Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #include <Kernel/Devices/DeviceManagement.h>
  16. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  17. # include <Kernel/Devices/KCOVDevice.h>
  18. #endif
  19. #include <Kernel/API/POSIX/errno.h>
  20. #include <Kernel/Devices/NullDevice.h>
  21. #include <Kernel/FileSystem/Custody.h>
  22. #include <Kernel/FileSystem/OpenFileDescription.h>
  23. #include <Kernel/FileSystem/VirtualFileSystem.h>
  24. #include <Kernel/KBufferBuilder.h>
  25. #include <Kernel/KSyms.h>
  26. #include <Kernel/Memory/AnonymousVMObject.h>
  27. #include <Kernel/Memory/PageDirectory.h>
  28. #include <Kernel/Memory/SharedInodeVMObject.h>
  29. #include <Kernel/PerformanceEventBuffer.h>
  30. #include <Kernel/PerformanceManager.h>
  31. #include <Kernel/Process.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/limits.h>
  38. namespace Kernel {
  39. static void create_signal_trampoline();
  40. RecursiveSpinlock g_profiling_lock;
  41. static Atomic<pid_t> next_pid;
  42. static Singleton<SpinlockProtected<Process::List>> s_all_instances;
  43. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  44. static Singleton<MutexProtected<String>> s_hostname;
  45. MutexProtected<String>& hostname()
  46. {
  47. return *s_hostname;
  48. }
  49. SpinlockProtected<Process::List>& Process::all_instances()
  50. {
  51. return *s_all_instances;
  52. }
  53. ProcessID Process::allocate_pid()
  54. {
  55. // Overflow is UB, and negative PIDs wreck havoc.
  56. // TODO: Handle PID overflow
  57. // For example: Use an Atomic<u32>, mask the most significant bit,
  58. // retry if PID is already taken as a PID, taken as a TID,
  59. // takes as a PGID, taken as a SID, or zero.
  60. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  61. }
  62. UNMAP_AFTER_INIT void Process::initialize()
  63. {
  64. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  65. // Note: This is called before scheduling is initialized, and before APs are booted.
  66. // So we can "safely" bypass the lock here.
  67. reinterpret_cast<String&>(hostname()) = "courage";
  68. create_signal_trampoline();
  69. }
  70. bool Process::in_group(GroupID gid) const
  71. {
  72. return this->gid() == gid || extra_gids().contains_slow(gid);
  73. }
  74. void Process::kill_threads_except_self()
  75. {
  76. InterruptDisabler disabler;
  77. if (thread_count() <= 1)
  78. return;
  79. auto* current_thread = Thread::current();
  80. for_each_thread([&](Thread& thread) {
  81. if (&thread == current_thread)
  82. return;
  83. if (auto state = thread.state(); state == Thread::State::Dead
  84. || state == Thread::State::Dying)
  85. return;
  86. // We need to detach this thread in case it hasn't been joined
  87. thread.detach();
  88. thread.set_should_die();
  89. });
  90. u32 dropped_lock_count = 0;
  91. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  92. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  93. }
  94. void Process::kill_all_threads()
  95. {
  96. for_each_thread([&](Thread& thread) {
  97. // We need to detach this thread in case it hasn't been joined
  98. thread.detach();
  99. thread.set_should_die();
  100. });
  101. }
  102. void Process::register_new(Process& process)
  103. {
  104. // Note: this is essentially the same like process->ref()
  105. RefPtr<Process> new_process = process;
  106. all_instances().with([&](auto& list) {
  107. list.prepend(process);
  108. });
  109. }
  110. ErrorOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  111. {
  112. auto parts = path.split_view('/');
  113. if (arguments.is_empty()) {
  114. auto last_part = TRY(KString::try_create(parts.last()));
  115. TRY(arguments.try_append(move(last_part)));
  116. }
  117. auto path_string = TRY(KString::try_create(path));
  118. auto name = TRY(KString::try_create(parts.last()));
  119. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  120. TRY(process->m_fds.try_resize(Process::OpenFileDescriptions::max_open()));
  121. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
  122. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  123. auto setup_description = [&process, &description](int fd) {
  124. process->m_fds.m_fds_metadatas[fd].allocate();
  125. process->m_fds[fd].set(*description);
  126. };
  127. setup_description(0);
  128. setup_description(1);
  129. setup_description(2);
  130. if (auto result = process->exec(move(path_string), move(arguments), move(environment)); result.is_error()) {
  131. dbgln("Failed to exec {}: {}", path, result.error());
  132. first_thread = nullptr;
  133. return result.release_error();
  134. }
  135. register_new(*process);
