X25519.cpp 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. /*
  2. * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/ByteReader.h>
  7. #include <AK/Endian.h>
  8. #include <LibCrypto/Curves/X25519.h>
  9. namespace Crypto::Curves {
  10. void X25519::import_state(u32* state, ReadonlyBytes data)
  11. {
  12. for (auto i = 0; i < X25519::WORDS; i++) {
  13. u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
  14. state[i] = AK::convert_between_host_and_little_endian(value);
  15. }
  16. }
  17. ErrorOr<ByteBuffer> X25519::export_state(u32* data)
  18. {
  19. auto buffer = TRY(ByteBuffer::create_uninitialized(X25519::BYTES));
  20. for (auto i = 0; i < X25519::WORDS; i++) {
  21. u32 value = AK::convert_between_host_and_little_endian(data[i]);
  22. ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
  23. }
  24. return buffer;
  25. }
  26. void X25519::select(u32* state, u32* a, u32* b, u32 condition)
  27. {
  28. // If B < (2^255 - 19) then R = B, else R = A
  29. u32 mask = condition - 1;
  30. for (auto i = 0; i < X25519::WORDS; i++) {
  31. state[i] = (a[i] & mask) | (b[i] & ~mask);
  32. }
  33. }
  34. void X25519::set(u32* state, u32 value)
  35. {
  36. state[0] = value;
  37. for (auto i = 1; i < X25519::WORDS; i++) {
  38. state[i] = 0;
  39. }
  40. }
  41. void X25519::copy(u32* state, u32* value)
  42. {
  43. for (auto i = 0; i < X25519::WORDS; i++) {
  44. state[i] = value[i];
  45. }
  46. }
  47. void X25519::conditional_swap(u32* first, u32* second, u32 condition)
  48. {
  49. u32 mask = ~condition + 1;
  50. for (auto i = 0; i < X25519::WORDS; i++) {
  51. u32 temp = mask & (first[i] ^ second[i]);
  52. first[i] ^= temp;
  53. second[i] ^= temp;
  54. }
  55. }
  56. void X25519::modular_multiply_single(u32* state, u32* first, u32 second)
  57. {
  58. // Compute R = (A * B) mod p
  59. u64 temp = 0;
  60. u32 output[X25519::WORDS];
  61. for (auto i = 0; i < X25519::WORDS; i++) {
  62. temp += (u64)first[i] * second;
  63. output[i] = temp & 0xFFFFFFFF;
  64. temp >>= 32;
  65. }
  66. // Reduce bit 256 (2^256 = 38 mod p)
  67. temp *= 38;
  68. // Reduce bit 255 (2^255 = 19 mod p)
  69. temp += (output[7] >> 31) * 19;
  70. // Mask the most significant bit
  71. output[7] &= 0x7FFFFFFF;
  72. // Fast modular reduction
  73. for (auto i = 0; i < X25519::WORDS; i++) {
  74. temp += output[i];
  75. output[i] = temp & 0xFFFFFFFF;
  76. temp >>= 32;
  77. }
  78. modular_reduce(state, output);
  79. }
  80. void X25519::modular_square(u32* state, u32* value)
  81. {
  82. // Compute R = (A ^ 2) mod p
  83. modular_multiply(state, value, value);
  84. }
  85. void X25519::modular_multiply(u32* state, u32* first, u32* second)
  86. {
  87. // Compute R = (A * B) mod p
  88. u64 temp = 0;
  89. u64 carry = 0;
  90. u32 output[X25519::WORDS * 2];
  91. // Comba's method
  92. for (auto i = 0; i < 16; i++) {
  93. if (i < X25519::WORDS) {
  94. for (auto j = 0; j <= i; j++) {
  95. temp += (u64)first[j] * second[i - j];
  96. carry += temp >> 32;
  97. temp &= 0xFFFFFFFF;
  98. }
  99. } else {
