Task.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831
  1. #include "types.h"
  2. #include "Task.h"
  3. #include "kmalloc.h"
  4. #include "VGA.h"
  5. #include "StdLib.h"
  6. #include "i386.h"
  7. #include "system.h"
  8. #include <VirtualFileSystem/FileHandle.h>
  9. #include <VirtualFileSystem/VirtualFileSystem.h>
  10. #include <ELFLoader/ExecSpace.h>
  11. #include "MemoryManager.h"
  12. #include "errno.h"
  13. #include "i8253.h"
  14. #include "RTC.h"
  15. //#define DEBUG_IO
  16. //#define TASK_DEBUG
  17. static const DWORD defaultStackSize = 16384;
  18. Task* current;
  19. Task* s_kernelTask;
  20. static pid_t next_pid;
  21. static InlineLinkedList<Task>* s_tasks;
  22. static InlineLinkedList<Task>* s_deadTasks;
  23. static String* s_hostname;
  24. static String& hostname(InterruptDisabler&)
  25. {
  26. ASSERT(s_hostname);
  27. return *s_hostname;
  28. }
  29. static bool contextSwitch(Task*);
  30. static void redoKernelTaskTSS()
  31. {
  32. if (!s_kernelTask->selector())
  33. s_kernelTask->setSelector(allocateGDTEntry());
  34. auto& tssDescriptor = getGDTEntry(s_kernelTask->selector());
  35. tssDescriptor.setBase(&s_kernelTask->tss());
  36. tssDescriptor.setLimit(0xffff);
  37. tssDescriptor.dpl = 0;
  38. tssDescriptor.segment_present = 1;
  39. tssDescriptor.granularity = 1;
  40. tssDescriptor.zero = 0;
  41. tssDescriptor.operation_size = 1;
  42. tssDescriptor.descriptor_type = 0;
  43. tssDescriptor.type = 9;
  44. flushGDT();
  45. }
  46. void Task::prepForIRETToNewTask()
  47. {
  48. redoKernelTaskTSS();
  49. s_kernelTask->tss().backlink = current->selector();
  50. loadTaskRegister(s_kernelTask->selector());
  51. }
  52. void Task::initialize()
  53. {
  54. current = nullptr;
  55. next_pid = 0;
  56. s_tasks = new InlineLinkedList<Task>;
  57. s_deadTasks = new InlineLinkedList<Task>;
  58. s_kernelTask = Task::createKernelTask(nullptr, "colonel");
  59. s_hostname = new String("birx");
  60. redoKernelTaskTSS();
  61. loadTaskRegister(s_kernelTask->selector());
  62. }
  63. #ifdef TASK_SANITY_CHECKS
  64. void Task::checkSanity(const char* msg)
  65. {
  66. char ch = current->name()[0];
  67. kprintf("<%p> %s{%u}%b [%d] :%b: sanity check <%s>\n",
  68. current->name().characters(),
  69. current->name().characters(),
  70. current->name().length(),
  71. current->name()[current->name().length() - 1],
  72. current->pid(), ch, msg ? msg : "");
  73. ASSERT((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'));
  74. }
  75. #endif
  76. void Task::allocateLDT()
  77. {
  78. ASSERT(!m_tss.ldt);
  79. static const WORD numLDTEntries = 4;
  80. WORD newLDTSelector = allocateGDTEntry();
  81. m_ldtEntries = new Descriptor[numLDTEntries];
  82. #if 0
  83. kprintf("new ldt selector = %x\n", newLDTSelector);
  84. kprintf("new ldt table at = %p\n", m_ldtEntries);
  85. kprintf("new ldt table size = %u\n", (numLDTEntries * 8) - 1);
  86. #endif
  87. Descriptor& ldt = getGDTEntry(newLDTSelector);
  88. ldt.setBase(m_ldtEntries);
  89. ldt.setLimit(numLDTEntries * 8 - 1);
  90. ldt.dpl = 0;
  91. ldt.segment_present = 1;
  92. ldt.granularity = 0;