  136. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  137. process->ref();
  138. return process;
  139. }
  140. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  141. {
  142. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  143. if (process_or_error.is_error())
  144. return {};
  145. auto process = process_or_error.release_value();
  146. first_thread->regs().set_ip((FlatPtr)entry);
  147. #if ARCH(I386)
  148. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  149. #else
  150. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  151. #endif
  152. if (do_register == RegisterProcess::Yes)
  153. register_new(*process);
  154. SpinlockLocker lock(g_scheduler_lock);
  155. first_thread->set_affinity(affinity);
  156. first_thread->set_state(Thread::State::Runnable);
  157. return process;
  158. }
  159. void Process::protect_data()
  160. {
  161. m_protected_data_refs.unref([&]() {
  162. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  163. });
  164. }
  165. void Process::unprotect_data()
  166. {
  167. m_protected_data_refs.ref([&]() {
  168. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  169. });
  170. }
  171. ErrorOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  172. {
  173. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  174. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  175. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  176. return process;
  177. }
  178. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  179. : m_name(move(name))
  180. , m_is_kernel_process(is_kernel_process)
  181. , m_executable(move(executable))
  182. , m_cwd(move(cwd))
  183. , m_tty(tty)
  184. , m_wait_blocker_set(*this)
  185. {
  186. // Ensure that we protect the process data when exiting the constructor.
  187. ProtectedDataMutationScope scope { *this };
  188. m_protected_values.pid = allocate_pid();
  189. m_protected_values.ppid = ppid;
  190. m_protected_values.uid = uid;
  191. m_protected_values.gid = gid;
  192. m_protected_values.euid = uid;
  193. m_protected_values.egid = gid;
  194. m_protected_values.suid = uid;
  195. m_protected_values.sgid = gid;
  196. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  197. }
  198. ErrorOr<void> Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  199. {
  200. m_space = move(preallocated_space);
  201. auto create_first_thread = [&] {
  202. if (fork_parent) {
  203. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  204. return Thread::current()->try_clone(*this);
  205. }
  206. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  207. return Thread::try_create(*this);
  208. };
  209. first_thread = TRY(create_first_thread());
  210. if (!fork_parent) {
  211. // FIXME: Figure out if this is really necessary.
  212. first_thread->detach();
  213. }
  214. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
  215. return {};
  216. }
  217. Process::~Process()
  218. {
  219. unprotect_data();
  220. VERIFY(thread_count() == 0); // all threads should have been finalized
  221. VERIFY(!m_alarm_timer);
  222. PerformanceManager::add_process_exit_event(*this);
  223. }
  224. // Make sure the compiler doesn't "optimize away" this function:
  225. extern void signal_trampoline_dummy() __attribute__((used));
  226. void signal_trampoline_dummy()
  227. {
  228. #if ARCH(I386)
  229. // The trampoline preserves the current eax, pushes the signal code and
  230. // then calls the signal handler. We do this because, when interrupting a
  231. // blocking syscall, that syscall may return some special error code in eax;
  232. // This error code would likely be overwritten by the signal handler, so it's
  233. // necessary to preserve it here.
  234. asm(
  235. ".intel_syntax noprefix\n"
  236. ".globl asm_signal_trampoline\n"
  237. "asm_signal_trampoline:\n"
  238. "push ebp\n"
  239. "mov ebp, esp\n"
  240. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  241. "sub esp, 4\n" // align the stack to 16 bytes
  242. "mov eax, [ebp+12]\n" // push the signal code
  243. "push eax\n"
  244. "call [ebp+8]\n" // call the signal handler
  245. "add esp, 8\n"
  246. "mov eax, %P0\n"
  247. "int 0x82\n" // sigreturn syscall
  248. ".globl asm_signal_trampoline_end\n"
  249. "asm_signal_trampoline_end:\n"
  250. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  251. #elif ARCH(X86_64)
  252. // The trampoline preserves the current rax, pushes the signal code and
  253. // then calls the signal handler. We do this because, when interrupting a
  254. // blocking syscall, that syscall may return some special error code in eax;
  255. // This error code would likely be overwritten by the signal handler, so it's
  256. // necessary to preserve it here.
