Region.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/FileSystem/Inode.h>
  10. #include <Kernel/Memory/AnonymousVMObject.h>
  11. #include <Kernel/Memory/MemoryManager.h>
  12. #include <Kernel/Memory/PageDirectory.h>
  13. #include <Kernel/Memory/Region.h>
  14. #include <Kernel/Memory/SharedInodeVMObject.h>
  15. #include <Kernel/Panic.h>
  16. #include <Kernel/Process.h>
  17. #include <Kernel/Thread.h>
  18. namespace Kernel::Memory {
  19. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  20. : m_range(range)
  21. , m_offset_in_vmobject(offset_in_vmobject)
  22. , m_vmobject(move(vmobject))
  23. , m_name(move(name))
  24. , m_access(access | ((access & 0x7) << 4))
  25. , m_shared(shared)
  26. , m_cacheable(cacheable == Cacheable::Yes)
  27. {
  28. VERIFY(m_range.base().is_page_aligned());
  29. VERIFY(m_range.size());
  30. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  31. m_vmobject->add_region(*this);
  32. MM.register_region(*this);
  33. }
  34. Region::~Region()
  35. {
  36. m_vmobject->remove_region(*this);
  37. MM.unregister_region(*this);
  38. if (m_page_directory) {
  39. ScopedSpinLock page_lock(m_page_directory->get_lock());
  40. ScopedSpinLock lock(s_mm_lock);
  41. unmap(ShouldDeallocateVirtualRange::Yes);
  42. VERIFY(!m_page_directory);
  43. }
  44. }
  45. OwnPtr<Region> Region::clone()
  46. {
  47. VERIFY(Process::current());
  48. if (m_shared) {
  49. VERIFY(!m_stack);
  50. if (vmobject().is_inode())
  51. VERIFY(vmobject().is_shared_inode());
  52. // Create a new region backed by the same VMObject.
  53. auto region = Region::try_create_user_accessible(
  54. m_range, m_vmobject, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  55. if (!region) {
  56. dbgln("Region::clone: Unable to allocate new Region");
  57. return nullptr;
  58. }
  59. region->set_mmap(m_mmap);
  60. region->set_shared(m_shared);
  61. region->set_syscall_region(is_syscall_region());
  62. return region;
  63. }
  64. if (vmobject().is_inode())
  65. VERIFY(vmobject().is_private_inode());
  66. auto maybe_vmobject_clone = vmobject().try_clone();
  67. if (maybe_vmobject_clone.is_error())
  68. return {};
  69. // Set up a COW region. The parent (this) region becomes COW as well!
  70. remap();
  71. auto clone_region = Region::try_create_user_accessible(
  72. m_range, maybe_vmobject_clone.release_value(), m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  73. if (!clone_region) {
  74. dbgln("Region::clone: Unable to allocate new Region for COW");
  75. return nullptr;
  76. }
  77. if (m_stack) {
  78. VERIFY(is_readable());
  79. VERIFY(is_writable());
  80. VERIFY(vmobject().is_anonymous());
  81. clone_region->set_stack(true);
  82. }
  83. clone_region->set_syscall_region(is_syscall_region());
  84. clone_region->set_mmap(m_mmap);
  85. return clone_region;
  86. }
  87. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  88. {
  89. if (m_vmobject.ptr() == obj.ptr())
  90. return;
  91. m_vmobject->remove_region(*this);
  92. m_vmobject = move(obj);
  93. m_vmobject->add_region(*this);
  94. }
  95. size_t Region::cow_pages() const
  96. {
  97. if (!vmobject().is_anonymous())
  98. return 0;
  99. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  100. }
  101. size_t Region::amount_dirty() const
  102. {
  103. if (!vmobject().is_inode())
  104. return amount_resident();
  105. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  106. }
  107. size_t Region::amount_resident() const
  108. {
  109. size_t bytes = 0;
  110. for (size_t i = 0; i < page_count(); ++i) {
  111. auto* page = physical_page(i);
  112. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  113. bytes += PAGE_SIZE;
  114. }
  115. return bytes;
  116. }
  117. size_t Region::amount_shared() const
  118. {
  119. size_t bytes = 0;
  120. for (size_t i = 0; i < page_count(); ++i) {
  121. auto* page = physical_page(i);
  122. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  123. bytes += PAGE_SIZE;
  124. }
  125. return bytes;
  126. }
  127. OwnPtr<Region> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  128. {
  129. auto region = adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  130. if (!region)
  131. return nullptr;
  132. return region;
  133. }
  134. OwnPtr<Region> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  135. {
  136. return adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  137. }
  138. bool Region::should_cow(size_t page_index) const
  139. {
  140. if (!vmobject().is_anonymous())
  141. return false;
  142. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  143. }
  144. void Region::set_should_cow(size_t page_index, bool cow)
  145. {
  146. VERIFY(!m_shared);
  147. if (vmobject().is_anonymous())
  148. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  149. }
  150. bool Region::map_individual_page_impl(size_t page_index)
  151. {
  152. VERIFY(m_page_directory->get_lock().own_lock());
  153. auto page_vaddr = vaddr_from_page_index(page_index);
  154. bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
  155. if (is_mmap() && !user_allowed) {
  156. PANIC("About to map mmap'ed page at a kernel address");
  157. }
  158. // NOTE: We have to take the MM lock for PTE's to stay valid while we use them.