  93. ldt.zero = 0;
  94. ldt.operation_size = 1;
  95. ldt.descriptor_type = 0;
  96. ldt.type = Descriptor::LDT;
  97. m_tss.ldt = newLDTSelector;
  98. }
  99. Vector<Task*> Task::allTasks()
  100. {
  101. InterruptDisabler disabler;
  102. Vector<Task*> tasks;
  103. tasks.ensureCapacity(s_tasks->sizeSlow());
  104. for (auto* task = s_tasks->head(); task; task = task->next())
  105. tasks.append(task);
  106. return tasks;
  107. }
  108. Task::Region* Task::allocateRegion(size_t size, String&& name)
  109. {
  110. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  111. auto zone = MemoryManager::the().createZone(size);
  112. ASSERT(zone);
  113. m_regions.append(make<Region>(m_nextRegion, size, move(zone), move(name)));
  114. m_nextRegion = m_nextRegion.offset(size).offset(16384);
  115. return m_regions.last().ptr();
  116. }
  117. bool Task::deallocateRegion(Region& region)
  118. {
  119. for (size_t i = 0; i < m_regions.size(); ++i) {
  120. if (m_regions[i].ptr() == &region) {
  121. // FIXME: This seems racy.
  122. MemoryManager::the().unmapRegion(*this, region);
  123. m_regions.remove(i);
  124. return true;
  125. }
  126. }
  127. return false;
  128. }
  129. Task::Region* Task::regionFromRange(LinearAddress laddr, size_t size)
  130. {
  131. for (auto& region : m_regions) {
  132. if (region->linearAddress == laddr && region->size == size)
  133. return region.ptr();
  134. }
  135. return nullptr;
  136. }
  137. void* Task::sys$mmap(void* addr, size_t size)
  138. {
  139. // FIXME: Implement mapping at a client-preferred address.
  140. ASSERT(addr == nullptr);
  141. auto* region = allocateRegion(size, "mmap");
  142. if (!region)
  143. return (void*)-1;
  144. MemoryManager::the().mapRegion(*this, *region);
  145. return (void*)region->linearAddress.get();
  146. }
  147. int Task::sys$munmap(void* addr, size_t size)
  148. {
  149. auto* region = regionFromRange(LinearAddress((dword)addr), size);
  150. if (!region)
  151. return -1;
  152. if (!deallocateRegion(*region))
  153. return -1;
  154. return 0;
  155. }
  156. int Task::sys$gethostname(char* buffer, size_t size)
  157. {
  158. String hn;
  159. {
  160. InterruptDisabler disabler;
  161. hn = hostname(disabler).isolatedCopy();
  162. }
  163. if (size < (hn.length() + 1))
  164. return -ENAMETOOLONG;
  165. memcpy(buffer, hn.characters(), size);
  166. }
  167. int Task::sys$spawn(const char* path)
  168. {
  169. int error = 0;
  170. auto* child = Task::createUserTask(path, m_uid, m_gid, m_pid, error);
  171. if (child)
  172. return child->pid();
  173. return error;
  174. }
  175. Task* Task::createUserTask(const String& path, uid_t uid, gid_t gid, pid_t parentPID, int& error)
  176. {
  177. auto parts = path.split('/');
  178. if (parts.isEmpty()) {
  179. error = -ENOENT;
  180. return nullptr;
  181. }
  182. auto handle = VirtualFileSystem::the().open(path);
  183. if (!handle) {
  184. error = -ENOENT; // FIXME: Get a more detailed error from VFS.
  185. return nullptr;
  186. }
  187. auto elfData = handle->readEntireFile();
  188. if (!elfData) {
  189. error = -EIO; // FIXME: Get a more detailed error from VFS.
