TreeParser.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. * Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Function.h>
  8. #include "Enums.h"
  9. #include "LookupTables.h"
  10. #include "Parser.h"
  11. #include "TreeParser.h"
  12. namespace Video::VP9 {
  13. template<typename T>
  14. ErrorOr<T> TreeParser::parse_tree(SyntaxElementType type)
  15. {
  16. auto tree_selection = select_tree(type);
  17. int value;
  18. if (tree_selection.is_single_value()) {
  19. value = tree_selection.single_value();
  20. } else {
  21. auto tree = tree_selection.tree();
  22. int n = 0;
  23. do {
  24. n = tree[n + TRY(m_decoder.m_bit_stream->read_bool(select_tree_probability(type, n >> 1)))];
  25. } while (n > 0);
  26. value = -n;
  27. }
  28. count_syntax_element(type, value);
  29. return static_cast<T>(value);
  30. }
  31. template ErrorOr<int> TreeParser::parse_tree(SyntaxElementType);
  32. template ErrorOr<bool> TreeParser::parse_tree(SyntaxElementType);
  33. template ErrorOr<u8> TreeParser::parse_tree(SyntaxElementType);
  34. template ErrorOr<u32> TreeParser::parse_tree(SyntaxElementType);
  35. template ErrorOr<PredictionMode> TreeParser::parse_tree(SyntaxElementType);
  36. template ErrorOr<TXSize> TreeParser::parse_tree(SyntaxElementType);
  37. template ErrorOr<InterpolationFilter> TreeParser::parse_tree(SyntaxElementType);
  38. template ErrorOr<ReferenceMode> TreeParser::parse_tree(SyntaxElementType);
  39. template ErrorOr<Token> TreeParser::parse_tree(SyntaxElementType);
  40. template ErrorOr<MvClass> TreeParser::parse_tree(SyntaxElementType);
  41. template ErrorOr<MvJoint> TreeParser::parse_tree(SyntaxElementType);
  42. template<typename OutputType>
  43. inline ErrorOr<OutputType> parse_tree_new(BitStream& bit_stream, TreeParser::TreeSelection tree_selection, Function<u8(u8)> const& probability_getter)
  44. {
  45. if (tree_selection.is_single_value())
  46. return static_cast<OutputType>(tree_selection.single_value());
  47. int const* tree = tree_selection.tree();
  48. int n = 0;
  49. do {
  50. u8 node = n >> 1;
  51. n = tree[n + TRY(bit_stream.read_bool(probability_getter(node)))];
  52. } while (n > 0);
  53. return static_cast<OutputType>(-n);
  54. }
  55. inline void increment_counter(u8& counter)
  56. {
  57. counter = min(static_cast<u32>(counter) + 1, 255);
  58. }
  59. ErrorOr<Partition> TreeParser::parse_partition(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, bool has_rows, bool has_columns, BlockSubsize block_subsize, u8 num_8x8, Vector<u8> const& above_partition_context, Vector<u8> const& left_partition_context, u32 row, u32 column, bool frame_is_intra)
  60. {
  61. // Tree array
  62. TreeParser::TreeSelection tree = { PartitionSplit };
  63. if (has_rows && has_columns)
  64. tree = { partition_tree };
  65. else if (has_rows)
  66. tree = { rows_partition_tree };
  67. else if (has_columns)
  68. tree = { cols_partition_tree };
  69. // Probability array
  70. u32 above = 0;
  71. u32 left = 0;
  72. auto bsl = mi_width_log2_lookup[block_subsize];
  73. auto block_offset = mi_width_log2_lookup[Block_64x64] - bsl;
  74. for (auto i = 0; i < num_8x8; i++) {
  75. above |= above_partition_context[column + i];
  76. left |= left_partition_context[row + i];
  77. }
  78. above = (above & (1 << block_offset)) > 0;
  79. left = (left & (1 << block_offset)) > 0;
  80. auto context = bsl * 4 + left * 2 + above;
  81. u8 const* probabilities = frame_is_intra ? probability_table.kf_partition_probs()[context] : probability_table.partition_probs()[context];
  82. Function<u8(u8)> probability_getter = [&](u8 node) {
  83. if (has_rows && has_columns)
  84. return probabilities[node];
  85. if (has_columns)
  86. return probabilities[1];
  87. return probabilities[2];
  88. };
  89. auto value = TRY(parse_tree_new<Partition>(bit_stream, tree, probability_getter));
  90. increment_counter(counter.m_counts_partition[context][value]);
  91. return value;
  92. }
  93. ErrorOr<PredictionMode> TreeParser::parse_default_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, BlockSubsize mi_size, Optional<Array<PredictionMode, 4> const&> above_context, Optional<Array<PredictionMode, 4> const&> left_context, PredictionMode block_sub_modes[4], u8 index_x, u8 index_y)
  94. {
  95. // FIXME: This should use a struct for the above and left contexts.