  257. asm(
  258. ".intel_syntax noprefix\n"
  259. ".globl asm_signal_trampoline\n"
  260. "asm_signal_trampoline:\n"
  261. "push rbp\n"
  262. "mov rbp, rsp\n"
  263. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  264. "sub rsp, 8\n" // align the stack to 16 bytes
  265. "mov rdi, [rbp+24]\n" // push the signal code
  266. "call [rbp+16]\n" // call the signal handler
  267. "add rsp, 8\n"
  268. "mov rax, %P0\n"
  269. "int 0x82\n" // sigreturn syscall
  270. ".globl asm_signal_trampoline_end\n"
  271. "asm_signal_trampoline_end:\n"
  272. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  273. #endif
  274. }
  275. extern "C" char const asm_signal_trampoline[];
  276. extern "C" char const asm_signal_trampoline_end[];
  277. void create_signal_trampoline()
  278. {
  279. // NOTE: We leak this region.
  280. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  281. g_signal_trampoline_region->set_syscall_region(true);
  282. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  283. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  284. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  285. g_signal_trampoline_region->set_writable(false);
  286. g_signal_trampoline_region->remap();
  287. }
  288. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  289. {
  290. VERIFY(!is_dead());
  291. VERIFY(&Process::current() == this);
  292. if (out_of_memory) {
  293. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  294. } else {
  295. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  296. auto const* symbol = symbolicate_kernel_address(ip);
  297. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  298. } else {
  299. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  300. }
  301. dump_backtrace();
  302. }
  303. {
  304. ProtectedDataMutationScope scope { *this };
  305. m_protected_values.termination_signal = signal;
  306. }
  307. set_should_generate_coredump(!out_of_memory);
  308. address_space().dump_regions();
  309. VERIFY(is_user_process());
  310. die();
  311. // We can not return from here, as there is nowhere
  312. // to unwind to, so die right away.
  313. Thread::current()->die_if_needed();
  314. VERIFY_NOT_REACHED();
  315. }
  316. RefPtr<Process> Process::from_pid(ProcessID pid)
  317. {
  318. return all_instances().with([&](const auto& list) -> RefPtr<Process> {
  319. for (auto const& process : list) {
  320. if (process.pid() == pid)
  321. return &process;
  322. }
  323. return {};
  324. });
  325. }
  326. const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  327. {
  328. SpinlockLocker lock(m_fds_lock);
  329. if (m_fds_metadatas.size() <= i)
  330. return nullptr;
  331. if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid())
  332. return &metadata;
  333. return nullptr;
  334. }
  335. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  336. {
  337. SpinlockLocker lock(m_fds_lock);
  338. if (m_fds_metadatas.size() <= i)
  339. return nullptr;
  340. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  341. return &metadata;
  342. return nullptr;
  343. }
  344. const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
  345. {
  346. SpinlockLocker lock(m_fds_lock);
  347. VERIFY(m_fds_metadatas[i].is_allocated());
  348. return m_fds_metadatas[i];
  349. }
  350. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  351. {
  352. SpinlockLocker lock(m_fds_lock);
  353. VERIFY(m_fds_metadatas[i].is_allocated());
  354. return m_fds_metadatas[i];
  355. }
  356. ErrorOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  357. {
  358. SpinlockLocker lock(m_fds_lock);
  359. if (fd < 0)
  360. return EBADF;
  361. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  362. return EBADF;
  363. RefPtr description = m_fds_metadatas[fd].description();
  364. if (!description)
  365. return EBADF;
  366. return description.release_nonnull();
  367. }
  368. void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
  369. {
  370. SpinlockLocker lock(m_fds_lock);
  371. for (auto const& file_description_metadata : m_fds_metadatas) {
  372. callback(file_description_metadata);
  373. }
  374. }
  375. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  376. {
  377. SpinlockLocker lock(m_fds_lock);
  378. for (auto& file_description_metadata : m_fds_metadatas) {
  379. callback(file_description_metadata);
  380. }
  381. }
  382. size_t Process::OpenFileDescriptions::open_count() const
  383. {
  384. size_t count = 0;
  385. enumerate([&](auto& file_description_metadata) {
  386. if (file_description_metadata.is_valid())
  387. ++count;
  388. });
  389. return count;
  390. }
  391. ErrorOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  392. {
  393. SpinlockLocker lock(m_fds_lock);
  394. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  395. if (!m_fds_metadatas[i].is_allocated()) {
  396. m_fds_metadatas[i].allocate();
  397. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  398. }
  399. }
  400. return EMFILE;
  401. }
  402. Time kgettimeofday()
  403. {
  404. return TimeManagement::now();
  405. }
  406. siginfo_t Process::wait_info() const
  407. {
  408. siginfo_t siginfo {};
  409. siginfo.si_signo = SIGCHLD;