  190. return nullptr;
  191. }
  192. InterruptDisabler disabler; // FIXME: Get rid of this, jesus christ. This "critical" section is HUGE.
  193. Task* t = new Task(parts.takeLast(), uid, gid, parentPID, Ring3);
  194. ExecSpace space;
  195. space.hookableAlloc = [&] (const String& name, size_t size) {
  196. if (!size)
  197. return (void*)nullptr;
  198. size = ((size / 4096) + 1) * 4096;
  199. Region* region = t->allocateRegion(size, String(name));
  200. ASSERT(region);
  201. MemoryManager::the().mapRegion(*t, *region);
  202. return (void*)region->linearAddress.asPtr();
  203. };
  204. bool success = space.loadELF(move(elfData));
  205. if (!success) {
  206. delete t;
  207. kprintf("Failure loading ELF %s\n", path.characters());
  208. error = -ENOEXEC;
  209. return nullptr;
  210. }
  211. t->m_tss.eip = (dword)space.symbolPtr("_start");
  212. if (!t->m_tss.eip) {
  213. delete t;
  214. error = -ENOEXEC;
  215. return nullptr;
  216. }
  217. MemoryManager::the().unmapRegionsForTask(*t);
  218. MemoryManager::the().mapRegionsForTask(*current);
  219. s_tasks->prepend(t);
  220. system.nprocess++;
  221. #ifdef TASK_DEBUG
  222. kprintf("Task %u (%s) spawned @ %p\n", t->pid(), t->name().characters(), t->m_tss.eip);
  223. #endif
  224. error = 0;
  225. return t;
  226. }
  227. Task* Task::createKernelTask(void (*e)(), String&& name)
  228. {
  229. Task* task = new Task(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
  230. task->m_tss.eip = (dword)e;
  231. if (task->pid() != 0) {
  232. InterruptDisabler disabler;
  233. s_tasks->prepend(task);
  234. system.nprocess++;
  235. #ifdef TASK_DEBUG
  236. kprintf("Kernel task %u (%s) spawned @ %p\n", task->pid(), task->name().characters(), task->m_tss.eip);
  237. #endif
  238. }
  239. return task;
  240. }
  241. Task::Task(String&& name, uid_t uid, gid_t gid, pid_t parentPID, RingLevel ring)
  242. : m_name(move(name))
  243. , m_pid(next_pid++)
  244. , m_uid(uid)
  245. , m_gid(gid)
  246. , m_state(Runnable)
  247. , m_ring(ring)
  248. , m_parentPID(parentPID)
  249. {
  250. m_fileHandles.append(nullptr); // stdin
  251. m_fileHandles.append(nullptr); // stdout
  252. m_fileHandles.append(nullptr); // stderr
  253. auto* parentTask = Task::fromPID(parentPID);
  254. if (parentTask)
  255. m_cwd = parentTask->m_cwd;
  256. else
  257. m_cwd = "/";
  258. m_nextRegion = LinearAddress(0x600000);
  259. memset(&m_tss, 0, sizeof(m_tss));
  260. if (isRing3()) {
  261. memset(&m_ldtEntries, 0, sizeof(m_ldtEntries));
  262. allocateLDT();
  263. }
  264. // Only IF is set when a task boots.
  265. m_tss.eflags = 0x0202;
  266. word cs, ds, ss;
  267. if (isRing0()) {
  268. cs = 0x08;
  269. ds = 0x10;
  270. ss = 0x10;
  271. } else {
  272. cs = 0x1b;
  273. ds = 0x23;
  274. ss = 0x23;
  275. }
  276. m_tss.ds = ds;
  277. m_tss.es = ds;
  278. m_tss.fs = ds;
  279. m_tss.gs = ds;
  280. m_tss.ss = ss;
  281. m_tss.cs = cs;
  282. m_tss.cr3 = MemoryManager::the().pageDirectoryBase().get();
  283. if (isRing0()) {
  284. // FIXME: This memory is leaked.
  285. // But uh, there's also no kernel task termination, so I guess it's not technically leaked...