  96. // Tree
  97. TreeParser::TreeSelection tree = { intra_mode_tree };
  98. // Probabilities
  99. PredictionMode above_mode, left_mode;
  100. if (mi_size >= Block_8x8) {
  101. above_mode = above_context.has_value() ? above_context.value()[2] : PredictionMode::DcPred;
  102. left_mode = left_context.has_value() ? left_context.value()[1] : PredictionMode::DcPred;
  103. } else {
  104. if (index_y > 0)
  105. above_mode = block_sub_modes[index_x];
  106. else
  107. above_mode = above_context.has_value() ? above_context.value()[2 + index_x] : PredictionMode::DcPred;
  108. if (index_x > 0)
  109. left_mode = block_sub_modes[index_y << 1];
  110. else
  111. left_mode = left_context.has_value() ? left_context.value()[1 + (index_y << 1)] : PredictionMode::DcPred;
  112. }
  113. u8 const* probabilities = probability_table.kf_y_mode_probs()[to_underlying(above_mode)][to_underlying(left_mode)];
  114. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  115. // Default intra mode is not counted.
  116. return value;
  117. }
  118. ErrorOr<PredictionMode> TreeParser::parse_default_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, PredictionMode y_mode)
  119. {
  120. // Tree
  121. TreeParser::TreeSelection tree = { intra_mode_tree };
  122. // Probabilities
  123. u8 const* probabilities = probability_table.kf_uv_mode_prob()[to_underlying(y_mode)];
  124. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  125. // Default UV mode is not counted.
  126. return value;
  127. }
  128. ErrorOr<PredictionMode> TreeParser::parse_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, BlockSubsize mi_size)
  129. {
  130. // Tree
  131. TreeParser::TreeSelection tree = { intra_mode_tree };
  132. // Probabilities
  133. auto context = size_group_lookup[mi_size];
  134. u8 const* probabilities = probability_table.y_mode_probs()[context];
  135. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  136. increment_counter(counter.m_counts_intra_mode[context][to_underlying(value)]);
  137. return value;
  138. }
  139. ErrorOr<PredictionMode> TreeParser::parse_sub_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter)
  140. {
  141. // Tree
  142. TreeParser::TreeSelection tree = { intra_mode_tree };
  143. // Probabilities
  144. u8 const* probabilities = probability_table.y_mode_probs()[0];
  145. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  146. increment_counter(counter.m_counts_intra_mode[0][to_underlying(value)]);
  147. return value;
  148. }
  149. ErrorOr<PredictionMode> TreeParser::parse_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, PredictionMode y_mode)
  150. {
  151. // Tree
  152. TreeParser::TreeSelection tree = { intra_mode_tree };
  153. // Probabilities
  154. u8 const* probabilities = probability_table.uv_mode_probs()[to_underlying(y_mode)];
  155. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  156. increment_counter(counter.m_counts_uv_mode[to_underlying(y_mode)][to_underlying(value)]);
  157. return value;
  158. }
  159. /*
  160. * Select a tree value based on the type of syntax element being parsed, as well as some parser state, as specified in section 9.3.1
  161. */
  162. TreeParser::TreeSelection TreeParser::select_tree(SyntaxElementType type)
  163. {
  164. switch (type) {
  165. case SyntaxElementType::SegmentID:
  166. return { segment_tree };
  167. case SyntaxElementType::Skip:
  168. case SyntaxElementType::SegIDPredicted:
  169. case SyntaxElementType::IsInter:
  170. case SyntaxElementType::CompMode:
  171. case SyntaxElementType::CompRef:
  172. case SyntaxElementType::SingleRefP1:
  173. case SyntaxElementType::SingleRefP2:
  174. case SyntaxElementType::MVSign:
  175. case SyntaxElementType::MVClass0Bit:
