MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. //#define MM_DEBUG
  10. //#define PAGE_FAULT_DEBUG
  11. static MemoryManager* s_the;
  12. MemoryManager& MM
  13. {
  14. return *s_the;
  15. }
  16. MemoryManager::MemoryManager()
  17. {
  18. m_kernel_page_directory = make<PageDirectory>(PhysicalAddress(0x4000));
  19. m_page_table_zero = (dword*)0x6000;
  20. initialize_paging();
  21. }
  22. MemoryManager::~MemoryManager()
  23. {
  24. }
  25. PageDirectory::PageDirectory(PhysicalAddress paddr)
  26. {
  27. kprintf("Instantiating PageDirectory with specific paddr P%x\n", paddr.get());
  28. m_directory_page = adopt(*new PhysicalPage(paddr, true));
  29. }
  30. PageDirectory::PageDirectory()
  31. {
  32. MM.populate_page_directory(*this);
  33. }
  34. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  35. {
  36. page_directory.m_directory_page = allocate_supervisor_physical_page();
  37. memset(page_directory.entries(), 0, PAGE_SIZE);
  38. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  39. }
  40. void MemoryManager::initialize_paging()
  41. {
  42. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  43. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  44. memset(m_page_table_zero, 0, PAGE_SIZE);
  45. #ifdef MM_DEBUG
  46. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  47. #endif
  48. #ifdef MM_DEBUG
  49. dbgprintf("MM: Protect against null dereferences\n");
  50. #endif
  51. // Make null dereferences crash.
  52. map_protected(LinearAddress(0), PAGE_SIZE);
  53. #ifdef MM_DEBUG
  54. dbgprintf("MM: Identity map bottom 4MB\n");
  55. #endif
  56. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  57. // Every process shares these mappings.
  58. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  59. // Basic memory map:
  60. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  61. // 1 MB -> 2 MB kmalloc_eternal() space.
  62. // 2 MB -> 3 MB kmalloc() space.
  63. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  64. // 4 MB -> 32 MB Userspace physical pages (available for allocation!)
  65. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  66. m_free_supervisor_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), true)));
  67. #ifdef MM_DEBUG
  68. dbgprintf("MM: 4MB-32MB available for allocation\n");
  69. #endif
  70. for (size_t i = (4 * MB); i < (32 * MB); i += PAGE_SIZE)
  71. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), false)));
  72. m_quickmap_addr = LinearAddress(m_free_physical_pages.takeLast().leakRef()->paddr().get());
  73. #ifdef MM_DEBUG
  74. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  75. dbgprintf("MM: Installing page directory\n");
  76. #endif
  77. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  78. asm volatile(
  79. "movl %cr0, %eax\n"
  80. "orl $0x80000001, %eax\n"
  81. "movl %eax, %cr0\n"
  82. );
  83. }
  84. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  85. {
  86. ASSERT(!page_directory.m_physical_pages.contains(index));
  87. auto physical_page = allocate_supervisor_physical_page();
  88. if (!physical_page)
  89. return nullptr;
  90. dword address = physical_page->paddr().get();
  91. memset((void*)address, 0, PAGE_SIZE);
  92. page_directory.m_physical_pages.set(index, physical_page.copyRef());
  93. return physical_page;
  94. }
  95. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  96. {
  97. InterruptDisabler disabler;
  98. // FIXME: ASSERT(laddr is 4KB aligned);
  99. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  100. auto pte_address = laddr.offset(offset);
  101. auto pte = ensure_pte(page_directory, pte_address);
  102. pte.set_physical_page_base(0);
  103. pte.set_user_allowed(false);
  104. pte.set_present(true);
  105. pte.set_writable(true);
  106. flush_tlb(pte_address);
  107. }
  108. }
  109. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  110. {
  111. ASSERT_INTERRUPTS_DISABLED();
  112. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  113. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  114. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  115. if (!pde.is_present()) {
  116. #ifdef MM_DEBUG
  117. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  118. #endif
