Thread.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. #include <Kernel/FileSystem/FileDescription.h>
  2. #include <Kernel/Process.h>
  3. #include <Kernel/Scheduler.h>
  4. #include <Kernel/Thread.h>
  5. #include <Kernel/VM/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. //#define SIGNAL_DEBUG
  8. HashTable<Thread*>& thread_table()
  9. {
  10. ASSERT_INTERRUPTS_DISABLED();
  11. static HashTable<Thread*>* table;
  12. if (!table)
  13. table = new HashTable<Thread*>;
  14. return *table;
  15. }
  16. Thread::SchedulerThreadList* Thread::g_runnable_threads;
  17. Thread::SchedulerThreadList* Thread::g_nonrunnable_threads;
  18. static const u32 default_kernel_stack_size = 65536;
  19. static const u32 default_userspace_stack_size = 65536;
  20. Thread::Thread(Process& process)
  21. : m_process(process)
  22. , m_tid(process.m_next_tid++)
  23. {
  24. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  25. set_default_signal_dispositions();
  26. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  27. memset(&m_tss, 0, sizeof(m_tss));
  28. // Only IF is set when a process boots.
  29. m_tss.eflags = 0x0202;
  30. u16 cs, ds, ss;
  31. if (m_process.is_ring0()) {
  32. cs = 0x08;
  33. ds = 0x10;
  34. ss = 0x10;
  35. } else {
  36. cs = 0x1b;
  37. ds = 0x23;
  38. ss = 0x23;
  39. }
  40. m_tss.ds = ds;
  41. m_tss.es = ds;
  42. m_tss.fs = ds;
  43. m_tss.gs = ds;
  44. m_tss.ss = ss;
  45. m_tss.cs = cs;
  46. m_tss.cr3 = m_process.page_directory().cr3();
  47. if (m_process.is_ring0()) {
  48. // FIXME: This memory is leaked.
  49. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  50. m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
  51. m_tss.esp = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  52. } else {
  53. // Ring3 processes need a separate stack for Ring0.
  54. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  55. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  56. m_tss.ss0 = 0x10;
  57. m_tss.esp0 = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  58. }
  59. // HACK: Ring2 SS in the TSS is the current PID.
  60. m_tss.ss2 = m_process.pid();
  61. m_far_ptr.offset = 0x98765432;
  62. if (m_process.pid() != 0) {
  63. InterruptDisabler disabler;
  64. thread_table().set(this);
  65. g_nonrunnable_threads->append(*this);
  66. }
  67. }
  68. Thread::~Thread()
  69. {
  70. dbgprintf("~Thread{%p}\n", this);
  71. kfree_aligned(m_fpu_state);
  72. {
  73. InterruptDisabler disabler;
  74. thread_table().remove(this);
  75. }
  76. if (g_last_fpu_thread == this)
  77. g_last_fpu_thread = nullptr;
  78. if (selector())
  79. gdt_free_entry(selector());
  80. }
  81. void Thread::unblock()
  82. {
  83. m_blocker = nullptr;
  84. if (current == this) {
  85. set_state(Thread::Running);
  86. return;
  87. }
  88. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  89. set_state(Thread::Runnable);
  90. }
  91. void Thread::block_until(const char* state_string, Function<bool()>&& condition)
  92. {
  93. block<ConditionBlocker>(state_string, move(condition));
  94. }
  95. void Thread::block_helper()
  96. {
  97. bool did_unlock = process().big_lock().unlock_if_locked();
  98. ASSERT(state() == Thread::Running);
  99. m_was_interrupted_while_blocked = false;
  100. set_state(Thread::Blocked);
  101. Scheduler::yield();
  102. if (did_unlock)
  103. process().big_lock().lock();
  104. }
  105. u64 Thread::sleep(u32 ticks)
  106. {
  107. ASSERT(state() == Thread::Running);
  108. u64 wakeup_time = g_uptime + ticks;
  109. current->block<Thread::SleepBlocker>(wakeup_time);
  110. return wakeup_time;
  111. }
  112. const char* Thread::state_string() const
  113. {
  114. switch (state()) {
  115. case Thread::Invalid:
  116. return "Invalid";
  117. case Thread::Runnable:
  118. return "Runnable";
  119. case Thread::Running:
  120. return "Running";
  121. case Thread::Dying:
  122. return "Dying";
  123. case Thread::Dead:
  124. return "Dead";
  125. case Thread::Stopped:
  126. return "Stopped";
  127. case Thread::Skip1SchedulerPass:
  128. return "Skip1";
  129. case Thread::Skip0SchedulerPasses:
  130. return "Skip0";
  131. case Thread::Blocked:
  132. ASSERT(m_blocker);
  133. return m_blocker->state_string();
  134. }
  135. kprintf("to_string(Thread::State): Invalid state: %u\n", state());
  136. ASSERT_NOT_REACHED();
  137. return nullptr;
  138. }
  139. void Thread::finalize()
  140. {
  141. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  142. set_state(Thread::State::Dead);
  143. m_blocker = nullptr;
  144. if (this == &m_process.main_thread())
  145. m_process.finalize();
  146. }
  147. void Thread::finalize_dying_threads()
  148. {
  149. Vector<Thread*, 32> dying_threads;
  150. {
  151. InterruptDisabler disabler;
  152. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  153. dying_threads.append(&thread);
  154. return IterationDecision::Continue;
  155. });
  156. }
  157. for (auto* thread : dying_threads)
  158. thread->finalize();
  159. }
  160. bool Thread::tick()
  161. {
  162. ++m_ticks;
  163. if (tss().cs & 3)
  164. ++m_process.m_ticks_in_user;
  165. else
  166. ++m_process.m_ticks_in_kernel;
  167. return --m_ticks_left;
  168. }
  169. void Thread::send_signal(u8 signal, Process* sender)
  170. {
  171. ASSERT(signal < 32);
  172. InterruptDisabler disabler;
  173. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  174. if (should_ignore_signal(signal)) {
  175. dbg() << "signal " << signal << " was ignored by " << process();
  176. return;
  177. }
  178. if (sender)
  179. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  180. else
  181. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  182. m_pending_signals |= 1 << signal;
  183. }
  184. bool Thread::has_unmasked_pending_signals() const
  185. {
  186. return m_pending_signals & ~m_signal_mask;
  187. }
  188. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  189. {
  190. ASSERT_INTERRUPTS_DISABLED();
  191. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  192. ASSERT(signal_candidates);
  193. u8 signal = 0;
  194. for (; signal < 32; ++signal) {
  195. if (signal_candidates & (1 << signal)) {
  196. break;
  197. }
  198. }
  199. return dispatch_signal(signal);
  200. }
  201. enum class DefaultSignalAction {
  202. Terminate,
  203. Ignore,
  204. DumpCore,
  205. Stop,
  206. Continue,
  207. };
  208. DefaultSignalAction default_signal_action(u8 signal)
  209. {
  210. ASSERT(signal && signal < NSIG);
  211. switch (signal) {
  212. case SIGHUP:
  213. case SIGINT:
  214. case SIGKILL:
  215. case SIGPIPE:
  216. case SIGALRM:
  217. case SIGUSR1:
  218. case SIGUSR2:
  219. case SIGVTALRM:
  220. case SIGSTKFLT:
  221. case SIGIO:
  222. case SIGPROF:
  223. case SIGTERM:
  224. case SIGPWR:
  225. return DefaultSignalAction::Terminate;
  226. case SIGCHLD:
  227. case SIGURG:
  228. case SIGWINCH:
  229. return DefaultSignalAction::Ignore;
  230. case SIGQUIT:
  231. case SIGILL:
  232. case SIGTRAP:
  233. case SIGABRT:
  234. case SIGBUS:
  235. case SIGFPE:
  236. case SIGSEGV:
  237. case SIGXCPU:
  238. case SIGXFSZ:
  239. case SIGSYS:
  240. return DefaultSignalAction::DumpCore;
  241. case SIGCONT:
  242. return DefaultSignalAction::Continue;
  243. case SIGSTOP:
  244. case SIGTSTP:
  245. case SIGTTIN:
  246. case SIGTTOU:
  247. return DefaultSignalAction::Stop;
  248. }
  249. ASSERT_NOT_REACHED();
  250. }
  251. bool Thread::should_ignore_signal(u8 signal) const
  252. {
  253. ASSERT(signal < 32);
  254. auto& action = m_signal_action_data[signal];
  255. if (action.handler_or_sigaction.is_null())
  256. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  257. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  258. return true;
  259. return false;
  260. }
  261. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  262. {
  263. ASSERT_INTERRUPTS_DISABLED();
  264. ASSERT(signal < 32);
  265. #ifdef SIGNAL_DEBUG
  266. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  267. #endif
  268. auto& action = m_signal_action_data[signal];
  269. // FIXME: Implement SA_SIGINFO signal handlers.