  176. case SyntaxElementType::MVBit:
  177. case SyntaxElementType::MoreCoefs:
  178. return { binary_tree };
  179. case SyntaxElementType::TXSize:
  180. if (m_decoder.m_max_tx_size == TX_32x32)
  181. return { tx_size_32_tree };
  182. if (m_decoder.m_max_tx_size == TX_16x16)
  183. return { tx_size_16_tree };
  184. return { tx_size_8_tree };
  185. case SyntaxElementType::InterMode:
  186. return { inter_mode_tree };
  187. case SyntaxElementType::InterpFilter:
  188. return { interp_filter_tree };
  189. case SyntaxElementType::MVJoint:
  190. return { mv_joint_tree };
  191. case SyntaxElementType::MVClass:
  192. return { mv_class_tree };
  193. case SyntaxElementType::MVClass0FR:
  194. case SyntaxElementType::MVFR:
  195. return { mv_fr_tree };
  196. case SyntaxElementType::MVClass0HP:
  197. case SyntaxElementType::MVHP:
  198. if (m_decoder.m_use_hp)
  199. return { binary_tree };
  200. return { 1 };
  201. case SyntaxElementType::Token:
  202. return { token_tree };
  203. default:
  204. break;
  205. }
  206. VERIFY_NOT_REACHED();
  207. }
  208. /*
  209. * Select a probability with which to read a boolean when decoding a tree, as specified in section 9.3.2
  210. */
  211. u8 TreeParser::select_tree_probability(SyntaxElementType type, u8 node)
  212. {
  213. switch (type) {
  214. case SyntaxElementType::SegmentID:
  215. return calculate_segment_id_probability(node);
  216. case SyntaxElementType::Skip:
  217. return calculate_skip_probability();
  218. case SyntaxElementType::SegIDPredicted:
  219. return calculate_seg_id_predicted_probability();
  220. case SyntaxElementType::IsInter:
  221. return calculate_is_inter_probability();
  222. case SyntaxElementType::CompMode:
  223. return calculate_comp_mode_probability();
  224. case SyntaxElementType::CompRef:
  225. return calculate_comp_ref_probability();
  226. case SyntaxElementType::SingleRefP1:
  227. return calculate_single_ref_p1_probability();
  228. case SyntaxElementType::SingleRefP2:
  229. return calculate_single_ref_p2_probability();
  230. case SyntaxElementType::MVSign:
  231. return m_decoder.m_probability_tables->mv_sign_prob()[m_mv_component];
  232. case SyntaxElementType::MVClass0Bit:
  233. return m_decoder.m_probability_tables->mv_class0_bit_prob()[m_mv_component];
  234. case SyntaxElementType::MVBit:
  235. VERIFY(m_mv_bit < MV_OFFSET_BITS);
  236. return m_decoder.m_probability_tables->mv_bits_prob()[m_mv_component][m_mv_bit];
  237. case SyntaxElementType::TXSize:
  238. return calculate_tx_size_probability(node);
  239. case SyntaxElementType::InterMode:
  240. return calculate_inter_mode_probability(node);
  241. case SyntaxElementType::InterpFilter:
  242. return calculate_interp_filter_probability(node);
  243. case SyntaxElementType::MVJoint:
  244. return m_decoder.m_probability_tables->mv_joint_probs()[node];
  245. case SyntaxElementType::MVClass:
  246. // Spec doesn't mention node, but the probabilities table has an extra dimension
  247. // so we will use node for that.
  248. return m_decoder.m_probability_tables->mv_class_probs()[m_mv_component][node];
  249. case SyntaxElementType::MVClass0FR:
  250. VERIFY(m_mv_class0_bit < CLASS0_SIZE);
  251. return m_decoder.m_probability_tables->mv_class0_fr_probs()[m_mv_component][m_mv_class0_bit][node];
  252. case SyntaxElementType::MVClass0HP:
  253. return m_decoder.m_probability_tables->mv_class0_hp_prob()[m_mv_component];
  254. case SyntaxElementType::MVFR:
  255. return m_decoder.m_probability_tables->mv_fr_probs()[m_mv_component][node];
  256. case SyntaxElementType::MVHP:
  257. return m_decoder.m_probability_tables->mv_hp_prob()[m_mv_component];
  258. case SyntaxElementType::Token:
  259. return calculate_token_probability(node);
  260. case SyntaxElementType::MoreCoefs:
  261. return calculate_more_coefs_probability();
  262. default:
  263. break;
  264. }
  265. VERIFY_NOT_REACHED();
  266. }
  267. #define ABOVE_FRAME_0 m_decoder.m_above_ref_frame[0]
  268. #define ABOVE_FRAME_1 m_decoder.m_above_ref_frame[1]
  269. #define LEFT_FRAME_0 m_decoder.m_left_ref_frame[0]
  270. #define LEFT_FRAME_1 m_decoder.m_left_ref_frame[1]
  271. #define AVAIL_U m_decoder.m_available_u
  272. #define AVAIL_L m_decoder.m_available_l
  273. #define ABOVE_INTRA m_decoder.m_above_intra
  274. #define LEFT_INTRA m_decoder.m_left_intra
  275. #define ABOVE_SINGLE m_decoder.m_above_single
  276. #define LEFT_SINGLE m_decoder.m_left_single
  277. u8 TreeParser::calculate_segment_id_probability(u8 node)
  278. {
  279. return m_decoder.m_segmentation_tree_probs[node];
  280. }
  281. u8 TreeParser::calculate_skip_probability()
  282. {
  283. m_ctx = 0;
  284. if (AVAIL_U)
  285. m_ctx += m_decoder.m_skips[(m_decoder.m_mi_row - 1) * m_decoder.m_mi_cols + m_decoder.m_mi_col];
  286. if (AVAIL_L)
  287. m_ctx += m_decoder.m_skips[m_decoder.m_mi_row * m_decoder.m_mi_cols + m_decoder.m_mi_col - 1];
  288. return m_decoder.m_probability_tables->skip_prob()[m_ctx];
  289. }
  290. u8 TreeParser::calculate_seg_id_predicted_probability()
  291. {
  292. m_ctx = m_decoder.m_left_seg_pred_context[m_decoder.m_mi_row] + m_decoder.m_above_seg_pred_context[m_decoder.m_mi_col];
  293. return m_decoder.m_segmentation_pred_prob[m_ctx];
  294. }
  295. u8 TreeParser::calculate_is_inter_probability()
  296. {
  297. if (AVAIL_U && AVAIL_L) {
  298. m_ctx = (LEFT_INTRA && ABOVE_INTRA) ? 3 : LEFT_INTRA || ABOVE_INTRA;
  299. } else if (AVAIL_U || AVAIL_L) {
  300. m_ctx = 2 * (AVAIL_U ? ABOVE_INTRA : LEFT_INTRA);
  301. } else {
  302. m_ctx = 0;
  303. }
  304. return m_decoder.m_probability_tables->is_inter_prob()[m_ctx];
  305. }
  306. u8 TreeParser::calculate_comp_mode_probability()
  307. {
  308. if (AVAIL_U && AVAIL_L) {
  309. if (ABOVE_SINGLE && LEFT_SINGLE) {
  310. auto is_above_fixed = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
  311. auto is_left_fixed = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
  312. m_ctx = is_above_fixed ^ is_left_fixed;
  313. } else if (ABOVE_SINGLE) {
  314. auto is_above_fixed = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
  315. m_ctx = 2 + (is_above_fixed || ABOVE_INTRA);
  316. } else if (LEFT_SINGLE) {
  317. auto is_left_fixed = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
  318. m_ctx = 2 + (is_left_fixed || LEFT_INTRA);
  319. } else {
  320. m_ctx = 4;
  321. }
  322. } else if (AVAIL_U) {
  323. if (ABOVE_SINGLE) {
  324. m_ctx = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
  325. } else {
  326. m_ctx = 3;
  327. }
  328. } else if (AVAIL_L) {
  329. if (LEFT_SINGLE) {
  330. m_ctx = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
  331. } else {
  332. m_ctx = 3;
  333. }
  334. } else {
  335. m_ctx = 1;
  336. }
  337. return m_decoder.m_probability_tables->comp_mode_prob()[m_ctx];
  338. }
  339. u8 TreeParser::calculate_comp_ref_probability()
  340. {
  341. auto fix_ref_idx = m_decoder.m_ref_frame_sign_bias[m_decoder.m_comp_fixed_ref];
  342. auto var_ref_idx = !fix_ref_idx;
  343. if (AVAIL_U && AVAIL_L) {
  344. if (ABOVE_INTRA && LEFT_INTRA) {
  345. m_ctx = 2;
  346. } else if (LEFT_INTRA) {
  347. if (ABOVE_SINGLE) {
  348. m_ctx = 1 + 2 * (ABOVE_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  349. } else {
  350. m_ctx = 1 + 2 * (m_decoder.m_above_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  351. }
  352. } else if (ABOVE_INTRA) {
  353. if (LEFT_SINGLE) {