  119. if (page_directory_index == 0) {
  120. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  121. pde.setPageTableBase((dword)m_page_table_zero);
  122. pde.set_user_allowed(false);
  123. pde.set_present(true);
  124. pde.set_writable(true);
  125. } else {
  126. ASSERT(&page_directory != m_kernel_page_directory.ptr());
  127. auto page_table = allocate_page_table(page_directory, page_directory_index);
  128. #ifdef MM_DEBUG
  129. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  130. &page_directory,
  131. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  132. page_directory.cr3(),
  133. page_directory_index,
  134. laddr.get(),
  135. page_table->paddr().get());
  136. #endif
  137. pde.setPageTableBase(page_table->paddr().get());
  138. pde.set_user_allowed(true);
  139. pde.set_present(true);
  140. pde.set_writable(true);
  141. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  142. }
  143. }
  144. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  145. }
  146. void MemoryManager::map_protected(LinearAddress linearAddress, size_t length)
  147. {
  148. InterruptDisabler disabler;
  149. // FIXME: ASSERT(linearAddress is 4KB aligned);
  150. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  151. auto pteAddress = linearAddress.offset(offset);
  152. auto pte = ensure_pte(kernel_page_directory(), pteAddress);
  153. pte.set_physical_page_base(pteAddress.get());
  154. pte.set_user_allowed(false);
  155. pte.set_present(false);
  156. pte.set_writable(false);
  157. flush_tlb(pteAddress);
  158. }
  159. }
  160. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  161. {
  162. InterruptDisabler disabler;
  163. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  164. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  165. auto pteAddress = laddr.offset(offset);
  166. auto pte = ensure_pte(page_directory, pteAddress);
  167. pte.set_physical_page_base(pteAddress.get());
  168. pte.set_user_allowed(false);
  169. pte.set_present(true);
  170. pte.set_writable(true);
  171. page_directory.flush(pteAddress);
  172. }
  173. }
  174. void MemoryManager::initialize()
  175. {
  176. s_the = new MemoryManager;
  177. }
  178. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  179. {
  180. ASSERT_INTERRUPTS_DISABLED();
  181. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  182. for (auto& region : process.m_regions) {
  183. if (region->contains(laddr))
  184. return region.ptr();
  185. }
  186. kprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get());
  187. return nullptr;
  188. }
  189. bool MemoryManager::zero_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  190. {
  191. ASSERT_INTERRUPTS_DISABLED();
  192. auto& vmo = region.vmo();
  193. auto physical_page = allocate_physical_page();
  194. byte* dest_ptr = quickmap_page(*physical_page);
  195. memset(dest_ptr, 0, PAGE_SIZE);
  196. #ifdef PAGE_FAULT_DEBUG
  197. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  198. #endif
  199. unquickmap_page();
  200. region.cow_map.set(page_index_in_region, false);
  201. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  202. remap_region_page(page_directory, region, page_index_in_region, true);
  203. return true;
  204. }
  205. bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
  206. {
  207. ASSERT_INTERRUPTS_DISABLED();
  208. auto& vmo = region.vmo();
  209. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  210. #ifdef PAGE_FAULT_DEBUG
  211. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  212. #endif
  213. region.cow_map.set(page_index_in_region, false);
  214. remap_region_page(process.page_directory(), region, page_index_in_region, true);
  215. return true;
  216. }
  217. #ifdef PAGE_FAULT_DEBUG
  218. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  219. #endif
  220. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  221. auto physical_page = allocate_physical_page();
  222. byte* dest_ptr = quickmap_page(*physical_page);
  223. const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  224. #ifdef PAGE_FAULT_DEBUG
  225. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  226. #endif
  227. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  228. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  229. unquickmap_page();