  286. dword stackBottom = (dword)kmalloc(defaultStackSize);
  287. m_stackTop = (stackBottom + defaultStackSize) & 0xffffff8;
  288. m_tss.esp = m_stackTop;
  289. } else {
  290. auto* region = allocateRegion(defaultStackSize, "stack");
  291. ASSERT(region);
  292. m_stackTop = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
  293. }
  294. m_tss.esp = m_stackTop;
  295. if (isRing3()) {
  296. // Ring3 tasks need a separate stack for Ring0.
  297. m_kernelStack = kmalloc(defaultStackSize);
  298. DWORD ring0StackTop = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8;
  299. m_tss.ss0 = 0x10;
  300. m_tss.esp0 = ring0StackTop;
  301. }
  302. // HACK: Ring2 SS in the TSS is the current PID.
  303. m_tss.ss2 = m_pid;
  304. m_farPtr.offset = 0x98765432;
  305. }
  306. Task::~Task()
  307. {
  308. InterruptDisabler disabler;
  309. system.nprocess--;
  310. delete [] m_ldtEntries;
  311. m_ldtEntries = nullptr;
  312. if (m_kernelStack) {
  313. kfree(m_kernelStack);
  314. m_kernelStack = nullptr;
  315. }
  316. }
  317. void Task::dumpRegions()
  318. {
  319. kprintf("Task %s(%u) regions:\n", name().characters(), pid());
  320. kprintf("BEGIN END SIZE NAME\n");
  321. for (auto& region : m_regions) {
  322. kprintf("%x -- %x %x %s\n",
  323. region->linearAddress.get(),
  324. region->linearAddress.offset(region->size - 1).get(),
  325. region->size,
  326. region->name.characters());
  327. }
  328. }
  329. void Task::sys$exit(int status)
  330. {
  331. cli();
  332. #ifdef TASK_DEBUG
  333. kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
  334. #endif
  335. setState(Exiting);
  336. MemoryManager::the().unmapRegionsForTask(*this);
  337. s_tasks->remove(this);
  338. if (!scheduleNewTask()) {
  339. kprintf("Task::taskDidCrash: Failed to schedule a new task :(\n");
  340. HANG;
  341. }
  342. s_deadTasks->append(this);
  343. switchNow();
  344. }
  345. void Task::taskDidCrash(Task* crashedTask)
  346. {
  347. ASSERT_INTERRUPTS_DISABLED();
  348. crashedTask->setState(Crashing);
  349. crashedTask->dumpRegions();
  350. s_tasks->remove(crashedTask);
  351. MemoryManager::the().unmapRegionsForTask(*crashedTask);
  352. if (!scheduleNewTask()) {
  353. kprintf("Task::taskDidCrash: Failed to schedule a new task :(\n");
  354. HANG;
  355. }
  356. s_deadTasks->append(crashedTask);
  357. switchNow();
  358. }
  359. void Task::doHouseKeeping()
  360. {
  361. InterruptDisabler disabler;
  362. if (s_deadTasks->isEmpty())
  363. return;
  364. Task* next = nullptr;
  365. for (auto* deadTask = s_deadTasks->head(); deadTask; deadTask = next) {
  366. next = deadTask->next();
  367. delete deadTask;
  368. }
  369. s_deadTasks->clear();
  370. }
  371. void yield()
  372. {
  373. if (!current) {
  374. kprintf( "PANIC: yield() with !current" );
  375. HANG;
  376. }
  377. //kprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
  378. InterruptDisabler disabler;
  379. if (!scheduleNewTask())
  380. return;
  381. //kprintf("yield() jumping to new task: %x (%s)\n", current->farPtr().selector, current->name().characters());
  382. switchNow();
  383. }
  384. void switchNow()
  385. {
  386. Descriptor& descriptor = getGDTEntry(current->selector());
  387. descriptor.type = 9;
  388. flushGDT();
  389. asm("sti\n"
  390. "ljmp *(%%eax)\n"
  391. ::"a"(&current->farPtr())
  392. );
  393. }
  394. bool scheduleNewTask()
  395. {
  396. ASSERT_INTERRUPTS_DISABLED();
  397. if (!current) {
  398. // XXX: The first ever context_switch() goes to the idle task.