  270. ASSERT(!(action.flags & SA_SIGINFO));
  271. // Mark this signal as handled.
  272. m_pending_signals &= ~(1 << signal);
  273. if (signal == SIGSTOP) {
  274. set_state(Stopped);
  275. return ShouldUnblockThread::No;
  276. }
  277. if (signal == SIGCONT && state() == Stopped)
  278. set_state(Runnable);
  279. auto handler_vaddr = action.handler_or_sigaction;
  280. if (handler_vaddr.is_null()) {
  281. switch (default_signal_action(signal)) {
  282. case DefaultSignalAction::Stop:
  283. set_state(Stopped);
  284. return ShouldUnblockThread::No;
  285. case DefaultSignalAction::DumpCore:
  286. case DefaultSignalAction::Terminate:
  287. m_process.terminate_due_to_signal(signal);
  288. return ShouldUnblockThread::No;
  289. case DefaultSignalAction::Ignore:
  290. ASSERT_NOT_REACHED();
  291. case DefaultSignalAction::Continue:
  292. return ShouldUnblockThread::Yes;
  293. }
  294. ASSERT_NOT_REACHED();
  295. }
  296. if (handler_vaddr.as_ptr() == SIG_IGN) {
  297. #ifdef SIGNAL_DEBUG
  298. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  299. #endif
  300. return ShouldUnblockThread::Yes;
  301. }
  302. u32 old_signal_mask = m_signal_mask;
  303. u32 new_signal_mask = action.mask;
  304. if (action.flags & SA_NODEFER)
  305. new_signal_mask &= ~(1 << signal);
  306. else
  307. new_signal_mask |= 1 << signal;
  308. m_signal_mask |= new_signal_mask;
  309. Scheduler::prepare_to_modify_tss(*this);
  310. u16 ret_cs = m_tss.cs;
  311. u32 ret_eip = m_tss.eip;
  312. u32 ret_eflags = m_tss.eflags;
  313. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  314. ProcessPagingScope paging_scope(m_process);
  315. m_process.create_signal_trampolines_if_needed();
  316. if (interrupting_in_kernel) {
  317. #ifdef SIGNAL_DEBUG
  318. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", process().name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  319. #endif
  320. ASSERT(is_blocked());
  321. m_tss_to_resume_kernel = make<TSS32>(m_tss);
  322. #ifdef SIGNAL_DEBUG
  323. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel->cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3);
  324. #endif
  325. if (!m_signal_stack_user_region) {
  326. m_signal_stack_user_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
  327. ASSERT(m_signal_stack_user_region);
  328. }
  329. if (!m_kernel_stack_for_signal_handler_region)
  330. m_kernel_stack_for_signal_handler_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Signal Stack (Thread %d)", m_tid));
  331. m_tss.ss = 0x23;
  332. m_tss.esp = m_signal_stack_user_region->vaddr().offset(default_userspace_stack_size).get();
  333. m_tss.ss0 = 0x10;
  334. m_tss.esp0 = m_kernel_stack_for_signal_handler_region->vaddr().offset(default_kernel_stack_size).get();
  335. push_value_on_stack(0);
  336. } else {
  337. push_value_on_stack(ret_eip);
  338. push_value_on_stack(ret_eflags);
  339. // PUSHA
  340. u32 old_esp = m_tss.esp;
  341. push_value_on_stack(m_tss.eax);
  342. push_value_on_stack(m_tss.ecx);
  343. push_value_on_stack(m_tss.edx);
  344. push_value_on_stack(m_tss.ebx);
  345. push_value_on_stack(old_esp);
  346. push_value_on_stack(m_tss.ebp);
  347. push_value_on_stack(m_tss.esi);
  348. push_value_on_stack(m_tss.edi);
  349. // Align the stack.