  159. ScopedSpinLock mm_locker(s_mm_lock);
  160. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  161. if (!pte)
  162. return false;
  163. auto* page = physical_page(page_index);
  164. if (!page || (!is_readable() && !is_writable())) {
  165. pte->clear();
  166. } else {
  167. pte->set_cache_disabled(!m_cacheable);
  168. pte->set_physical_page_base(page->paddr().get());
  169. pte->set_present(true);
  170. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  171. pte->set_writable(false);
  172. else
  173. pte->set_writable(is_writable());
  174. if (Processor::current().has_feature(CPUFeature::NX))
  175. pte->set_execute_disabled(!is_executable());
  176. pte->set_user_allowed(user_allowed);
  177. }
  178. return true;
  179. }
  180. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  181. {
  182. ScopedSpinLock lock(vmobject().m_lock);
  183. if (!m_page_directory)
  184. return true; // not an error, region may have not yet mapped it
  185. if (!translate_vmobject_page(page_index))
  186. return true; // not an error, region doesn't map this page
  187. ScopedSpinLock page_lock(m_page_directory->get_lock());
  188. VERIFY(physical_page(page_index));
  189. bool success = map_individual_page_impl(page_index);
  190. if (with_flush)
  191. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  192. return success;
  193. }
  194. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  195. {
  196. auto& vmobject = this->vmobject();
  197. bool success = true;
  198. vmobject.for_each_region([&](auto& region) {
  199. if (!region.do_remap_vmobject_page(page_index, with_flush))
  200. success = false;
  201. });
  202. return success;
  203. }
  204. void Region::unmap(ShouldDeallocateVirtualRange deallocate_range)
  205. {
  206. if (!m_page_directory)
  207. return;
  208. ScopedSpinLock page_lock(m_page_directory->get_lock());
  209. ScopedSpinLock lock(s_mm_lock);
  210. size_t count = page_count();
  211. for (size_t i = 0; i < count; ++i) {
  212. auto vaddr = vaddr_from_page_index(i);
  213. MM.release_pte(*m_page_directory, vaddr, i == count - 1);
  214. }
  215. MM.flush_tlb(m_page_directory, vaddr(), page_count());
  216. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  217. m_page_directory->range_allocator().deallocate(range());
  218. }
  219. m_page_directory = nullptr;
  220. }
  221. void Region::set_page_directory(PageDirectory& page_directory)
  222. {
  223. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  224. VERIFY(s_mm_lock.own_lock());
  225. m_page_directory = page_directory;
  226. }
  227. bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  228. {
  229. ScopedSpinLock page_lock(page_directory.get_lock());
  230. ScopedSpinLock lock(s_mm_lock);
  231. // FIXME: Find a better place for this sanity check(?)