  354. m_ctx = 1 + 2 * (LEFT_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  355. } else {
  356. m_ctx = 1 + 2 * (m_decoder.m_left_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  357. }
  358. } else {
  359. auto var_ref_above = m_decoder.m_above_ref_frame[ABOVE_SINGLE ? 0 : var_ref_idx];
  360. auto var_ref_left = m_decoder.m_left_ref_frame[LEFT_SINGLE ? 0 : var_ref_idx];
  361. if (var_ref_above == var_ref_left && m_decoder.m_comp_var_ref[1] == var_ref_above) {
  362. m_ctx = 0;
  363. } else if (LEFT_SINGLE && ABOVE_SINGLE) {
  364. if ((var_ref_above == m_decoder.m_comp_fixed_ref && var_ref_left == m_decoder.m_comp_var_ref[0])
  365. || (var_ref_left == m_decoder.m_comp_fixed_ref && var_ref_above == m_decoder.m_comp_var_ref[0])) {
  366. m_ctx = 4;
  367. } else if (var_ref_above == var_ref_left) {
  368. m_ctx = 3;
  369. } else {
  370. m_ctx = 1;
  371. }
  372. } else if (LEFT_SINGLE || ABOVE_SINGLE) {
  373. auto vrfc = LEFT_SINGLE ? var_ref_above : var_ref_left;
  374. auto rfs = ABOVE_SINGLE ? var_ref_above : var_ref_left;
  375. if (vrfc == m_decoder.m_comp_var_ref[1] && rfs != m_decoder.m_comp_var_ref[1]) {
  376. m_ctx = 1;
  377. } else if (rfs == m_decoder.m_comp_var_ref[1] && vrfc != m_decoder.m_comp_var_ref[1]) {
  378. m_ctx = 2;
  379. } else {
  380. m_ctx = 4;
  381. }
  382. } else if (var_ref_above == var_ref_left) {
  383. m_ctx = 4;
  384. } else {
  385. m_ctx = 2;
  386. }
  387. }
  388. } else if (AVAIL_U) {
  389. if (ABOVE_INTRA) {
  390. m_ctx = 2;
  391. } else {
  392. if (ABOVE_SINGLE) {
  393. m_ctx = 3 * (ABOVE_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  394. } else {
  395. m_ctx = 4 * (m_decoder.m_above_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  396. }
  397. }
  398. } else if (AVAIL_L) {
  399. if (LEFT_INTRA) {
  400. m_ctx = 2;
  401. } else {
  402. if (LEFT_SINGLE) {
  403. m_ctx = 3 * (LEFT_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  404. } else {
  405. m_ctx = 4 * (m_decoder.m_left_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  406. }
  407. }
  408. } else {
  409. m_ctx = 2;
  410. }
  411. return m_decoder.m_probability_tables->comp_ref_prob()[m_ctx];
  412. }
  413. u8 TreeParser::calculate_single_ref_p1_probability()
  414. {
  415. if (AVAIL_U && AVAIL_L) {
  416. if (ABOVE_INTRA && LEFT_INTRA) {
  417. m_ctx = 2;
  418. } else if (LEFT_INTRA) {
  419. if (ABOVE_SINGLE) {
  420. m_ctx = 4 * (ABOVE_FRAME_0 == LastFrame);
  421. } else {
  422. m_ctx = 1 + (ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame);
  423. }
  424. } else if (ABOVE_INTRA) {
  425. if (LEFT_SINGLE) {
  426. m_ctx = 4 * (LEFT_FRAME_0 == LastFrame);
  427. } else {
  428. m_ctx = 1 + (LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame);
  429. }
  430. } else {
  431. if (LEFT_SINGLE && ABOVE_SINGLE) {
  432. m_ctx = 2 * (ABOVE_FRAME_0 == LastFrame) + 2 * (LEFT_FRAME_0 == LastFrame);
  433. } else if (!LEFT_SINGLE && !ABOVE_SINGLE) {
  434. auto above_is_last = ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame;
  435. auto left_is_last = LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame;
  436. m_ctx = 1 + (above_is_last || left_is_last);
  437. } else {
  438. auto rfs = ABOVE_SINGLE ? ABOVE_FRAME_0 : LEFT_FRAME_0;
  439. auto crf1 = ABOVE_SINGLE ? LEFT_FRAME_0 : ABOVE_FRAME_0;
  440. auto crf2 = ABOVE_SINGLE ? LEFT_FRAME_1 : ABOVE_FRAME_1;
  441. m_ctx = crf1 == LastFrame || crf2 == LastFrame;
  442. if (rfs == LastFrame)
  443. m_ctx += 3;
  444. }
  445. }
  446. } else if (AVAIL_U) {
  447. if (ABOVE_INTRA) {
  448. m_ctx = 2;
  449. } else {
  450. if (ABOVE_SINGLE) {
  451. m_ctx = 4 * (ABOVE_FRAME_0 == LastFrame);
  452. } else {
  453. m_ctx = 1 + (ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame);
