123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- /*
- * Copyright (c) 2020, the SerenityOS developers.
- * Copyright (c) 2022, David Tuin <davidot@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include "SignedBigInteger.h"
- #include <AK/StringBuilder.h>
- #include <math.h>
- namespace Crypto {
- SignedBigInteger::SignedBigInteger(double value)
- : m_sign(value < 0.0)
- , m_unsigned_data(fabs(value))
- {
- }
- SignedBigInteger SignedBigInteger::import_data(u8 const* ptr, size_t length)
- {
- bool sign = *ptr;
- auto unsigned_data = UnsignedBigInteger::import_data(ptr + 1, length - 1);
- return { move(unsigned_data), sign };
- }
- size_t SignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
- {
- // FIXME: Support this:
- // m <0XX> -> m <XX> (if remove_leading_zeros)
- VERIFY(!remove_leading_zeros);
- data[0] = m_sign;
- auto bytes_view = data.slice(1, data.size() - 1);
- return m_unsigned_data.export_data(bytes_view, remove_leading_zeros) + 1;
- }
- SignedBigInteger SignedBigInteger::from_base(u16 N, StringView str)
- {
- auto sign = false;
- if (str.length() > 1) {
- auto maybe_sign = str[0];
- if (maybe_sign == '-') {
- str = str.substring_view(1);
- sign = true;
- }
- if (maybe_sign == '+')
- str = str.substring_view(1);
- }
- auto unsigned_data = UnsignedBigInteger::from_base(N, str);
- return { move(unsigned_data), sign };
- }
- String SignedBigInteger::to_base(u16 N) const
- {
- StringBuilder builder;
- if (m_sign)
- builder.append('-');
- builder.append(m_unsigned_data.to_base(N));
- return builder.to_string();
- }
- u64 SignedBigInteger::to_u64() const
- {
- u64 unsigned_value = m_unsigned_data.to_u64();
- if (!m_sign)
- return unsigned_value;
- return ~(unsigned_value - 1); // equivalent to `-unsigned_value`, but doesn't trigger UBSAN
- }
- double SignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
- {
- double unsigned_value = m_unsigned_data.to_double(rounding_mode);
- if (!m_sign)
- return unsigned_value;
- VERIFY(!is_zero());
- return -unsigned_value;
- }
- FLATTEN SignedBigInteger SignedBigInteger::plus(SignedBigInteger const& other) const
- {
- // If both are of the same sign, just add the unsigned data and return.
- if (m_sign == other.m_sign)
- return { other.m_unsigned_data.plus(m_unsigned_data), m_sign };
- // One value is signed while the other is not.
- return m_sign ? other.minus(this->m_unsigned_data) : minus(other.m_unsigned_data);
- }
- FLATTEN SignedBigInteger SignedBigInteger::minus(SignedBigInteger const& other) const
- {
- // If the signs are different, convert the op to an addition.
- if (m_sign != other.m_sign) {
- // -x - y = - (x + y)
- // x - -y = (x + y)
- SignedBigInteger result { other.m_unsigned_data.plus(this->m_unsigned_data) };
- if (m_sign)
- result.negate();
- return result;
- }
- if (!m_sign) {
- // Both operands are positive.
- // x - y = - (y - x)
- if (m_unsigned_data < other.m_unsigned_data) {
- // The result will be negative.
- return { other.m_unsigned_data.minus(m_unsigned_data), true };
- }
- // The result will be either zero, or positive.
- return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) };
- }
- // Both operands are negative.
- // -x - -y = y - x
- if (m_unsigned_data < other.m_unsigned_data) {
- // The result will be positive.
- return SignedBigInteger { other.m_unsigned_data.minus(m_unsigned_data) };
- }
- // y - x = - (x - y)
- if (m_unsigned_data > other.m_unsigned_data) {
- // The result will be negative.
- return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data), true };
- }
- // Both operands have the same magnitude, the result is positive zero.
