RST here, maybe as a configurable option
  305. return;
  306. case TCPSocket::State::TimeWait:
  307. kprintf("handle_tcp: unexpected flags in TimeWait state\n");
  308. socket->send_tcp_packet(TCPFlags::RST);
  309. socket->set_state(TCPSocket::State::Closed);
  310. kprintf("handle_tcp: TimeWait -> Closed\n");
  311. return;
  312. case TCPSocket::State::Listen:
  313. switch (tcp_packet.flags()) {
  314. case TCPFlags::SYN:
  315. kprintf("handle_tcp: incoming connections not supported\n");
  316. // socket->send_tcp_packet(TCPFlags::RST);
  317. return;
  318. default:
  319. kprintf("handle_tcp: unexpected flags in Listen state\n");
  320. // socket->send_tcp_packet(TCPFlags::RST);
  321. return;
  322. }
  323. case TCPSocket::State::SynSent:
  324. switch (tcp_packet.flags()) {
  325. case TCPFlags::SYN:
  326. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  327. socket->send_tcp_packet(TCPFlags::ACK);
  328. socket->set_state(TCPSocket::State::SynReceived);
  329. kprintf("handle_tcp: SynSent -> SynReceived\n");
  330. return;
  331. case TCPFlags::SYN | TCPFlags::ACK:
  332. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  333. socket->send_tcp_packet(TCPFlags::ACK);
  334. socket->set_state(TCPSocket::State::Established);
  335. socket->set_connected(true);
  336. kprintf("handle_tcp: SynSent -> Established\n");
  337. return;
  338. default:
  339. kprintf("handle_tcp: unexpected flags in SynSent state\n");
  340. socket->send_tcp_packet(TCPFlags::RST);
  341. socket->set_state(TCPSocket::State::Closed);
  342. kprintf("handle_tcp: SynSent -> Closed\n");
  343. return;
  344. }
  345. case TCPSocket::State::SynReceived:
  346. switch (tcp_packet.flags()) {
  347. case TCPFlags::ACK:
  348. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  349. socket->set_state(TCPSocket::State::Established);
  350. socket->set_connected(true);
  351. kprintf("handle_tcp: SynReceived -> Established\n");
  352. return;
  353. default:
  354. kprintf("handle_tcp: unexpected flags in SynReceived state\n");
  355. socket->send_tcp_packet(TCPFlags::RST);
  356. socket->set_state(TCPSocket::State::Closed);
  357. kprintf("handle_tcp: SynReceived -> Closed\n");
  358. return;
  359. }
  360. case TCPSocket::State::CloseWait:
  361. switch (tcp_packet.flags()) {
  362. default:
  363. kprintf("handle_tcp: unexpected flags in CloseWait state\n");
  364. socket->send_tcp_packet(TCPFlags::RST);
  365. socket->set_state(TCPSocket::State::Closed);
  366. kprintf("handle_tcp: CloseWait -> Closed\n");
  367. return;
  368. }
  369. case TCPSocket::State::LastAck:
  370. switch (tcp_packet.flags()) {
  371. case TCPFlags::ACK:
  372. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  373. socket->set_state(TCPSocket::State::Closed);
  374. kprintf("handle_tcp: LastAck -> Closed\n");
  375. return;
  376. default:
  377. kprintf("handle_tcp: unexpected flags in LastAck state\n");
  378. socket->send_tcp_packet(TCPFlags::RST);
  379. socket->set_state(TCPSocket::State::Closed);
  380. kprintf("handle_tcp: LastAck -> Closed\n");
  381. return;
  382. }
  383. case TCPSocket::State::FinWait1:
  384. switch (tcp_packet.flags()) {
  385. case TCPFlags::ACK:
  386. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  387. socket->set_state(TCPSocket::State::FinWait2);
  388. kprintf("handle_tcp: FinWait1 -> FinWait2\n");
  389. return;
  390. case TCPFlags::FIN:
  391. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  392. socket->set_state(TCPSocket::State::Closing);
  393. kprintf("handle_tcp: FinWait1 -> Closing\n");
  394. return;
  395. default:
  396. kprintf("handle_tcp: unexpected flags in FinWait1 state\n");
  397. socket->send_tcp_packet(TCPFlags::RST);
  398. socket->set_state(TCPSocket::State::Closed);
  399. kprintf("handle_tcp: FinWait1 -> Closed\n");
  400. return;
  401. }
  402. case TCPSocket::State::FinWait2:
  403. switch (tcp_packet.flags()) {
  404. case TCPFlags::FIN:
  405. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  406. socket->set_state(TCPSocket::State::TimeWait);
  407. kprintf("handle_tcp: FinWait2 -> TimeWait\n");
  408. return;
  409. default:
  410. kprintf("handle_tcp: unexpected flags in FinWait2 state\n");
  411. socket->send_tcp_packet(TCPFlags::RST);
  412. socket->set_state(TCPSocket::State::Closed);
  413. kprintf("handle_tcp: FinWait2 -> Closed\n");
  414. return;
  415. }
  416. case TCPSocket::State::Closing:
  417. switch (tcp_packet.flags()) {
  418. case TCPFlags::ACK:
  419. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  420. socket->set_state(TCPSocket::State::TimeWait);
  421. kprintf("handle_tcp: Closing -> TimeWait\n");
  422. return;
  423. default:
  424. kprintf("handle_tcp: unexpected flags in Closing state\n");
  425. socket->send_tcp_packet(TCPFlags::RST);
  426. socket->set_state(TCPSocket::State::Closed);
  427. kprintf("handle_tcp: Closing -> Closed\n");
  428. return;
  429. }
  430. case TCPSocket::State::Established:
  431. if (tcp_packet.has_fin()) {
  432. if (payload_size != 0)
  433. socket->did_receive(ipv4_packet.source(), tcp_packet.source_port(), KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  434. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  435. socket->send_tcp_packet(TCPFlags::ACK);
  436. socket->set_state(TCPSocket::State::CloseWait);
  437. socket->set_connected(false);
  438. kprintf("handle_tcp: Established -> CloseWait\n");
  439. return;
  440. }
  441. socket->set_ack_number(tcp_packet.sequence_number() + payload_size);
  442. #ifdef TCP_DEBUG
  443. kprintf("Got packet with ack_no=%u, seq_no=%u, payload_size=%u, acking it with new ack_no=%u, seq_no=%u\n",
  444. tcp_packet.ack_number(),
  445. tcp_packet.sequence_number(),
  446. payload_size,
  447. socket->ack_number(),
  448. socket->sequence_number());
  449. #endif
  450. socket->send_tcp_packet(TCPFlags::ACK);
  451. if (payload_size != 0)
  452. socket->did_receive(ipv4_packet.source(), tcp_packet.source_port(), KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  453. }
  454. }