  410. siginfo.si_pid = pid().value();
  411. siginfo.si_uid = uid().value();
  412. if (m_protected_values.termination_signal != 0) {
  413. siginfo.si_status = m_protected_values.termination_signal;
  414. siginfo.si_code = CLD_KILLED;
  415. } else {
  416. siginfo.si_status = m_protected_values.termination_status;
  417. siginfo.si_code = CLD_EXITED;
  418. }
  419. return siginfo;
  420. }
  421. Custody& Process::current_directory()
  422. {
  423. if (!m_cwd)
  424. m_cwd = VirtualFileSystem::the().root_custody();
  425. return *m_cwd;
  426. }
  427. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length)
  428. {
  429. if (path_length == 0)
  430. return EINVAL;
  431. if (path_length > PATH_MAX)
  432. return ENAMETOOLONG;
  433. return try_copy_kstring_from_user(user_path, path_length);
  434. }
  435. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path)
  436. {
  437. Userspace<char const*> path_characters((FlatPtr)path.characters);
  438. return get_syscall_path_argument(path_characters, path.length);
  439. }
  440. ErrorOr<void> Process::dump_core()
  441. {
  442. VERIFY(is_dumpable());
  443. VERIFY(should_generate_coredump());
  444. dbgln("Generating coredump for pid: {}", pid().value());
  445. auto coredump_path = TRY(KString::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds()));
  446. auto coredump = TRY(Coredump::try_create(*this, coredump_path->view()));
  447. return coredump->write();
  448. }
  449. bool Process::dump_perfcore()
  450. {
  451. VERIFY(is_dumpable());
  452. VERIFY(m_perf_event_buffer);
  453. dbgln("Generating perfcore for pid: {}", pid().value());
  454. // Try to generate a filename which isn't already used.
  455. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  456. auto perfcore_filename = String::formatted("{}.profile", base_filename);
  457. RefPtr<OpenFileDescription> description;
  458. for (size_t attempt = 1; attempt <= 10; ++attempt) {
  459. auto description_or_error = VirtualFileSystem::the().open(perfcore_filename, O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 });
  460. if (!description_or_error.is_error()) {
  461. description = description_or_error.release_value();
  462. break;
  463. }
  464. perfcore_filename = String::formatted("{}.{}.profile", base_filename, attempt);
  465. }
  466. if (!description) {
  467. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  468. return false;
  469. }
  470. auto builder_or_error = KBufferBuilder::try_create();
  471. if (builder_or_error.is_error()) {
  472. dbgln("Failed to generate perfcore for pid {}: Could not allocate KBufferBuilder.", pid());
  473. return false;
  474. }
  475. auto builder = builder_or_error.release_value();
  476. if (m_perf_event_buffer->to_json(builder).is_error()) {
  477. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  478. return false;
  479. }
  480. auto json = builder.build();
  481. if (!json) {
  482. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  483. return false;
  484. }
  485. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  486. if (description->write(json_buffer, json->size()).is_error()) {
  487. dbgln("Failed to generate perfcore for pid {}: Could not write to perfcore file.", pid().value());
  488. return false;
  489. }
  490. dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
  491. return true;
  492. }
  493. void Process::finalize()
  494. {
  495. VERIFY(Thread::current() == g_finalizer);
  496. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  497. if (veil_state() == VeilState::Dropped)
  498. dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name());
  499. if (is_dumpable()) {
  500. if (m_should_generate_coredump) {
  501. auto result = dump_core();
  502. if (result.is_error()) {
  503. critical_dmesgln("Failed to write coredump: {}", result.error());
  504. }
  505. }
  506. if (m_perf_event_buffer) {
  507. dump_perfcore();
  508. TimeManagement::the().disable_profile_timer();
  509. }
  510. }
  511. m_threads_for_coredump.clear();
  512. if (m_alarm_timer)
  513. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  514. m_fds.clear();
  515. m_tty = nullptr;
  516. m_executable = nullptr;
  517. m_cwd = nullptr;
  518. m_arguments.clear();
  519. m_environment.clear();
  520. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  521. {
  522. // FIXME: PID/TID BUG
  523. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  524. if ((parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT)
  525. parent_thread->send_signal(SIGCHLD, this);
  526. }
  527. }
  528. if (!!ppid()) {
  529. if (auto parent = Process::from_pid(ppid())) {
  530. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  531. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  532. }
  533. }
  534. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  535. m_space->remove_all_regions({});
  536. VERIFY(ref_count() > 0);
  537. // WaitBlockerSet::finalize will be in charge of dropping the last
  538. // reference if there are still waiters around, or whenever the last
  539. // waitable states are consumed. Unless there is no parent around
  540. // anymore, in which case we'll just drop it right away.