  399. // This to setup a reliable place we can return to.
  400. return contextSwitch(Task::kernelTask());
  401. }
  402. // Check and unblock tasks whose wait conditions have been met.
  403. for (auto* task = s_tasks->head(); task; task = task->next()) {
  404. if (task->state() == Task::BlockedSleep) {
  405. if (task->wakeupTime() <= system.uptime) {
  406. task->unblock();
  407. continue;
  408. }
  409. }
  410. if (task->state() == Task::BlockedWait) {
  411. if (!Task::fromPID(task->waitee())) {
  412. task->unblock();
  413. continue;
  414. }
  415. }
  416. if (task->state() == Task::BlockedRead) {
  417. ASSERT(task->m_fdBlockedOnRead != -1);
  418. if (task->m_fileHandles[task->m_fdBlockedOnRead]->hasDataAvailableForRead()) {
  419. task->unblock();
  420. continue;
  421. }
  422. }
  423. }
  424. #if 0
  425. kprintf("Scheduler choices:\n");
  426. for (auto* task = s_tasks->head(); task; task = task->next()) {
  427. if (task->state() == Task::BlockedWait || task->state() == Task::BlockedSleep)
  428. continue;
  429. kprintf("%w %s(%u)\n", task->state(), task->name().characters(), task->pid());
  430. }
  431. #endif
  432. auto* prevHead = s_tasks->head();
  433. for (;;) {
  434. // Move head to tail.
  435. s_tasks->append(s_tasks->removeHead());
  436. auto* task = s_tasks->head();
  437. if (task->state() == Task::Runnable || task->state() == Task::Running) {
  438. //kprintf("switch to %s (%p vs %p)\n", task->name().characters(), task, current);
  439. return contextSwitch(task);
  440. }
  441. if (task == prevHead) {
  442. // Back at task_head, nothing wants to run.
  443. kprintf("Nothing wants to run!\n");
  444. kprintf("PID OWNER STATE NSCHED NAME\n");
  445. for (auto* task = s_tasks->head(); task; task = task->next()) {
  446. kprintf("%w %w:%w %b %w %s\n",
  447. task->pid(),
  448. task->uid(),
  449. task->gid(),
  450. task->state(),
  451. task->timesScheduled(),
  452. task->name().characters());
  453. }
  454. kprintf("Switch to kernel task\n");
  455. return contextSwitch(Task::kernelTask());
  456. }
  457. }
  458. }
  459. static bool contextSwitch(Task* t)
  460. {
  461. //kprintf("c_s to %s (same:%u)\n", t->name().characters(), current == t);
  462. t->setTicksLeft(5);
  463. t->didSchedule();
  464. if (current == t)
  465. return false;
  466. // Some sanity checking to force a crash earlier.
  467. auto csRPL = t->tss().cs & 3;
  468. auto ssRPL = t->tss().ss & 3;
  469. if (csRPL != ssRPL) {
  470. kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n",
  471. current->name().characters(), current->pid(),
  472. t->name().characters(), t->pid()
  473. );
  474. kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip);
  475. kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp);
  476. ASSERT(csRPL == ssRPL);
  477. }
  478. if (current) {
  479. // If the last task hasn't blocked (still marked as running),
  480. // mark it as runnable for the next round.
