kmalloc.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. /*
  7. * Really really *really* Q&D malloc() and free() implementations
  8. * just to get going. Don't ever let anyone see this shit. :^)
  9. */
  10. #include <AK/Assertions.h>
  11. #include <AK/Types.h>
  12. #include <Kernel/Debug.h>
  13. #include <Kernel/Heap/Heap.h>
  14. #include <Kernel/Heap/kmalloc.h>
  15. #include <Kernel/KSyms.h>
  16. #include <Kernel/Locking/Spinlock.h>
  17. #include <Kernel/Memory/MemoryManager.h>
  18. #include <Kernel/Panic.h>
  19. #include <Kernel/PerformanceManager.h>
  20. #include <Kernel/Sections.h>
  21. #include <Kernel/StdLib.h>
  22. #if ARCH(I386)
  23. static constexpr size_t CHUNK_SIZE = 32;
  24. #else
  25. static constexpr size_t CHUNK_SIZE = 64;
  26. #endif
  27. #define POOL_SIZE (2 * MiB)
  28. #define ETERNAL_RANGE_SIZE (4 * MiB)
  29. namespace std {
  30. const nothrow_t nothrow;
  31. }
  32. static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace()
  33. struct KmallocSubheap {
  34. KmallocSubheap(u8* base, size_t size)
  35. : allocator(base, size)
  36. {
  37. }
  38. IntrusiveListNode<KmallocSubheap> list_node;
  39. Heap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE> allocator;
  40. };
  41. struct KmallocGlobalData {
  42. KmallocGlobalData(u8* initial_heap, size_t initial_heap_size)
  43. {
  44. add_subheap(initial_heap, initial_heap_size);
  45. }
  46. void add_subheap(u8* storage, size_t storage_size)
  47. {
  48. auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE);
  49. subheaps.append(*subheap);
  50. }
  51. void* allocate(size_t size)
  52. {
  53. VERIFY(!expansion_in_progress);
  54. for (auto& subheap : subheaps) {
  55. if (auto* ptr = subheap.allocator.allocate(size))
  56. return ptr;
  57. }
  58. if (!try_expand()) {
  59. PANIC("OOM when trying to expand kmalloc heap.");
  60. }
  61. return allocate(size);
  62. }
  63. void deallocate(void* ptr)
  64. {
  65. VERIFY(!expansion_in_progress);
  66. for (auto& subheap : subheaps) {
  67. if (subheap.allocator.contains(ptr)) {
  68. subheap.allocator.deallocate(ptr);
  69. return;
  70. }
  71. }
  72. PANIC("Bogus pointer {:p} passed to kfree()", ptr);
  73. }
  74. size_t allocated_bytes() const
  75. {
  76. size_t total = 0;
  77. for (auto const& subheap : subheaps)
  78. total += subheap.allocator.allocated_bytes();
  79. return total;
  80. }
  81. size_t free_bytes() const
  82. {
  83. size_t total = 0;
  84. for (auto const& subheap : subheaps)
  85. total += subheap.allocator.free_bytes();
  86. return total;
  87. }
  88. bool try_expand()
  89. {
  90. VERIFY(!expansion_in_progress);
  91. TemporaryChange change(expansion_in_progress, true);
  92. auto new_subheap_base = expansion_data->next_virtual_address;
  93. size_t new_subheap_size = 1 * MiB;
  94. if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) {
  95. // FIXME: Dare to return false and allow kmalloc() to fail!
  96. PANIC("Out of address space when expanding kmalloc heap.");
  97. }
  98. auto physical_pages_or_error = MM.commit_user_physical_pages(new_subheap_size / PAGE_SIZE);
  99. if (physical_pages_or_error.is_error()) {
  100. // FIXME: Dare to return false!
  101. PANIC("Out of physical pages when expanding kmalloc heap.");
  102. }
  103. auto physical_pages = physical_pages_or_error.release_value();
  104. expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size);
  105. auto cpu_supports_nx = Processor::current().has_feature(CPUFeature::NX);
  106. SpinlockLocker mm_locker(Memory::s_mm_lock);
  107. SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
  108. for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) {
  109. // FIXME: We currently leak physical memory when mapping it into the kmalloc heap.