- return SignedBigInteger { 0 };
- }
- FLATTEN SignedBigInteger SignedBigInteger::plus(UnsignedBigInteger const& other) const
- {
- if (m_sign) {
- if (other < m_unsigned_data)
- return { m_unsigned_data.minus(other), true };
- return { other.minus(m_unsigned_data), false };
- }
- return { m_unsigned_data.plus(other), false };
- }
- FLATTEN SignedBigInteger SignedBigInteger::minus(UnsignedBigInteger const& other) const
- {
- if (m_sign)
- return { m_unsigned_data.plus(m_unsigned_data), true };
- if (other < m_unsigned_data)
- return { m_unsigned_data.minus(other), false };
- return { other.minus(m_unsigned_data), true };
- }
- FLATTEN SignedBigInteger SignedBigInteger::bitwise_not() const
- {
- // Bitwise operators assume two's complement, while SignedBigInteger uses sign-magnitude.
- // In two's complement, -x := ~x + 1.
- // Hence, ~x == -x -1 == -(x + 1).
- SignedBigInteger result = plus(SignedBigInteger { 1 });
- result.negate();
- return result;
- }
- FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
- {
- return { unsigned_value().multiplied_by(other), m_sign };
- }
- FLATTEN SignedDivisionResult SignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
- {
- auto division_result = unsigned_value().divided_by(divisor);
- return {
- { move(division_result.quotient), m_sign },
- { move(division_result.remainder), m_sign },
- };
- }
- FLATTEN SignedBigInteger SignedBigInteger::bitwise_or(SignedBigInteger const& other) const
- {
- // See bitwise_and() for derivations.
- if (!is_negative() && !other.is_negative())
- return { unsigned_value().bitwise_or(other.unsigned_value()), false };
- // -A | B == (~A + 1) | B == ~(A - 1) | B. The result is negative, so need to two's complement at the end to move the sign into the m_sign field.
- // That can be simplified to:
- // -(-A | B) == ~(~(A - 1) | B) + 1 = (A - 1) & ~B + 1
- // This saves one ~.
- if (is_negative() && !other.is_negative()) {
- size_t index = unsigned_value().one_based_index_of_highest_set_bit();
- return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index)).plus(1), true };
- }
- // -(A | -B) == ~A & (B - 1) + 1
- if (!is_negative() && other.is_negative()) {
- size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
- return { unsigned_value().bitwise_not_fill_to_one_based_index(index).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
- }
- return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
- }
- FLATTEN SignedBigInteger SignedBigInteger::bitwise_and(SignedBigInteger const& other) const
- {
- if (!is_negative() && !other.is_negative())
- return { unsigned_value().bitwise_and(other.unsigned_value()), false };
- // These two just use that -x == ~x + 1 (see below).
- // -A & B == (~A + 1) & B.
- if (is_negative() && !other.is_negative()) {
- size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
- return { unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1).bitwise_and(other.unsigned_value()), false };
- }
- // A & -B == A & (~B + 1).
- if (!is_negative() && other.is_negative()) {
- size_t index = unsigned_value().one_based_index_of_highest_set_bit();
- return { unsigned_value().bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1)), false };
- }
- // Both numbers are negative.
- // x + ~x == 0xff...ff, up to however many bits x is wide.
- // In two's complement, x + ~x + 1 == 0 since the 1 in the overflowing bit position is masked out.
- // Rearranging terms, ~x = -x - 1 (eq1).
- // Substituting x = y - 1, ~(y - 1) == -(y - 1) - 1 == -y +1 -1 == -y, or ~(y - 1) == -y (eq2).
- // Since both numbers are negative, we want to compute -A & -B.
- // Per (eq2):
- // -A & -B == ~(A - 1) & ~(B - 1)
- // Inverting both sides:
- // ~(-A & -B) == ~(~(A - 1) & ~(B - 1)) == ~~(A - 1) | ~~(B - 1) == (A - 1) | (B - 1).
- // Applying (q1) on the LHS:
- // -(-A & -B) - 1 == (A - 1) | (B - 1)
- // Adding 1 on both sides and then multiplying both sides by -1:
- // -A & -B == -( (A - 1) | (B - 1) + 1)
- // So we can compute the bitwise and by returning a negative number with magnitude (A - 1) | (B - 1) + 1.
- // This is better than the naive (~A + 1) & (~B + 1) because it needs just one O(n) scan for the or instead of 2 for the ~s.