  454. }
  455. }
  456. } else if (AVAIL_L) {
  457. if (LEFT_INTRA) {
  458. m_ctx = 2;
  459. } else {
  460. if (LEFT_SINGLE) {
  461. m_ctx = 4 * (LEFT_FRAME_0 == LastFrame);
  462. } else {
  463. m_ctx = 1 + (LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame);
  464. }
  465. }
  466. } else {
  467. m_ctx = 2;
  468. }
  469. return m_decoder.m_probability_tables->single_ref_prob()[m_ctx][0];
  470. }
  471. u8 TreeParser::calculate_single_ref_p2_probability()
  472. {
  473. if (AVAIL_U && AVAIL_L) {
  474. if (ABOVE_INTRA && LEFT_INTRA) {
  475. m_ctx = 2;
  476. } else if (LEFT_INTRA) {
  477. if (ABOVE_SINGLE) {
  478. if (ABOVE_FRAME_0 == LastFrame) {
  479. m_ctx = 3;
  480. } else {
  481. m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
  482. }
  483. } else {
  484. m_ctx = 1 + 2 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
  485. }
  486. } else if (ABOVE_INTRA) {
  487. if (LEFT_SINGLE) {
  488. if (LEFT_FRAME_0 == LastFrame) {
  489. m_ctx = 3;
  490. } else {
  491. m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
  492. }
  493. } else {
  494. m_ctx = 1 + 2 * (LEFT_FRAME_0 == GoldenFrame || LEFT_FRAME_1 == GoldenFrame);
  495. }
  496. } else {
  497. if (LEFT_SINGLE && ABOVE_SINGLE) {
  498. auto above_last = ABOVE_FRAME_0 == LastFrame;
  499. auto left_last = LEFT_FRAME_0 == LastFrame;
  500. if (above_last && left_last) {
  501. m_ctx = 3;
  502. } else if (above_last) {
  503. m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
  504. } else if (left_last) {
  505. m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
  506. } else {
  507. m_ctx = 2 * (ABOVE_FRAME_0 == GoldenFrame) + 2 * (LEFT_FRAME_0 == GoldenFrame);
  508. }
  509. } else if (!LEFT_SINGLE && !ABOVE_SINGLE) {
  510. if (ABOVE_FRAME_0 == LEFT_FRAME_0 && ABOVE_FRAME_1 == LEFT_FRAME_1) {
  511. m_ctx = 3 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
  512. } else {
  513. m_ctx = 2;
  514. }
  515. } else {
  516. auto rfs = ABOVE_SINGLE ? ABOVE_FRAME_0 : LEFT_FRAME_0;
  517. auto crf1 = ABOVE_SINGLE ? LEFT_FRAME_0 : ABOVE_FRAME_0;
  518. auto crf2 = ABOVE_SINGLE ? LEFT_FRAME_1 : ABOVE_FRAME_1;
  519. m_ctx = crf1 == GoldenFrame || crf2 == GoldenFrame;
  520. if (rfs == GoldenFrame) {
  521. m_ctx += 3;
  522. } else if (rfs != AltRefFrame) {
  523. m_ctx = 1 + (2 * m_ctx);
  524. }
  525. }
  526. }
  527. } else if (AVAIL_U) {
  528. if (ABOVE_INTRA || (ABOVE_FRAME_0 == LastFrame && ABOVE_SINGLE)) {
  529. m_ctx = 2;
  530. } else if (ABOVE_SINGLE) {
  531. m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
  532. } else {
  533. m_ctx = 3 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
  534. }
  535. } else if (AVAIL_L) {
  536. if (LEFT_INTRA || (LEFT_FRAME_0 == LastFrame && LEFT_SINGLE)) {
  537. m_ctx = 2;
  538. } else if (LEFT_SINGLE) {
  539. m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
  540. } else {
  541. m_ctx = 3 * (LEFT_FRAME_0 == GoldenFrame || LEFT_FRAME_1 == GoldenFrame);
  542. }
  543. } else {
  544. m_ctx = 2;
  545. }
  546. return m_decoder.m_probability_tables->single_ref_prob()[m_ctx][1];
  547. }
  548. u8 TreeParser::calculate_tx_size_probability(u8 node)
  549. {
  550. auto above = m_decoder.m_max_tx_size;
  551. auto left = m_decoder.m_max_tx_size;
  552. if (AVAIL_U) {
  553. auto u_pos = (m_decoder.m_mi_row - 1) * m_decoder.m_mi_cols + m_decoder.m_mi_col;
  554. if (!m_decoder.m_skips[u_pos])
  555. above = m_decoder.m_tx_sizes[u_pos];
  556. }
  557. if (AVAIL_L) {
  558. auto l_pos = m_decoder.m_mi_row * m_decoder.m_mi_cols + m_decoder.m_mi_col - 1;
  559. if (!m_decoder.m_skips[l_pos])
  560. left = m_decoder.m_tx_sizes[l_pos];
  561. }