  100. for (auto j = i - 7; j < X25519::WORDS; j++) {
  101. temp += (u64)first[j] * second[i - j];
  102. carry += temp >> 32;
  103. temp &= 0xFFFFFFFF;
  104. }
  105. }
  106. output[i] = temp & 0xFFFFFFFF;
  107. temp = carry & 0xFFFFFFFF;
  108. carry >>= 32;
  109. }
  110. // Reduce bit 255 (2^255 = 19 mod p)
  111. temp = (output[7] >> 31) * 19;
  112. // Mask the most significant bit
  113. output[7] &= 0x7FFFFFFF;
  114. // Fast modular reduction 1st pass
  115. for (auto i = 0; i < X25519::WORDS; i++) {
  116. temp += output[i];
  117. temp += (u64)output[i + 8] * 38;
  118. output[i] = temp & 0xFFFFFFFF;
  119. temp >>= 32;
  120. }
  121. // Reduce bit 256 (2^256 = 38 mod p)
  122. temp *= 38;
  123. // Reduce bit 255 (2^255 = 19 mod p)
  124. temp += (output[7] >> 31) * 19;
  125. // Mask the most significant bit
  126. output[7] &= 0x7FFFFFFF;
  127. // Fast modular reduction 2nd pass
  128. for (auto i = 0; i < X25519::WORDS; i++) {
  129. temp += output[i];
  130. output[i] = temp & 0xFFFFFFFF;
  131. temp >>= 32;
  132. }
  133. modular_reduce(state, output);
  134. }
  135. void X25519::modular_add(u32* state, u32* first, u32* second)
  136. {
  137. // R = (A + B) mod p
  138. u64 temp = 0;
  139. for (auto i = 0; i < X25519::WORDS; i++) {
  140. temp += first[i];
  141. temp += second[i];
  142. state[i] = temp & 0xFFFFFFFF;
  143. temp >>= 32;
  144. }
  145. modular_reduce(state, state);
  146. }
  147. void X25519::modular_subtract(u32* state, u32* first, u32* second)
  148. {
  149. // R = (A - B) mod p
  150. i64 temp = -19;
  151. for (auto i = 0; i < X25519::WORDS; i++) {
  152. temp += first[i];
  153. temp -= second[i];
  154. state[i] = temp & 0xFFFFFFFF;
  155. temp >>= 32;
  156. }
  157. // Compute R = A + (2^255 - 19) - B
  158. state[7] += 0x80000000;
  159. modular_reduce(state, state);
  160. }
  161. void X25519::modular_reduce(u32* state, u32* data)
  162. {
  163. // R = A mod p
  164. u64 temp = 19;
  165. u32 other[X25519::WORDS];
  166. for (auto i = 0; i < X25519::WORDS; i++) {
  167. temp += data[i];
  168. other[i] = temp & 0xFFFFFFFF;
  169. temp >>= 32;
  170. }
  171. // Compute B = A - (2^255 - 19)
  172. other[7] -= 0x80000000;
  173. u32 mask = (other[7] & 0x80000000) >> 31;
  174. select(state, other, data, mask);
  175. }
  176. void X25519::to_power_of_2n(u32* state, u32* value, u8 n)
  177. {
  178. // compute R = (A ^ (2^n)) mod p
  179. modular_square(state, value);
  180. for (auto i = 1; i < n; i++) {
  181. modular_square(state, state);
  182. }
  183. }
  184. void X25519::modular_multiply_inverse(u32* state, u32* value)
  185. {
  186. // Compute R = A^-1 mod p
  187. u32 u[X25519::WORDS];
  188. u32 v[X25519::WORDS];
  189. // Fermat's little theorem
  190. modular_square(u, value);
  191. modular_multiply(u, u, value);
  192. modular_square(u, u);
  193. modular_multiply(v, u, value);
  194. to_power_of_2n(u, v, 3);
  195. modular_multiply(u, u, v);
  196. modular_square(u, u);
  197. modular_multiply(v, u, value);
  198. to_power_of_2n(u, v, 7);
  199. modular_multiply(u, u, v);