  230. region.cow_map.set(page_index_in_region, false);
  231. remap_region_page(process.page_directory(), region, page_index_in_region, true);
  232. return true;
  233. }
  234. bool Region::page_in(PageDirectory& page_directory)
  235. {
  236. ASSERT(!vmo().is_anonymous());
  237. ASSERT(vmo().inode());
  238. #ifdef MM_DEBUG
  239. dbgprintf("MM: page_in %u pages\n", page_count());
  240. #endif
  241. for (size_t i = 0; i < page_count(); ++i) {
  242. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  243. if (vmo_page.is_null()) {
  244. bool success = MM.page_in_from_inode(page_directory, *this, i);
  245. if (!success)
  246. return false;
  247. }
  248. MM.remap_region_page(page_directory, *this, i, true);
  249. }
  250. return true;
  251. }
  252. bool MemoryManager::page_in_from_inode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  253. {
  254. auto& vmo = region.vmo();
  255. ASSERT(!vmo.is_anonymous());
  256. ASSERT(vmo.inode());
  257. auto& inode = *vmo.inode();
  258. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  259. ASSERT(vmo_page.is_null());
  260. vmo_page = allocate_physical_page();
  261. if (vmo_page.is_null()) {
  262. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  263. return false;
  264. }
  265. remap_region_page(page_directory, region, page_index_in_region, true);
  266. byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  267. #ifdef MM_DEBUG
  268. dbgprintf("MM: page_in_from_inode ready to read from inode, will write to L%x!\n", dest_ptr);
  269. #endif
  270. sti(); // Oh god here we go...
  271. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
  272. if (nread < 0) {
  273. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  274. return false;
  275. }
  276. if (nread < PAGE_SIZE) {
  277. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  278. memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
  279. }
  280. cli();
  281. return true;
  282. }
  283. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  284. {
  285. ASSERT_INTERRUPTS_DISABLED();
  286. #ifdef PAGE_FAULT_DEBUG
  287. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  288. #endif
  289. ASSERT(fault.laddr() != m_quickmap_addr);
  290. auto* region = region_from_laddr(*current, fault.laddr());
  291. if (!region) {
  292. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  293. return PageFaultResponse::ShouldCrash;
  294. }
  295. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  296. if (fault.is_not_present()) {
  297. if (region->vmo().inode()) {
  298. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  299. page_in_from_inode(*current->m_page_directory, *region, page_index_in_region);
  300. return PageFaultResponse::Continue;
  301. } else {
  302. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  303. zero_page(*current->m_page_directory, *region, page_index_in_region);
  304. return PageFaultResponse::Continue;
  305. }
  306. } else if (fault.is_protection_violation()) {
  307. if (region->cow_map.get(page_index_in_region)) {
  308. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  309. bool success = copy_on_write(*current, *region, page_index_in_region);
  310. ASSERT(success);
  311. return PageFaultResponse::Continue;
  312. }
  313. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  314. } else {
  315. ASSERT_NOT_REACHED();
  316. }
  317. return PageFaultResponse::ShouldCrash;
  318. }
  319. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
  320. {
  321. InterruptDisabler disabler;
  322. if (1 > m_free_physical_pages.size())
  323. return { };
  324. #ifdef MM_DEBUG
  325. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  326. #endif
  327. return m_free_physical_pages.takeLast();
  328. }
  329. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  330. {
  331. InterruptDisabler disabler;
  332. if (1 > m_free_supervisor_physical_pages.size())
  333. return { };
  334. #ifdef MM_DEBUG
  335. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  336. #endif
  337. return m_free_supervisor_physical_pages.takeLast();
  338. }
  339. void MemoryManager::enter_process_paging_scope(Process& process)
  340. {
