AnonymousVMObject.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <Kernel/Arch/SmapDisabler.h>
  7. #include <Kernel/Debug.h>
  8. #include <Kernel/Memory/AnonymousVMObject.h>
  9. #include <Kernel/Memory/MemoryManager.h>
  10. #include <Kernel/Memory/PhysicalPage.h>
  11. #include <Kernel/Process.h>
  12. namespace Kernel::Memory {
  13. ErrorOr<NonnullRefPtr<VMObject>> AnonymousVMObject::try_clone()
  14. {
  15. // We need to acquire our lock so we copy a sane state
  16. SpinlockLocker lock(m_lock);
  17. if (is_purgeable() && is_volatile()) {
  18. // If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
  19. // object, effectively "pre-purging" it in the child process.
  20. auto clone = TRY(try_create_purgeable_with_size(size(), AllocationStrategy::None));
  21. clone->m_volatile = true;
  22. return clone;
  23. }
  24. // We're the parent. Since we're about to become COW we need to
  25. // commit the number of pages that we need to potentially allocate
  26. // so that the parent is still guaranteed to be able to have all
  27. // non-volatile memory available.
  28. size_t new_cow_pages_needed = page_count();
  29. dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
  30. auto committed_pages = TRY(MM.commit_user_physical_pages(new_cow_pages_needed));
  31. // Create or replace the committed cow pages. When cloning a previously
  32. // cloned vmobject, we want to essentially "fork", leaving us and the
  33. // new clone with one set of shared committed cow pages, and the original
  34. // one would keep the one it still has. This ensures that the original
  35. // one and this one, as well as the clone have sufficient resources
  36. // to cow all pages as needed
  37. auto new_shared_committed_cow_pages = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) SharedCommittedCowPages(move(committed_pages))));
  38. auto new_physical_pages = TRY(this->try_clone_physical_pages());
  39. auto clone = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(*this, *new_shared_committed_cow_pages, move(new_physical_pages))));
  40. m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);
  41. // Both original and clone become COW. So create a COW map for ourselves
  42. // or reset all pages to be copied again if we were previously cloned
  43. ensure_or_reset_cow_map();
  44. if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
  45. // The parent vmobject didn't use up all committed pages. When
  46. // cloning (fork) we will overcommit. For this purpose we drop all
  47. // lazy-commit references and replace them with shared zero pages.
  48. for (size_t i = 0; i < page_count(); i++) {
  49. auto& page = clone->m_physical_pages[i];
  50. if (page && page->is_lazy_committed_page()) {
  51. page = MM.shared_zero_page();
  52. }
  53. }
  54. }
  55. return clone;
  56. }
  57. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
  58. {
  59. Optional<CommittedPhysicalPageSet> committed_pages;
  60. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  61. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  62. }
  63. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  64. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages), strategy, move(committed_pages)));
  65. }
  66. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
  67. {
  68. auto contiguous_physical_pages = TRY(MM.allocate_contiguous_supervisor_physical_pages(size));
  69. auto new_physical_pages = TRY(FixedArray<RefPtr<PhysicalPage>>::try_create(contiguous_physical_pages.span()));
  70. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages)));
  71. }
  72. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
  73. {
  74. Optional<CommittedPhysicalPageSet> committed_pages;
  75. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  76. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  77. }
  78. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  79. auto vmobject = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages), strategy, move(committed_pages))));
  80. vmobject->m_purgeable = true;
  81. return vmobject;
  82. }
  83. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
  84. {
  85. auto new_physical_pages = TRY(FixedArray<RefPtr<PhysicalPage>>::try_create(physical_pages));
  86. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages)));
  87. }
  88. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
  89. {
  90. if (paddr.offset(size) < paddr) {
  91. dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
  92. // Since we can't wrap around yet, let's pretend to OOM.
  93. return ENOMEM;
  94. }
  95. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  96. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(paddr, move(new_physical_pages)));
  97. }
  98. AnonymousVMObject::AnonymousVMObject(FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
  99. : VMObject(move(new_physical_pages))
  100. , m_unused_committed_pages(move(committed_pages))
  101. {
  102. if (strategy == AllocationStrategy::AllocateNow) {
  103. // Allocate all pages right now. We know we can get all because we committed the amount needed
  104. for (size_t i = 0; i < page_count(); ++i)
  105. physical_pages()[i] = m_unused_committed_pages->take_one();
  106. } else {
  107. auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
  108. for (size_t i = 0; i < page_count(); ++i)
  109. physical_pages()[i] = initial_page;
  110. }
  111. }
  112. AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  113. : VMObject(move(new_physical_pages))
  114. {
  115. VERIFY(paddr.page_base() == paddr);
  116. for (size_t i = 0; i < page_count(); ++i)
  117. physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
  118. }
  119. AnonymousVMObject::AnonymousVMObject(FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  120. : VMObject(move(new_physical_pages))
  121. {
  122. }
  123. AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages, FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  124. : VMObject(move(new_physical_pages))
  125. , m_shared_committed_cow_pages(move(shared_committed_cow_pages))
  126. , m_purgeable(other.m_purgeable)
  127. {
  128. ensure_cow_map();
  129. }
  130. AnonymousVMObject::~AnonymousVMObject()
  131. {
  132. }
  133. size_t AnonymousVMObject::purge()
  134. {
  135. SpinlockLocker lock(m_lock);
  136. if (!is_purgeable() || !is_volatile())
  137. return 0;
  138. size_t total_pages_purged = 0;
  139. for (auto& page : m_physical_pages) {
  140. VERIFY(page);
  141. if (page->is_shared_zero_page())
  142. continue;
  143. page = MM.shared_zero_page();
  144. ++total_pages_purged;
  145. }
  146. m_was_purged = true;
  147. for_each_region([](Region& region) {
  148. region.remap();
  149. });
  150. return total_pages_purged;
  151. }
  152. ErrorOr<void> AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
  153. {
  154. VERIFY(is_purgeable());
  155. SpinlockLocker locker(m_lock);
  156. was_purged = m_was_purged;
  157. if (m_volatile == is_volatile)
  158. return {};
  159. if (is_volatile) {
  160. // When a VMObject is made volatile, it gives up all of its committed memory.