  541. m_wait_blocker_set.finalize();
  542. }
  543. void Process::disowned_by_waiter(Process& process)
  544. {
  545. m_wait_blocker_set.disowned_by_waiter(process);
  546. }
  547. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  548. {
  549. RefPtr<Process> waiter_process;
  550. if (auto* my_tracer = tracer())
  551. waiter_process = Process::from_pid(my_tracer->tracer_pid());
  552. else
  553. waiter_process = Process::from_pid(ppid());
  554. if (waiter_process)
  555. waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
  556. }
  557. void Process::die()
  558. {
  559. auto expected = State::Running;
  560. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  561. // It's possible that another thread calls this at almost the same time
  562. // as we can't always instantly kill other threads (they may be blocked)
  563. // So if we already were called then other threads should stop running
  564. // momentarily and we only really need to service the first thread
  565. return;
  566. }
  567. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  568. // getting an EOF when the last process using the slave PTY dies.
  569. // If the master PTY owner relies on an EOF to know when to wait() on a
  570. // slave owner, we have to allow the PTY pair to be torn down.
  571. m_tty = nullptr;
  572. VERIFY(m_threads_for_coredump.is_empty());
  573. for_each_thread([&](auto& thread) {
  574. m_threads_for_coredump.append(thread);
  575. });
  576. all_instances().with([&](const auto& list) {
  577. for (auto it = list.begin(); it != list.end();) {
  578. auto& process = *it;
  579. ++it;
  580. if (process.has_tracee_thread(pid())) {
  581. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  582. process.stop_tracing();
  583. auto err = process.send_signal(SIGSTOP, this);
  584. if (err.is_error())
  585. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  586. }
  587. }
  588. });
  589. kill_all_threads();
  590. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  591. KCOVDevice::free_process();
  592. #endif
  593. }
  594. void Process::terminate_due_to_signal(u8 signal)
  595. {
  596. VERIFY_INTERRUPTS_DISABLED();
  597. VERIFY(signal < 32);
  598. VERIFY(&Process::current() == this);
  599. dbgln("Terminating {} due to signal {}", *this, signal);
  600. {
  601. ProtectedDataMutationScope scope { *this };
  602. m_protected_values.termination_status = 0;
  603. m_protected_values.termination_signal = signal;
  604. }
  605. die();
  606. }
  607. ErrorOr<void> Process::send_signal(u8 signal, Process* sender)
  608. {
  609. // Try to send it to the "obvious" main thread:
  610. auto receiver_thread = Thread::from_tid(pid().value());
  611. // If the main thread has died, there may still be other threads:
  612. if (!receiver_thread) {
  613. // The first one should be good enough.
  614. // Neither kill(2) nor kill(3) specify any selection precedure.
  615. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  616. receiver_thread = &thread;
  617. return IterationDecision::Break;
  618. });
  619. }
  620. if (receiver_thread) {
  621. receiver_thread->send_signal(signal, sender);
  622. return {};
  623. }
  624. return ESRCH;
  625. }
  626. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  627. {
  628. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  629. // FIXME: Do something with guard pages?