  562. if (!AVAIL_L)
  563. left = above;
  564. if (!AVAIL_U)
  565. above = left;
  566. m_ctx = (above + left) > m_decoder.m_max_tx_size;
  567. return m_decoder.m_probability_tables->tx_probs()[m_decoder.m_max_tx_size][m_ctx][node];
  568. }
  569. u8 TreeParser::calculate_inter_mode_probability(u8 node)
  570. {
  571. m_ctx = m_decoder.m_mode_context[m_decoder.m_ref_frame[0]];
  572. return m_decoder.m_probability_tables->inter_mode_probs()[m_ctx][node];
  573. }
  574. u8 TreeParser::calculate_interp_filter_probability(u8 node)
  575. {
  576. // NOTE: SWITCHABLE_FILTERS is not used in the spec for this function. Therefore, the number
  577. // was demystified by referencing the reference codec libvpx:
  578. // https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/common/vp9_pred_common.h#L69
  579. auto left_interp = (AVAIL_L && m_decoder.m_left_ref_frame[0] > IntraFrame)
  580. ? m_decoder.m_interp_filters[m_decoder.get_image_index(m_decoder.m_mi_row, m_decoder.m_mi_col - 1)]
  581. : SWITCHABLE_FILTERS;
  582. auto above_interp = (AVAIL_U && m_decoder.m_above_ref_frame[0] > IntraFrame)
  583. ? m_decoder.m_interp_filters[m_decoder.get_image_index(m_decoder.m_mi_row - 1, m_decoder.m_mi_col)]
  584. : SWITCHABLE_FILTERS;
  585. if (left_interp == above_interp)
  586. m_ctx = left_interp;
  587. else if (left_interp == SWITCHABLE_FILTERS)
  588. m_ctx = above_interp;
  589. else if (above_interp == SWITCHABLE_FILTERS)
  590. m_ctx = left_interp;
  591. else
  592. m_ctx = SWITCHABLE_FILTERS;
  593. return m_decoder.m_probability_tables->interp_filter_probs()[m_ctx][node];
  594. }
  595. void TreeParser::set_tokens_variables(u8 band, u32 c, u32 plane, TXSize tx_size, u32 pos)
  596. {
  597. m_band = band;
  598. m_c = c;
  599. m_plane = plane;
  600. m_tx_size = tx_size;
  601. m_pos = pos;
  602. if (m_c == 0) {
  603. auto sx = m_plane > 0 ? m_decoder.m_subsampling_x : 0;
  604. auto sy = m_plane > 0 ? m_decoder.m_subsampling_y : 0;
  605. auto max_x = (2 * m_decoder.m_mi_cols) >> sx;
  606. auto max_y = (2 * m_decoder.m_mi_rows) >> sy;
  607. u8 numpts = 1 << m_tx_size;
  608. auto x4 = m_start_x >> 2;
  609. auto y4 = m_start_y >> 2;
  610. u32 above = 0;
  611. u32 left = 0;
  612. for (size_t i = 0; i < numpts; i++) {
  613. if (x4 + i < max_x)
  614. above |= m_decoder.m_above_nonzero_context[m_plane][x4 + i];
  615. if (y4 + i < max_y)
  616. left |= m_decoder.m_left_nonzero_context[m_plane][y4 + i];
  617. }
  618. m_ctx = above + left;
  619. } else {
  620. u32 neighbor_0, neighbor_1;
  621. auto n = 4 << m_tx_size;
  622. auto i = m_pos / n;
  623. auto j = m_pos % n;
  624. auto a = i > 0 ? (i - 1) * n + j : 0;
  625. auto a2 = i * n + j - 1;
  626. if (i > 0 && j > 0) {
  627. if (m_decoder.m_tx_type == DCT_ADST) {
  628. neighbor_0 = a;
  629. neighbor_1 = a;
  630. } else if (m_decoder.m_tx_type == ADST_DCT) {
  631. neighbor_0 = a2;
  632. neighbor_1 = a2;
  633. } else {
  634. neighbor_0 = a;
  635. neighbor_1 = a2;
  636. }
  637. } else if (i > 0) {
  638. neighbor_0 = a;
  639. neighbor_1 = a;
  640. } else {
  641. neighbor_0 = a2;
  642. neighbor_1 = a2;
  643. }
  644. m_ctx = (1 + m_decoder.m_token_cache[neighbor_0] + m_decoder.m_token_cache[neighbor_1]) >> 1;
  645. }
  646. }
  647. u8 TreeParser::calculate_more_coefs_probability()
  648. {
  649. return m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][0];
  650. }
  651. u8 TreeParser::calculate_token_probability(u8 node)
  652. {
  653. auto prob = m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, 1 + node)];
  654. if (node < 2)
  655. return prob;
  656. auto x = (prob - 1) / 2;
  657. auto& pareto_table = m_decoder.m_probability_tables->pareto_table();
  658. if (prob & 1)