  350. m_tss.esp -= 12;
  351. }
  352. // PUSH old_signal_mask
  353. push_value_on_stack(old_signal_mask);
  354. m_tss.cs = 0x1b;
  355. m_tss.ds = 0x23;
  356. m_tss.es = 0x23;
  357. m_tss.fs = 0x23;
  358. m_tss.gs = 0x23;
  359. m_tss.eip = handler_vaddr.get();
  360. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  361. push_value_on_stack(signal);
  362. if (interrupting_in_kernel)
  363. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  364. else
  365. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  366. ASSERT((m_tss.esp % 16) == 0);
  367. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  368. set_state(Skip1SchedulerPass);
  369. #ifdef SIGNAL_DEBUG
  370. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  371. #endif
  372. return ShouldUnblockThread::Yes;
  373. }
  374. void Thread::set_default_signal_dispositions()
  375. {
  376. // FIXME: Set up all the right default actions. See signal(7).
  377. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  378. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  379. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  380. }
  381. void Thread::push_value_on_stack(u32 value)
  382. {
  383. m_tss.esp -= 4;
  384. u32* stack_ptr = (u32*)m_tss.esp;
  385. *stack_ptr = value;
  386. }
  387. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  388. {
  389. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
  390. ASSERT(region);
  391. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  392. char* stack_base = (char*)region->vaddr().get();
  393. int argc = arguments.size();
  394. char** argv = (char**)stack_base;
  395. char** env = argv + arguments.size() + 1;
  396. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  397. size_t total_blob_size = 0;
  398. for (auto& a : arguments)
  399. total_blob_size += a.length() + 1;
  400. for (auto& e : environment)
  401. total_blob_size += e.length() + 1;
  402. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  403. // FIXME: It would be better if this didn't make us panic.
  404. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  405. for (int i = 0; i < arguments.size(); ++i) {
  406. argv[i] = bufptr;
  407. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  408. bufptr += arguments[i].length();
  409. *(bufptr++) = '\0';
  410. }
  411. argv[arguments.size()] = nullptr;
  412. for (int i = 0; i < environment.size(); ++i) {
  413. env[i] = bufptr;
  414. memcpy(bufptr, environment[i].characters(), environment[i].length());
  415. bufptr += environment[i].length();
  416. *(bufptr++) = '\0';
  417. }
  418. env[environment.size()] = nullptr;
  419. // NOTE: The stack needs to be 16-byte aligned.
  420. push_value_on_stack((u32)env);
  421. push_value_on_stack((u32)argv);
  422. push_value_on_stack((u32)argc);
  423. push_value_on_stack(0);
  424. }
  425. void Thread::make_userspace_stack_for_secondary_thread(void* argument)
  426. {
  427. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  428. ASSERT(region);
  429. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  430. // NOTE: The stack needs to be 16-byte aligned.
  431. push_value_on_stack((u32)argument);
  432. push_value_on_stack(0);
  433. }
  434. Thread* Thread::clone(Process& process)
  435. {
  436. auto* clone = new Thread(process);
  437. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  438. clone->m_signal_mask = m_signal_mask;
  439. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  440. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  441. clone->m_has_used_fpu = m_has_used_fpu;
  442. return clone;
  443. }
  444. KResult Thread::wait_for_connect(FileDescription& description)
  445. {
  446. ASSERT(description.is_socket());
  447. auto& socket = *description.socket();
  448. if (socket.is_connected())
  449. return KSuccess;
  450. block<Thread::ConnectBlocker>(description);
  451. Scheduler::yield();
  452. if (!socket.is_connected())
  453. return KResult(-ECONNREFUSED);
  454. return KSuccess;
  455. }
  456. void Thread::initialize()
  457. {
  458. g_runnable_threads = new SchedulerThreadList;
  459. g_nonrunnable_threads = new SchedulerThreadList;
  460. Scheduler::initialize();
  461. }
  462. Vector<Thread*> Thread::all_threads()
  463. {
  464. Vector<Thread*> threads;
  465. InterruptDisabler disabler;
  466. threads.ensure_capacity(thread_table().size());
  467. for (auto* thread : thread_table())
  468. threads.unchecked_append(thread);
  469. return threads;
  470. }
  471. bool Thread::is_thread(void* ptr)
  472. {
  473. ASSERT_INTERRUPTS_DISABLED();
  474. return thread_table().contains((Thread*)ptr);
  475. }
  476. void Thread::set_state(State new_state)
  477. {
  478. InterruptDisabler disabler;
  479. m_state = new_state;
  480. if (m_process.pid() != 0) {
  481. SchedulerThreadList* list = nullptr;
  482. if (is_runnable_state(new_state))
  483. list = g_runnable_threads;
  484. else
  485. list = g_nonrunnable_threads;
  486. if (list->contains(*this))
  487. return;
  488. list->append(*this);
  489. }
  490. }