  630. auto thread_or_error = Thread::try_create(*this);
  631. if (thread_or_error.is_error())
  632. return {};
  633. auto thread = thread_or_error.release_value();
  634. thread->set_name(move(name));
  635. thread->set_affinity(affinity);
  636. thread->set_priority(priority);
  637. if (!joinable)
  638. thread->detach();
  639. auto& regs = thread->regs();
  640. regs.set_ip((FlatPtr)entry);
  641. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  642. SpinlockLocker lock(g_scheduler_lock);
  643. thread->set_state(Thread::State::Runnable);
  644. return thread;
  645. }
  646. void Process::OpenFileDescriptionAndFlags::clear()
  647. {
  648. // FIXME: Verify Process::m_fds_lock is locked!
  649. m_description = nullptr;
  650. m_flags = 0;
  651. }
  652. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  653. {
  654. // FIXME: Verify Process::m_fds_lock is locked!
  655. m_description = move(description);
  656. m_flags = flags;
  657. }
  658. void Process::set_tty(TTY* tty)
  659. {
  660. m_tty = tty;
  661. }
  662. ErrorOr<void> Process::start_tracing_from(ProcessID tracer)
  663. {
  664. m_tracer = TRY(ThreadTracer::try_create(tracer));
  665. return {};
  666. }
  667. void Process::stop_tracing()
  668. {
  669. m_tracer = nullptr;
  670. }
  671. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  672. {
  673. VERIFY(m_tracer.ptr());
  674. m_tracer->set_regs(regs);
  675. thread.send_urgent_signal_to_self(SIGTRAP);
  676. }
  677. bool Process::create_perf_events_buffer_if_needed()
  678. {
  679. if (!m_perf_event_buffer) {
  680. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  681. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  682. }
  683. return !!m_perf_event_buffer;
  684. }
  685. void Process::delete_perf_events_buffer()
  686. {
  687. if (m_perf_event_buffer)
  688. m_perf_event_buffer = nullptr;
  689. }
  690. bool Process::remove_thread(Thread& thread)
  691. {
  692. ProtectedDataMutationScope scope { *this };
  693. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  694. VERIFY(thread_cnt_before != 0);
  695. thread_list().with([&](auto& thread_list) {
  696. thread_list.remove(thread);
  697. });
  698. return thread_cnt_before == 1;
  699. }
  700. bool Process::add_thread(Thread& thread)
  701. {
  702. ProtectedDataMutationScope scope { *this };
  703. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  704. thread_list().with([&](auto& thread_list) {
  705. thread_list.append(thread);
  706. });
  707. return is_first;
  708. }
  709. void Process::set_dumpable(bool dumpable)
  710. {
  711. if (dumpable == m_protected_values.dumpable)
  712. return;
  713. ProtectedDataMutationScope scope { *this };
  714. m_protected_values.dumpable = dumpable;
  715. }
  716. ErrorOr<void> Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  717. {
  718. // Write it into the first available property slot.
  719. for (auto& slot : m_coredump_properties) {
  720. if (slot.key)
  721. continue;
  722. slot.key = move(key);
  723. slot.value = move(value);
  724. return {};
  725. }
  726. return ENOBUFS;
  727. }
  728. ErrorOr<void> Process::try_set_coredump_property(StringView key, StringView value)
  729. {
  730. auto key_kstring = TRY(KString::try_create(key));
  731. auto value_kstring = TRY(KString::try_create(value));
  732. return set_coredump_property(move(key_kstring), move(value_kstring));
  733. };
  734. static constexpr StringView to_string(Pledge promise)
  735. {
  736. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  737. case Pledge::x: \
  738. return #x;
  739. switch (promise) {
  740. ENUMERATE_PLEDGE_PROMISES
  741. }
  742. #undef __ENUMERATE_PLEDGE_PROMISE
  743. VERIFY_NOT_REACHED();
  744. }
  745. ErrorOr<void> Process::require_no_promises() const
  746. {
  747. if (!has_promises())
  748. return {};
  749. dbgln("Has made a promise");
  750. return EPROMISEVIOLATION;
  751. }
  752. ErrorOr<void> Process::require_promise(Pledge promise)
  753. {
  754. if (!has_promises())
  755. return {};
  756. if (has_promised(promise))
  757. return {};
  758. dbgln("Has not pledged {}", to_string(promise));
  759. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  760. return EPROMISEVIOLATION;
  761. }
  762. }