  659. return pareto_table[x][node - 2];
  660. return (pareto_table[x][node - 2] + pareto_table[x + 1][node - 2]) >> 1;
  661. }
  662. void TreeParser::count_syntax_element(SyntaxElementType type, int value)
  663. {
  664. auto increment = [](u8& count) {
  665. increment_counter(count);
  666. };
  667. switch (type) {
  668. case SyntaxElementType::Skip:
  669. increment(m_decoder.m_syntax_element_counter->m_counts_skip[m_ctx][value]);
  670. return;
  671. case SyntaxElementType::IsInter:
  672. increment(m_decoder.m_syntax_element_counter->m_counts_is_inter[m_ctx][value]);
  673. return;
  674. case SyntaxElementType::CompMode:
  675. increment(m_decoder.m_syntax_element_counter->m_counts_comp_mode[m_ctx][value]);
  676. return;
  677. case SyntaxElementType::CompRef:
  678. increment(m_decoder.m_syntax_element_counter->m_counts_comp_ref[m_ctx][value]);
  679. return;
  680. case SyntaxElementType::SingleRefP1:
  681. increment(m_decoder.m_syntax_element_counter->m_counts_single_ref[m_ctx][0][value]);
  682. return;
  683. case SyntaxElementType::SingleRefP2:
  684. increment(m_decoder.m_syntax_element_counter->m_counts_single_ref[m_ctx][1][value]);
  685. return;
  686. case SyntaxElementType::MVSign:
  687. increment(m_decoder.m_syntax_element_counter->m_counts_mv_sign[m_mv_component][value]);
  688. return;
  689. case SyntaxElementType::MVClass0Bit:
  690. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_bit[m_mv_component][value]);
  691. return;
  692. case SyntaxElementType::MVBit:
  693. VERIFY(m_mv_bit < MV_OFFSET_BITS);
  694. increment(m_decoder.m_syntax_element_counter->m_counts_mv_bits[m_mv_component][m_mv_bit][value]);
  695. m_mv_bit = 0xFF;
  696. return;
  697. case SyntaxElementType::TXSize:
  698. increment(m_decoder.m_syntax_element_counter->m_counts_tx_size[m_decoder.m_max_tx_size][m_ctx][value]);
  699. return;
  700. case SyntaxElementType::InterMode:
  701. increment(m_decoder.m_syntax_element_counter->m_counts_inter_mode[m_ctx][value]);
  702. return;
  703. case SyntaxElementType::InterpFilter:
  704. increment(m_decoder.m_syntax_element_counter->m_counts_interp_filter[m_ctx][value]);
  705. return;
  706. case SyntaxElementType::MVJoint:
  707. increment(m_decoder.m_syntax_element_counter->m_counts_mv_joint[value]);
  708. return;
  709. case SyntaxElementType::MVClass:
  710. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class[m_mv_component][value]);
  711. return;
  712. case SyntaxElementType::MVClass0FR:
  713. VERIFY(m_mv_class0_bit < CLASS0_SIZE);
  714. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_fr[m_mv_component][m_mv_class0_bit][value]);
  715. m_mv_class0_bit = 0xFF;
  716. return;
  717. case SyntaxElementType::MVClass0HP:
  718. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_hp[m_mv_component][value]);
  719. return;
  720. case SyntaxElementType::MVFR:
  721. increment(m_decoder.m_syntax_element_counter->m_counts_mv_fr[m_mv_component][value]);
  722. return;
  723. case SyntaxElementType::MVHP:
  724. increment(m_decoder.m_syntax_element_counter->m_counts_mv_hp[m_mv_component][value]);
  725. return;
  726. case SyntaxElementType::Token:
  727. increment(m_decoder.m_syntax_element_counter->m_counts_token[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, value)]);
  728. return;
  729. case SyntaxElementType::MoreCoefs:
  730. increment(m_decoder.m_syntax_element_counter->m_counts_more_coefs[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][value]);
  731. return;
  732. case SyntaxElementType::SegmentID:
  733. case SyntaxElementType::SegIDPredicted:
  734. // No counting required
  735. return;
  736. default:
  737. break;
  738. }
  739. VERIFY_NOT_REACHED();
  740. }
  741. }