  200. modular_square(u, u);
  201. modular_multiply(v, u, value);
  202. to_power_of_2n(u, v, 15);
  203. modular_multiply(u, u, v);
  204. modular_square(u, u);
  205. modular_multiply(v, u, value);
  206. to_power_of_2n(u, v, 31);
  207. modular_multiply(v, u, v);
  208. to_power_of_2n(u, v, 62);
  209. modular_multiply(u, u, v);
  210. modular_square(u, u);
  211. modular_multiply(v, u, value);
  212. to_power_of_2n(u, v, 125);
  213. modular_multiply(u, u, v);
  214. modular_square(u, u);
  215. modular_square(u, u);
  216. modular_multiply(u, u, value);
  217. modular_square(u, u);
  218. modular_square(u, u);
  219. modular_multiply(u, u, value);
  220. modular_square(u, u);
  221. modular_multiply(state, u, value);
  222. }
  223. // https://datatracker.ietf.org/doc/html/rfc7748#section-5
  224. ErrorOr<ByteBuffer> X25519::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
  225. {
  226. u32 k[X25519::WORDS] {};
  227. u32 u[X25519::WORDS] {};
  228. u32 x1[X25519::WORDS] {};
  229. u32 x2[X25519::WORDS] {};
  230. u32 z1[X25519::WORDS] {};
  231. u32 z2[X25519::WORDS] {};
  232. u32 t1[X25519::WORDS] {};
  233. u32 t2[X25519::WORDS] {};
  234. // Copy input to internal state
  235. import_state(k, input_k);
  236. // Set the three least significant bits of the first byte and the most significant bit of the last to zero,
  237. // set the second most significant bit of the last byte to 1
  238. k[0] &= 0xFFFFFFF8;
  239. k[7] &= 0x7FFFFFFF;
  240. k[7] |= 0x40000000;
  241. // Copy coordinate to internal state
  242. import_state(u, input_u);
  243. // mask the most significant bit in the final byte.
  244. u[7] &= 0x7FFFFFFF;
  245. // Implementations MUST accept non-canonical values and process them as
  246. // if they had been reduced modulo the field prime.
  247. modular_reduce(u, u);
  248. set(x1, 1);
  249. set(z1, 0);
  250. copy(x2, u);
  251. set(z2, 1);
  252. // Montgomery ladder
  253. u32 swap = 0;
  254. for (auto i = X25519::BITS - 1; i >= 0; i--) {
  255. u32 b = (k[i / X25519::BYTES] >> (i % X25519::BYTES)) & 1;
  256. conditional_swap(x1, x2, swap ^ b);
  257. conditional_swap(z1, z2, swap ^ b);
  258. swap = b;
  259. modular_add(t1, x2, z2);
  260. modular_subtract(x2, x2, z2);
  261. modular_add(z2, x1, z1);
  262. modular_subtract(x1, x1, z1);
  263. modular_multiply(t1, t1, x1);
  264. modular_multiply(x2, x2, z2);
  265. modular_square(z2, z2);
  266. modular_square(x1, x1);
  267. modular_subtract(t2, z2, x1);
  268. modular_multiply_single(z1, t2, A24);
  269. modular_add(z1, z1, x1);
  270. modular_multiply(z1, z1, t2);
  271. modular_multiply(x1, x1, z2);
  272. modular_subtract(z2, t1, x2);
  273. modular_square(z2, z2);
  274. modular_multiply(z2, z2, u);
  275. modular_add(x2, x2, t1);
  276. modular_square(x2, x2);
  277. }
  278. conditional_swap(x1, x2, swap);
  279. conditional_swap(z1, z2, swap);
  280. // Retrieve affine representation
  281. modular_multiply_inverse(u, z1);
  282. modular_multiply(u, u, x1);
  283. // Encode state for export
  284. return export_state(u);
  285. }
  286. }