  341. InterruptDisabler disabler;
  342. current->m_tss.cr3 = process.page_directory().cr3();
  343. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  344. }
  345. void MemoryManager::flush_entire_tlb()
  346. {
  347. asm volatile(
  348. "mov %cr3, %eax\n"
  349. "mov %eax, %cr3\n"
  350. );
  351. }
  352. void MemoryManager::flush_tlb(LinearAddress laddr)
  353. {
  354. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  355. }
  356. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  357. {
  358. ASSERT_INTERRUPTS_DISABLED();
  359. auto page_laddr = m_quickmap_addr;
  360. auto pte = ensure_pte(current->page_directory(), page_laddr);
  361. pte.set_physical_page_base(physical_page.paddr().get());
  362. pte.set_present(true);
  363. pte.set_writable(true);
  364. flush_tlb(page_laddr);
  365. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  366. #ifdef MM_DEBUG
  367. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  368. #endif
  369. return page_laddr.asPtr();
  370. }
  371. void MemoryManager::unquickmap_page()
  372. {
  373. ASSERT_INTERRUPTS_DISABLED();
  374. auto page_laddr = m_quickmap_addr;
  375. auto pte = ensure_pte(current->page_directory(), page_laddr);
  376. #ifdef MM_DEBUG
  377. auto old_physical_address = pte.physical_page_base();
  378. #endif
  379. pte.set_physical_page_base(0);
  380. pte.set_present(false);
  381. pte.set_writable(false);
  382. flush_tlb(page_laddr);
  383. #ifdef MM_DEBUG
  384. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  385. #endif
  386. }
  387. void MemoryManager::remap_region_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
  388. {
  389. InterruptDisabler disabler;
  390. auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
  391. auto pte = ensure_pte(page_directory, page_laddr);
  392. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  393. ASSERT(physical_page);
  394. pte.set_physical_page_base(physical_page->paddr().get());
  395. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  396. if (region.cow_map.get(page_index_in_region))
  397. pte.set_writable(false);
  398. else
  399. pte.set_writable(region.is_writable);
  400. pte.set_user_allowed(user_allowed);
  401. page_directory.flush(page_laddr);
  402. #ifdef MM_DEBUG
  403. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", &page_directory, pte.ptr(), region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  404. #endif
  405. }
  406. void MemoryManager::remap_region(Process& process, Region& region)
  407. {
  408. InterruptDisabler disabler;
  409. map_region_at_address(process.page_directory(), region, region.linearAddress, true);
  410. }
  411. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  412. {
  413. InterruptDisabler disabler;
  414. auto& vmo = region.vmo();
  415. #ifdef MM_DEBUG
  416. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  417. #endif
  418. for (size_t i = 0; i < region.page_count(); ++i) {
  419. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  420. auto pte = ensure_pte(page_directory, page_laddr);
  421. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  422. if (physical_page) {
  423. pte.set_physical_page_base(physical_page->paddr().get());
  424. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  425. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  426. if (region.cow_map.get(region.first_page_index() + i))
  427. pte.set_writable(false);
  428. else
  429. pte.set_writable(region.is_writable);
  430. } else {
  431. pte.set_physical_page_base(0);
  432. pte.set_present(false);
  433. pte.set_writable(region.is_writable);
  434. }
  435. pte.set_user_allowed(user_allowed);
  436. page_directory.flush(page_laddr);
  437. #ifdef MM_DEBUG
  438. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  439. #endif
  440. }
  441. }
  442. void MemoryManager::unmap_range(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  443. {
  444. ASSERT((size % PAGE_SIZE) == 0);
  445. InterruptDisabler disabler;
  446. size_t numPages = size / PAGE_SIZE;
  447. for (size_t i = 0; i < numPages; ++i) {
  448. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  449. auto pte = ensure_pte(page_directory, page_laddr);
  450. pte.set_physical_page_base(0);