- return { unsigned_value().minus(1).bitwise_or(other.unsigned_value().minus(1)).plus(1), true };
- }
- FLATTEN SignedBigInteger SignedBigInteger::bitwise_xor(SignedBigInteger const& other) const
- {
- return bitwise_or(other).minus(bitwise_and(other));
- }
- bool SignedBigInteger::operator==(UnsignedBigInteger const& other) const
- {
- if (m_sign)
- return false;
- return m_unsigned_data == other;
- }
- bool SignedBigInteger::operator!=(UnsignedBigInteger const& other) const
- {
- if (m_sign)
- return true;
- return m_unsigned_data != other;
- }
- bool SignedBigInteger::operator<(UnsignedBigInteger const& other) const
- {
- if (m_sign)
- return true;
- return m_unsigned_data < other;
- }
- bool SignedBigInteger::operator>(UnsignedBigInteger const& other) const
- {
- return *this != other && !(*this < other);
- }
- FLATTEN SignedBigInteger SignedBigInteger::shift_left(size_t num_bits) const
- {
- return SignedBigInteger { m_unsigned_data.shift_left(num_bits), m_sign };
- }
- FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(SignedBigInteger const& other) const
- {
- bool result_sign = m_sign ^ other.m_sign;
- return { m_unsigned_data.multiplied_by(other.m_unsigned_data), result_sign };
- }
- FLATTEN SignedDivisionResult SignedBigInteger::divided_by(SignedBigInteger const& divisor) const
- {
- // Aa / Bb -> (A^B)q, Ar
- bool result_sign = m_sign ^ divisor.m_sign;
- auto unsigned_division_result = m_unsigned_data.divided_by(divisor.m_unsigned_data);
- return {
- { move(unsigned_division_result.quotient), result_sign },
- { move(unsigned_division_result.remainder), m_sign }
- };
- }
- u32 SignedBigInteger::hash() const
- {
- return m_unsigned_data.hash() * (1 - (2 * m_sign));
- }
- void SignedBigInteger::set_bit_inplace(size_t bit_index)
- {
- m_unsigned_data.set_bit_inplace(bit_index);
- }
- bool SignedBigInteger::operator==(SignedBigInteger const& other) const
- {
- if (is_invalid() != other.is_invalid())
- return false;
- if (m_unsigned_data == 0 && other.m_unsigned_data == 0)
- return true;
- return m_sign == other.m_sign && m_unsigned_data == other.m_unsigned_data;
- }
- bool SignedBigInteger::operator!=(SignedBigInteger const& other) const
- {
- return !(*this == other);
- }
- bool SignedBigInteger::operator<(SignedBigInteger const& other) const
- {
- if (m_sign ^ other.m_sign)
- return m_sign;
- if (m_sign)
- return other.m_unsigned_data < m_unsigned_data;
- return m_unsigned_data < other.m_unsigned_data;
- }
- bool SignedBigInteger::operator<=(SignedBigInteger const& other) const
- {
- return *this < other || *this == other;
- }
- bool SignedBigInteger::operator>(SignedBigInteger const& other) const
- {
- return *this != other && !(*this < other);
- }
- bool SignedBigInteger::operator>=(SignedBigInteger const& other) const
- {
- return !(*this < other);
- }
- SignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
- {
- VERIFY(!isnan(value));
- if (isinf(value)) {
- bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
- return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
- }
- bool bigint_is_negative = m_sign;
- bool value_is_negative = value < 0;
- if (value_is_negative != bigint_is_negative)
- return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
- // Value is zero, and from above the signs must be the same.
- if (value == 0.0) {
- VERIFY(!value_is_negative && !bigint_is_negative);
- // Either we are also zero or value is certainly less than us.
- return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
- }
- // If value is not zero but we are, then since the signs are the same value must be greater.
- if (is_zero())
- return CompareResult::DoubleGreaterThanBigInt;
- constexpr u64 mantissa_size = 52;
- constexpr u64 exponent_size = 11;
- constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1;
- union FloatExtractor {
- struct {
- unsigned long long mantissa : mantissa_size;
- unsigned exponent : exponent_size;
- unsigned sign : 1;
- };
- double d;
- } extractor;
- extractor.d = value;
- VERIFY(extractor.exponent != (1 << exponent_size) - 1);
- // Exponent cannot be filled as than we must be NaN or infinity.