  110. auto& page = physical_pages.take_one().leak_ref();
  111. auto* pte = MM.ensure_pte(MM.kernel_page_directory(), vaddr);
  112. if (!pte) {
  113. // FIXME: If ensure_pte() fails due to lazy page directory construction, it returns nullptr
  114. // and we're in trouble. Find a way to avoid getting into that situation.
  115. // Perhaps we could do a dry run through the address range and ensure_pte() for each
  116. // virtual address to ensure that each PTE is available. Not maximally efficient,
  117. // but could work.. Needs more thought.
  118. PANIC("Unable to acquire PTE during heap expansion");
  119. }
  120. pte->set_physical_page_base(page.paddr().get());
  121. pte->set_global(true);
  122. pte->set_user_allowed(false);
  123. pte->set_writable(true);
  124. if (cpu_supports_nx)
  125. pte->set_execute_disabled(true);
  126. pte->set_present(true);
  127. }
  128. MM.flush_tlb(&MM.kernel_page_directory(), new_subheap_base, new_subheap_size / PAGE_SIZE);
  129. add_subheap(new_subheap_base.as_ptr(), new_subheap_size);
  130. return true;
  131. }
  132. struct ExpansionData {
  133. Memory::VirtualRange virtual_range;
  134. VirtualAddress next_virtual_address;
  135. };
  136. Optional<ExpansionData> expansion_data;
  137. IntrusiveList<&KmallocSubheap::list_node> subheaps;
  138. bool expansion_in_progress { false };
  139. };
  140. READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global;
  141. alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)];
  142. // Treat the heap as logically separate from .bss
  143. __attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE];
  144. __attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE];
  145. static size_t g_kmalloc_bytes_eternal = 0;
  146. static size_t g_kmalloc_call_count;
  147. static size_t g_kfree_call_count;
  148. static size_t g_nested_kfree_calls;
  149. bool g_dump_kmalloc_stacks;
  150. static u8* s_next_eternal_ptr;
  151. READONLY_AFTER_INIT static u8* s_end_of_eternal_range;
  152. void kmalloc_enable_expand()
  153. {
  154. // FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit.
  155. auto virtual_range = MM.kernel_page_directory().range_allocator().try_allocate_anywhere(64 * MiB, 1 * MiB);
  156. g_kmalloc_global->expansion_data = KmallocGlobalData::ExpansionData {
  157. .virtual_range = virtual_range.value(),
  158. .next_virtual_address = virtual_range.value().base(),
  159. };
  160. }
  161. static inline void kmalloc_verify_nospinlock_held()
  162. {
  163. // Catch bad callers allocating under spinlock.
  164. if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
  165. VERIFY(!Processor::in_critical());
  166. }
  167. }
  168. UNMAP_AFTER_INIT void kmalloc_init()
  169. {
  170. // Zero out heap since it's placed after end_of_kernel_bss.