  161. // Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
  162. for (auto& page : m_physical_pages) {
  163. if (page && page->is_lazy_committed_page())
  164. page = MM.shared_zero_page();
  165. }
  166. m_unused_committed_pages = {};
  167. m_shared_committed_cow_pages = nullptr;
  168. if (!m_cow_map.is_null())
  169. m_cow_map = {};
  170. m_volatile = true;
  171. m_was_purged = false;
  172. for_each_region([&](auto& region) { region.remap(); });
  173. return {};
  174. }
  175. // When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
  176. // If that fails, we return false to indicate that memory allocation failed.
  177. size_t committed_pages_needed = 0;
  178. for (auto& page : m_physical_pages) {
  179. VERIFY(page);
  180. if (page->is_shared_zero_page())
  181. ++committed_pages_needed;
  182. }
  183. if (!committed_pages_needed) {
  184. m_volatile = false;
  185. return {};
  186. }
  187. m_unused_committed_pages = TRY(MM.commit_user_physical_pages(committed_pages_needed));
  188. for (auto& page : m_physical_pages) {
  189. if (page->is_shared_zero_page())
  190. page = MM.lazy_committed_page();
  191. }
  192. m_volatile = false;
  193. m_was_purged = false;
  194. for_each_region([&](auto& region) { region.remap(); });
  195. return {};
  196. }
  197. NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
  198. {
  199. return m_unused_committed_pages->take_one();
  200. }
  201. Bitmap& AnonymousVMObject::ensure_cow_map()
  202. {
  203. if (m_cow_map.is_null())
  204. m_cow_map = Bitmap { page_count(), true };
  205. return m_cow_map;
  206. }
  207. void AnonymousVMObject::ensure_or_reset_cow_map()
  208. {
  209. if (m_cow_map.is_null())
  210. ensure_cow_map();
  211. else
  212. m_cow_map.fill(true);
  213. }
  214. bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
  215. {
  216. auto const& page = physical_pages()[page_index];
  217. if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
  218. return true;
  219. if (is_shared)
  220. return false;
  221. return !m_cow_map.is_null() && m_cow_map.get(page_index);
  222. }
  223. void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
  224. {
  225. ensure_cow_map().set(page_index, cow);
  226. }
  227. size_t AnonymousVMObject::cow_pages() const
  228. {
  229. if (m_cow_map.is_null())
  230. return 0;
  231. return m_cow_map.count_slow(true);
  232. }
  233. PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
  234. {
  235. VERIFY_INTERRUPTS_DISABLED();
  236. SpinlockLocker lock(m_lock);
  237. if (is_volatile()) {
  238. // A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
  239. dbgln("COW fault in volatile region, will crash.");
  240. return PageFaultResponse::ShouldCrash;
  241. }
  242. auto& page_slot = physical_pages()[page_index];
  243. // If we were sharing committed COW pages with another process, and the other process
  244. // has exhausted the supply, we can stop counting the shared pages.
  245. if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
  246. m_shared_committed_cow_pages = nullptr;
  247. if (page_slot->ref_count() == 1) {
  248. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
  249. set_should_cow(page_index, false);
  250. if (m_shared_committed_cow_pages) {
  251. m_shared_committed_cow_pages->uncommit_one();
  252. if (m_shared_committed_cow_pages->is_empty())
  253. m_shared_committed_cow_pages = nullptr;
  254. }
  255. return PageFaultResponse::Continue;
  256. }
  257. RefPtr<PhysicalPage> page;
  258. if (m_shared_committed_cow_pages) {
  259. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!");
  260. page = m_shared_committed_cow_pages->take_one();
  261. } else {
  262. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!");
  263. page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  264. if (page.is_null()) {
  265. dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
  266. return PageFaultResponse::OutOfMemory;
  267. }
  268. }
  269. dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
  270. {
  271. SpinlockLocker mm_locker(s_mm_lock);
  272. u8* dest_ptr = MM.quickmap_page(*page);
  273. SmapDisabler disabler;
  274. void* fault_at;
  275. if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
  276. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  277. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
  278. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  279. else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
  280. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
  281. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  282. else
  283. VERIFY_NOT_REACHED();
  284. }
  285. MM.unquickmap_page();
  286. }
  287. page_slot = move(page);
  288. set_should_cow(page_index, false);
  289. return PageFaultResponse::Continue;
  290. }
  291. AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
  292. : m_committed_pages(move(committed_pages))
  293. {
  294. }
  295. AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages()
  296. {
  297. }
  298. NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
  299. {
  300. SpinlockLocker locker(m_lock);
  301. return m_committed_pages.take_one();
  302. }
  303. void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
  304. {
  305. SpinlockLocker locker(m_lock);
  306. m_committed_pages.uncommit_one();
  307. }
  308. }