- i32 real_exponent = extractor.exponent - exponent_bias;
- if (real_exponent < 0) {
- // |value| is less than 1, and we cannot be zero so if we are negative
- // value must be greater and vice versa.
- return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
- }
- u64 bigint_bits_needed = m_unsigned_data.one_based_index_of_highest_set_bit();
- VERIFY(bigint_bits_needed > 0);
- // Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
- // `exponent - bias + 1` bit to represent doubles value,
- // for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
- // `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
- u32 double_bits_needed = real_exponent + 1;
- if (bigint_bits_needed > double_bits_needed) {
- // If we need more bits to represent us, we must be of greater magnitude
- // this means that if we are negative we are below value and if positive above value.
- return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
- }
- if (bigint_bits_needed < double_bits_needed)
- return bigint_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
- u64 mantissa_bits = extractor.mantissa;
- // We add the bit which represents the 1. of the double value calculation
- constexpr u64 mantissa_extended_bit = 1ull << mantissa_size;
- mantissa_bits |= mantissa_extended_bit;
- // Now we shift value to the left virtually, with `exponent - bias` steps
- // we then pretend both it and the big int are extended with virtual zeros.
- using Word = UnsignedBigInteger::Word;
- auto next_bigint_word = (UnsignedBigInteger::BITS_IN_WORD - 1 + bigint_bits_needed) / UnsignedBigInteger::BITS_IN_WORD;
- VERIFY(next_bigint_word + 1 == trimmed_length());
- auto msb_in_top_word_index = (bigint_bits_needed - 1) % UnsignedBigInteger::BITS_IN_WORD;
- VERIFY(msb_in_top_word_index == (UnsignedBigInteger::BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
- // We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
- mantissa_bits <<= 64 - (mantissa_size + 1);
- auto bits_left_in_mantissa = mantissa_size + 1;
- auto get_next_value_bits = [&](size_t num_bits) -> Word {
- VERIFY(num_bits < 63);
- VERIFY(bits_left_in_mantissa > 0);
- if (num_bits > bits_left_in_mantissa)
- num_bits = bits_left_in_mantissa;
- bits_left_in_mantissa -= num_bits;
- u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
- // Now shift the bits down to put the most significant bit on the num_bits position
- // this means the rest will be "virtual" zeros.
- extracted_bits >>= 32;
- // Now shift away the used bits and fit the result into a Word.
- mantissa_bits <<= num_bits;
- VERIFY(extracted_bits <= NumericLimits<Word>::max());
- return static_cast<Word>(extracted_bits);
- };
- auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
- while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
- Word bigint_word = words()[next_bigint_word - 1];
- Word double_word = get_next_value_bits(bits_in_next_bigint_word);
- // For the first bit we have to align it with the top bit of bigint
- // and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
- double_word >>= 32 - bits_in_next_bigint_word;
- if (bigint_word < double_word)
- return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
- if (bigint_word > double_word)
- return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
- --next_bigint_word;
- bits_in_next_bigint_word = UnsignedBigInteger::BITS_IN_WORD;
- }
- // If there are still bits left in bigint than any non zero bit means it has greater magnitude.
- if (next_bigint_word > 0) {
- VERIFY(bits_left_in_mantissa == 0);
- while (next_bigint_word > 0) {
- if (words()[next_bigint_word - 1] != 0)
- return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
- --next_bigint_word;
- }
- } else if (bits_left_in_mantissa > 0) {
- VERIFY(next_bigint_word == 0);
- // Similarly if there are still any bits set in the mantissa it has greater magnitude.
- if (mantissa_bits != 0)
- return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
- }
- // Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
- return CompareResult::DoubleEqualsBigInt;
- }
- }
- ErrorOr<void> AK::Formatter<Crypto::SignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::SignedBigInteger const& value)
- {
- if (value.is_negative())
- TRY(fmtbuilder.put_string("-"sv));
- return Formatter<Crypto::UnsignedBigInteger>::format(fmtbuilder, value.unsigned_value());
- }
|