  171. memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap));
  172. memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap));
  173. g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(kmalloc_pool_heap, sizeof(kmalloc_pool_heap));
  174. s_lock.initialize();
  175. s_next_eternal_ptr = kmalloc_eternal_heap;
  176. s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_eternal_heap);
  177. }
  178. void* kmalloc_eternal(size_t size)
  179. {
  180. kmalloc_verify_nospinlock_held();
  181. size = round_up_to_power_of_two(size, sizeof(void*));
  182. SpinlockLocker lock(s_lock);
  183. void* ptr = s_next_eternal_ptr;
  184. s_next_eternal_ptr += size;
  185. VERIFY(s_next_eternal_ptr < s_end_of_eternal_range);
  186. g_kmalloc_bytes_eternal += size;
  187. return ptr;
  188. }
  189. void* kmalloc(size_t size)
  190. {
  191. kmalloc_verify_nospinlock_held();
  192. SpinlockLocker lock(s_lock);
  193. ++g_kmalloc_call_count;
  194. if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
  195. dbgln("kmalloc({})", size);
  196. Kernel::dump_backtrace();
  197. }
  198. void* ptr = g_kmalloc_global->allocate(size);
  199. Thread* current_thread = Thread::current();
  200. if (!current_thread)
  201. current_thread = Processor::idle_thread();
  202. if (current_thread)
  203. PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
  204. return ptr;
  205. }
  206. void kfree_sized(void* ptr, size_t size)
  207. {
  208. (void)size;
  209. return kfree(ptr);
  210. }
  211. void kfree(void* ptr)
  212. {
  213. if (!ptr)
  214. return;
  215. kmalloc_verify_nospinlock_held();
  216. SpinlockLocker lock(s_lock);
  217. ++g_kfree_call_count;
  218. ++g_nested_kfree_calls;
  219. if (g_nested_kfree_calls == 1) {
  220. Thread* current_thread = Thread::current();
  221. if (!current_thread)
  222. current_thread = Processor::idle_thread();
  223. if (current_thread)
  224. PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
  225. }
  226. g_kmalloc_global->deallocate(ptr);
  227. --g_nested_kfree_calls;
  228. }
  229. size_t kmalloc_good_size(size_t size)
  230. {
  231. return size;
  232. }
  233. [[gnu::malloc, gnu::alloc_size(1), gnu::alloc_align(2)]] static void* kmalloc_aligned_cxx(size_t size, size_t alignment)
  234. {
  235. VERIFY(alignment <= 4096);
  236. void* ptr = kmalloc(size + alignment + sizeof(ptrdiff_t));
  237. if (ptr == nullptr)
  238. return nullptr;
  239. size_t max_addr = (size_t)ptr + alignment;
  240. void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
  241. ((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
  242. return aligned_ptr;
  243. }
  244. void* operator new(size_t size)
  245. {
  246. void* ptr = kmalloc(size);
  247. VERIFY(ptr);
  248. return ptr;
  249. }
  250. void* operator new(size_t size, const std::nothrow_t&) noexcept
  251. {
  252. return kmalloc(size);
  253. }
  254. void* operator new(size_t size, std::align_val_t al)
  255. {
  256. void* ptr = kmalloc_aligned_cxx(size, (size_t)al);
  257. VERIFY(ptr);
  258. return ptr;
  259. }
  260. void* operator new(size_t size, std::align_val_t al, const std::nothrow_t&) noexcept
  261. {
  262. return kmalloc_aligned_cxx(size, (size_t)al);
  263. }
  264. void* operator new[](size_t size)
  265. {
  266. void* ptr = kmalloc(size);
  267. VERIFY(ptr);
  268. return ptr;
  269. }
  270. void* operator new[](size_t size, const std::nothrow_t&) noexcept
  271. {
  272. return kmalloc(size);
  273. }
  274. void operator delete(void*) noexcept
  275. {
  276. // All deletes in kernel code should have a known size.
  277. VERIFY_NOT_REACHED();
  278. }
  279. void operator delete(void* ptr, size_t size) noexcept
  280. {
  281. return kfree_sized(ptr, size);
  282. }
  283. void operator delete(void* ptr, size_t, std::align_val_t) noexcept
  284. {
  285. return kfree_aligned(ptr);
  286. }
  287. void operator delete[](void*) noexcept
  288. {
  289. // All deletes in kernel code should have a known size.
  290. VERIFY_NOT_REACHED();
  291. }
  292. void operator delete[](void* ptr, size_t size) noexcept
  293. {
  294. return kfree_sized(ptr, size);
  295. }
  296. void get_kmalloc_stats(kmalloc_stats& stats)
  297. {
  298. SpinlockLocker lock(s_lock);
  299. stats.bytes_allocated = g_kmalloc_global->allocated_bytes();
  300. stats.bytes_free = g_kmalloc_global->free_bytes();
  301. stats.bytes_eternal = g_kmalloc_bytes_eternal;
  302. stats.kmalloc_call_count = g_kmalloc_call_count;
  303. stats.kfree_call_count = g_kfree_call_count;
  304. }