  481. if (current->state() == Task::Running)
  482. current->setState(Task::Runnable);
  483. bool success = MemoryManager::the().unmapRegionsForTask(*current);
  484. ASSERT(success);
  485. }
  486. bool success = MemoryManager::the().mapRegionsForTask(*t);
  487. ASSERT(success);
  488. current = t;
  489. t->setState(Task::Running);
  490. if (!t->selector())
  491. t->setSelector(allocateGDTEntry());
  492. auto& tssDescriptor = getGDTEntry(t->selector());
  493. tssDescriptor.limit_hi = 0;
  494. tssDescriptor.limit_lo = 0xFFFF;
  495. tssDescriptor.base_lo = (DWORD)(&t->tss()) & 0xFFFF;
  496. tssDescriptor.base_hi = ((DWORD)(&t->tss()) >> 16) & 0xFF;
  497. tssDescriptor.base_hi2 = ((DWORD)(&t->tss()) >> 24) & 0xFF;
  498. tssDescriptor.dpl = 0;
  499. tssDescriptor.segment_present = 1;
  500. tssDescriptor.granularity = 1;
  501. tssDescriptor.zero = 0;
  502. tssDescriptor.operation_size = 1;
  503. tssDescriptor.descriptor_type = 0;
  504. tssDescriptor.type = 11; // Busy TSS
  505. flushGDT();
  506. return true;
  507. }
  508. Task* Task::fromPID(pid_t pid)
  509. {
  510. for (auto* task = s_tasks->head(); task; task = task->next()) {
  511. if (task->pid() == pid)
  512. return task;
  513. }
  514. return nullptr;
  515. }
  516. FileHandle* Task::fileHandleIfExists(int fd)
  517. {
  518. if (fd < 0)
  519. return nullptr;
  520. if ((unsigned)fd < m_fileHandles.size())
  521. return m_fileHandles[fd].ptr();
  522. return nullptr;
  523. }
  524. ssize_t Task::sys$get_dir_entries(int fd, void* buffer, size_t size)
  525. {
  526. auto* handle = fileHandleIfExists(fd);
  527. if (!handle)
  528. return -1;
  529. return handle->get_dir_entries((byte*)buffer, size);
  530. }
  531. int Task::sys$seek(int fd, int offset)
  532. {
  533. auto* handle = fileHandleIfExists(fd);
  534. if (!handle)
  535. return -1;
  536. return handle->seek(offset, SEEK_SET);
  537. }
  538. ssize_t Task::sys$read(int fd, void* outbuf, size_t nread)
  539. {
  540. Task::checkSanity("Task::sys$read");
  541. #ifdef DEBUG_IO
  542. kprintf("Task::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread);
  543. #endif
  544. auto* handle = fileHandleIfExists(fd);
  545. #ifdef DEBUG_IO
  546. kprintf("Task::sys$read: handle=%p\n", handle);
  547. #endif
  548. if (!handle) {
  549. kprintf("Task::sys$read: handle not found :(\n");
  550. return -1;
  551. }
  552. #ifdef DEBUG_IO
  553. kprintf("call read on handle=%p\n", handle);
  554. #endif
  555. if (handle->isBlocking()) {
  556. if (!handle->hasDataAvailableForRead()) {
  557. m_fdBlockedOnRead = fd;
  558. block(BlockedRead);
  559. yield();
  560. }
  561. }
  562. nread = handle->read((byte*)outbuf, nread);
  563. #ifdef DEBUG_IO
  564. kprintf("Task::sys$read: nread=%u\n", nread);
  565. #endif
  566. return nread;
  567. }
  568. int Task::sys$close(int fd)
  569. {
  570. auto* handle = fileHandleIfExists(fd);
  571. if (!handle)
  572. return -1;
  573. // FIXME: Implement.