  451. pte.set_present(false);
  452. pte.set_writable(false);
  453. pte.set_user_allowed(false);
  454. page_directory.flush(page_laddr);
  455. #ifdef MM_DEBUG
  456. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  457. #endif
  458. }
  459. }
  460. bool MemoryManager::unmap_region(Process& process, Region& region)
  461. {
  462. InterruptDisabler disabler;
  463. for (size_t i = 0; i < region.page_count(); ++i) {
  464. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  465. auto pte = ensure_pte(process.page_directory(), laddr);
  466. pte.set_physical_page_base(0);
  467. pte.set_present(false);
  468. pte.set_writable(false);
  469. pte.set_user_allowed(false);
  470. process.page_directory().flush(laddr);
  471. #ifdef MM_DEBUG
  472. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  473. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  474. #endif
  475. }
  476. return true;
  477. }
  478. bool MemoryManager::map_region(Process& process, Region& region)
  479. {
  480. map_region_at_address(process.page_directory(), region, region.linearAddress, true);
  481. return true;
  482. }
  483. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  484. {
  485. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  486. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  487. auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
  488. if (!pde.is_present())
  489. return false;
  490. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  491. if (!pte.is_present())
  492. return false;
  493. if (process.isRing3() && !pte.is_user_allowed())
  494. return false;
  495. return true;
  496. }
  497. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  498. {
  499. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  500. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  501. auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
  502. if (!pde.is_present())
  503. return false;
  504. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  505. if (!pte.is_present())
  506. return false;
  507. if (process.isRing3() && !pte.is_user_allowed())
  508. return false;
  509. if (!pte.is_writable())
  510. return false;
  511. return true;
  512. }
  513. RetainPtr<Region> Region::clone()
  514. {
  515. InterruptDisabler disabler;
  516. if (is_readable && !is_writable) {
  517. // Create a new region backed by the same VMObject.
  518. return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
  519. }
  520. // Set up a COW region. The parent (this) region becomes COW as well!
  521. for (size_t i = 0; i < page_count(); ++i)
  522. cow_map.set(i, true);
  523. MM.remap_region(*current, *this);
  524. return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
  525. }
  526. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  527. : linearAddress(a)
  528. , size(s)
  529. , m_vmo(VMObject::create_anonymous(s))
  530. , name(move(n))
  531. , is_readable(r)
  532. , is_writable(w)
  533. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  534. {
  535. m_vmo->set_name(name);
  536. MM.register_region(*this);
  537. }
  538. Region::Region(LinearAddress a, size_t s, RetainPtr<Inode>&& inode, String&& n, bool r, bool w)
  539. : linearAddress(a)
  540. , size(s)
  541. , m_vmo(VMObject::create_file_backed(move(inode), s))
  542. , name(move(n))
  543. , is_readable(r)
  544. , is_writable(w)
  545. , cow_map(Bitmap::create(m_vmo->page_count()))
  546. {
  547. MM.register_region(*this);
  548. }
  549. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  550. : linearAddress(a)
  551. , size(s)
  552. , m_offset_in_vmo(offset_in_vmo)
  553. , m_vmo(move(vmo))
  554. , name(move(n))
  555. , is_readable(r)
  556. , is_writable(w)
  557. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  558. {
  559. MM.register_region(*this);
  560. }
  561. Region::~Region()
  562. {
  563. MM.unregister_region(*this);
  564. }
  565. PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor)
  566. : m_supervisor(supervisor)
  567. , m_paddr(paddr)
  568. {
  569. }
  570. void PhysicalPage::return_to_freelist()
  571. {
  572. ASSERT((paddr().get() & ~PAGE_MASK) == 0);
  573. InterruptDisabler disabler;
  574. m_retain_count = 1;