  574. return 0;
  575. }
  576. int Task::sys$lstat(const char* path, void* statbuf)
  577. {
  578. auto handle = VirtualFileSystem::the().open(move(path));
  579. if (!handle)
  580. return -1;
  581. handle->stat((Unix::stat*)statbuf);
  582. return 0;
  583. }
  584. int Task::sys$getcwd(char* buffer, size_t size)
  585. {
  586. if (size < m_cwd.length() + 1) {
  587. // FIXME: return -ERANGE;
  588. return -1;
  589. }
  590. memcpy(buffer, m_cwd.characters(), m_cwd.length());
  591. buffer[m_cwd.length()] = '\0';
  592. return 0;
  593. }
  594. int Task::sys$open(const char* path, size_t pathLength)
  595. {
  596. Task::checkSanity("sys$open");
  597. #ifdef DEBUG_IO
  598. kprintf("Task::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength);
  599. #endif
  600. auto* handle = openFile(String(path, pathLength));
  601. if (handle)
  602. return handle->fd();
  603. return -1;
  604. }
  605. FileHandle* Task::openFile(String&& path)
  606. {
  607. auto handle = VirtualFileSystem::the().open(move(path));
  608. if (!handle) {
  609. #ifdef DEBUG_IO
  610. kprintf("vfs::open() failed\n");
  611. #endif
  612. return nullptr;
  613. }
  614. handle->setFD(m_fileHandles.size());
  615. #ifdef DEBUG_IO
  616. kprintf("vfs::open() worked! handle=%p, fd=%d\n", handle.ptr(), handle->fd());
  617. #endif
  618. m_fileHandles.append(move(handle)); // FIXME: allow non-move Vector::append
  619. return m_fileHandles.last().ptr();
  620. }
  621. int Task::sys$kill(pid_t pid, int sig)
  622. {
  623. (void) sig;
  624. if (pid == 0) {
  625. // FIXME: Send to same-group processes.
  626. ASSERT(pid != 0);
  627. }
  628. if (pid == -1) {
  629. // FIXME: Send to all processes.
  630. ASSERT(pid != -1);
  631. }
  632. ASSERT_NOT_REACHED();
  633. Task* peer = Task::fromPID(pid);
  634. if (!peer) {
  635. // errno = ESRCH;
  636. return -1;
  637. }
  638. return -1;
  639. }
  640. int Task::sys$sleep(unsigned seconds)
  641. {
  642. if (!seconds)
  643. return 0;
  644. sleep(seconds * TICKS_PER_SECOND);
  645. return 0;
  646. }
  647. int Task::sys$gettimeofday(timeval* tv)
  648. {
  649. InterruptDisabler disabler;
  650. auto now = RTC::now();
  651. tv->tv_sec = now;
  652. tv->tv_usec = 0;
  653. return 0;
  654. }
  655. uid_t Task::sys$getuid()
  656. {
  657. return m_uid;
  658. }
  659. gid_t Task::sys$getgid()
  660. {
  661. return m_gid;
  662. }
  663. pid_t Task::sys$getpid()
  664. {
  665. return m_pid;
  666. }
  667. pid_t Task::sys$waitpid(pid_t waitee)
  668. {
  669. InterruptDisabler disabler;
  670. if (!Task::fromPID(waitee))
  671. return -1;
  672. m_waitee = waitee;
  673. block(BlockedWait);
  674. yield();
  675. return m_waitee;
  676. }
  677. void Task::unblock()
  678. {
  679. ASSERT(m_state != Task::Runnable && m_state != Task::Running);
  680. system.nblocked--;
  681. m_state = Task::Runnable;
  682. }
  683. void Task::block(Task::State state)
  684. {
  685. ASSERT(current->state() == Task::Running);
  686. system.nblocked++;
  687. current->setState(state);
  688. }
  689. void block(Task::State state)
  690. {
  691. current->block(state);
  692. yield();
  693. }
  694. void sleep(DWORD ticks)
  695. {
  696. ASSERT(current->state() == Task::Running);
  697. current->setWakeupTime(system.uptime + ticks);
  698. current->block(Task::BlockedSleep);
  699. yield();
  700. }
  701. Task* Task::kernelTask()
  702. {
  703. ASSERT(s_kernelTask);
  704. return s_kernelTask;
  705. }
  706. Task::Region::Region(LinearAddress a, size_t s, RetainPtr<Zone>&& z, String&& n)
  707. : linearAddress(a)
  708. , size(s)
  709. , zone(move(z))
  710. , name(move(n))
  711. {
  712. }
  713. Task::Region::~Region()
  714. {
  715. }