  575. if (m_supervisor)
  576. MM.m_free_supervisor_physical_pages.append(adopt(*this));
  577. else
  578. MM.m_free_physical_pages.append(adopt(*this));
  579. #ifdef MM_DEBUG
  580. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  581. #endif
  582. }
  583. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Inode>&& inode, size_t size)
  584. {
  585. InterruptDisabler disabler;
  586. if (inode->vmo())
  587. return static_cast<VMObject*>(inode->vmo());
  588. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  589. auto vmo = adopt(*new VMObject(move(inode), size));
  590. vmo->inode()->set_vmo(vmo.ptr());
  591. return vmo;
  592. }
  593. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  594. {
  595. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  596. return adopt(*new VMObject(size));
  597. }
  598. RetainPtr<VMObject> VMObject::create_framebuffer_wrapper(PhysicalAddress paddr, size_t size)
  599. {
  600. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  601. return adopt(*new VMObject(paddr, size));
  602. }
  603. RetainPtr<VMObject> VMObject::clone()
  604. {
  605. return adopt(*new VMObject(*this));
  606. }
  607. VMObject::VMObject(VMObject& other)
  608. : m_name(other.m_name)
  609. , m_anonymous(other.m_anonymous)
  610. , m_inode_offset(other.m_inode_offset)
  611. , m_size(other.m_size)
  612. , m_inode(other.m_inode)
  613. , m_physical_pages(other.m_physical_pages)
  614. {
  615. MM.register_vmo(*this);
  616. }
  617. VMObject::VMObject(size_t size)
  618. : m_anonymous(true)
  619. , m_size(size)
  620. {
  621. MM.register_vmo(*this);
  622. m_physical_pages.resize(page_count());
  623. }
  624. VMObject::VMObject(PhysicalAddress paddr, size_t size)
  625. : m_anonymous(true)
  626. , m_size(size)
  627. {
  628. MM.register_vmo(*this);
  629. for (size_t i = 0; i < size; i += PAGE_SIZE) {
  630. m_physical_pages.append(adopt(*new PhysicalPage(paddr.offset(i), false)));
  631. }
  632. ASSERT(m_physical_pages.size() == page_count());
  633. }
  634. VMObject::VMObject(RetainPtr<Inode>&& inode, size_t size)
  635. : m_size(size)
  636. , m_inode(move(inode))
  637. {
  638. m_physical_pages.resize(page_count());
  639. MM.register_vmo(*this);
  640. }
  641. VMObject::~VMObject()
  642. {
  643. if (m_inode) {
  644. ASSERT(m_inode->vmo() == this);
  645. m_inode->set_vmo(nullptr);
  646. }
  647. MM.unregister_vmo(*this);
  648. }
  649. int Region::commit(Process& process)
  650. {
  651. InterruptDisabler disabler;
  652. #ifdef MM_DEBUG
  653. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), linearAddress.get());
  654. #endif
  655. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  656. if (!vmo().physical_pages()[i].is_null())
  657. continue;
  658. auto physical_page = MM.allocate_physical_page();
  659. if (!physical_page) {
  660. kprintf("MM: commit was unable to allocate a physical page\n");
  661. return -ENOMEM;
  662. }
  663. vmo().physical_pages()[i] = move(physical_page);
  664. MM.remap_region_page(process.page_directory(), *this, i, true);
  665. }
  666. return 0;
  667. }
  668. void MemoryManager::register_vmo(VMObject& vmo)
  669. {
  670. InterruptDisabler disabler;
  671. m_vmos.set(&vmo);
  672. }
  673. void MemoryManager::unregister_vmo(VMObject& vmo)
  674. {
  675. InterruptDisabler disabler;
  676. m_vmos.remove(&vmo);
  677. }
  678. void MemoryManager::register_region(Region& region)
  679. {
  680. InterruptDisabler disabler;
  681. m_regions.set(&region);
  682. }
  683. void MemoryManager::unregister_region(Region& region)
  684. {
  685. InterruptDisabler disabler;
  686. m_regions.remove(&region);
  687. }
  688. size_t Region::committed() const
  689. {
  690. size_t bytes = 0;
  691. for (size_t i = 0; i < page_count(); ++i) {
  692. if (m_vmo->physical_pages()[first_page_index() + i])
  693. bytes += PAGE_SIZE;
  694. }
  695. return bytes;
  696. }
  697. PageDirectory::~PageDirectory()
  698. {
  699. ASSERT_INTERRUPTS_DISABLED();
  700. #ifdef MM_DEBUG
  701. dbgprintf("MM: ~PageDirectory K%x\n", this);
  702. #endif
  703. }
  704. void PageDirectory::flush(LinearAddress laddr)
  705. {
  706. if (&current->page_directory() == this)
  707. MM.flush_tlb(laddr);
  708. }