  232. if (is_user() && !is_shared()) {
  233. VERIFY(!vmobject().is_shared_inode());
  234. }
  235. set_page_directory(page_directory);
  236. size_t page_index = 0;
  237. while (page_index < page_count()) {
  238. if (!map_individual_page_impl(page_index))
  239. break;
  240. ++page_index;
  241. }
  242. if (page_index > 0) {
  243. if (should_flush_tlb == ShouldFlushTLB::Yes)
  244. MM.flush_tlb(m_page_directory, vaddr(), page_index);
  245. return page_index == page_count();
  246. }
  247. return false;
  248. }
  249. void Region::remap()
  250. {
  251. VERIFY(m_page_directory);
  252. map(*m_page_directory);
  253. }
  254. PageFaultResponse Region::handle_fault(PageFault const& fault)
  255. {
  256. auto page_index_in_region = page_index_from_address(fault.vaddr());
  257. if (fault.type() == PageFault::Type::PageNotPresent) {
  258. if (fault.is_read() && !is_readable()) {
  259. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  260. return PageFaultResponse::ShouldCrash;
  261. }
  262. if (fault.is_write() && !is_writable()) {
  263. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  264. return PageFaultResponse::ShouldCrash;
  265. }
  266. if (vmobject().is_inode()) {
  267. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  268. return handle_inode_fault(page_index_in_region);
  269. }
  270. auto& page_slot = physical_page_slot(page_index_in_region);
  271. if (page_slot->is_lazy_committed_page()) {
  272. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  273. VERIFY(m_vmobject->is_anonymous());
  274. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  275. remap_vmobject_page(page_index_in_vmobject);
  276. return PageFaultResponse::Continue;
  277. }
  278. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  279. return PageFaultResponse::ShouldCrash;
  280. }
  281. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  282. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  283. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  284. auto* phys_page = physical_page(page_index_in_region);
  285. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  286. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  287. return handle_zero_fault(page_index_in_region);
  288. }
  289. return handle_cow_fault(page_index_in_region);
  290. }
  291. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  292. return PageFaultResponse::ShouldCrash;
  293. }
  294. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  295. {
  296. VERIFY_INTERRUPTS_DISABLED();
  297. VERIFY(vmobject().is_anonymous());
  298. auto& page_slot = physical_page_slot(page_index_in_region);
  299. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  300. ScopedSpinLock locker(vmobject().m_lock);
  301. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  302. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  303. if (!remap_vmobject_page(page_index_in_vmobject))
  304. return PageFaultResponse::OutOfMemory;
  305. return PageFaultResponse::Continue;
  306. }
  307. auto current_thread = Thread::current();
  308. if (current_thread != nullptr)
  309. current_thread->did_zero_fault();
  310. if (page_slot->is_lazy_committed_page()) {
  311. VERIFY(m_vmobject->is_anonymous());
  312. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  313. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  314. } else {
  315. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  316. if (page_slot.is_null()) {
  317. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  318. return PageFaultResponse::OutOfMemory;
  319. }
  320. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  321. }
  322. if (!remap_vmobject_page(page_index_in_vmobject)) {
  323. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  324. return PageFaultResponse::OutOfMemory;
  325. }
  326. return PageFaultResponse::Continue;
  327. }
  328. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  329. {
  330. VERIFY_INTERRUPTS_DISABLED();
  331. auto current_thread = Thread::current();
  332. if (current_thread)
  333. current_thread->did_cow_fault();
  334. if (!vmobject().is_anonymous())
  335. return PageFaultResponse::ShouldCrash;
  336. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  337. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  338. if (!remap_vmobject_page(page_index_in_vmobject))
  339. return PageFaultResponse::OutOfMemory;
  340. return response;
  341. }
  342. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  343. {
  344. VERIFY_INTERRUPTS_DISABLED();
  345. VERIFY(vmobject().is_inode());
  346. VERIFY(!s_mm_lock.own_lock());
  347. VERIFY(!g_scheduler_lock.own_lock());
  348. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  349. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  350. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  351. {
  352. ScopedSpinLock locker(inode_vmobject.m_lock);
  353. if (!vmobject_physical_page_entry.is_null()) {
  354. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  355. if (!remap_vmobject_page(page_index_in_vmobject))
  356. return PageFaultResponse::OutOfMemory;
  357. return PageFaultResponse::Continue;
  358. }
  359. }
  360. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  361. auto current_thread = Thread::current();
  362. if (current_thread)
  363. current_thread->did_inode_fault();
  364. u8 page_buffer[PAGE_SIZE];
  365. auto& inode = inode_vmobject.inode();
  366. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  367. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  368. if (result.is_error()) {
  369. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  370. return PageFaultResponse::ShouldCrash;
  371. }
  372. auto nread = result.value();
  373. if (nread < PAGE_SIZE) {
  374. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  375. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  376. }
  377. ScopedSpinLock locker(inode_vmobject.m_lock);
  378. if (!vmobject_physical_page_entry.is_null()) {
  379. // Someone else faulted in this page while we were reading from the inode.
  380. // No harm done (other than some duplicate work), remap the page here and return.
  381. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  382. if (!remap_vmobject_page(page_index_in_vmobject))
  383. return PageFaultResponse::OutOfMemory;
  384. return PageFaultResponse::Continue;
  385. }
  386. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  387. if (vmobject_physical_page_entry.is_null()) {
  388. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  389. return PageFaultResponse::OutOfMemory;
  390. }
  391. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  392. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  393. MM.unquickmap_page();
  394. remap_vmobject_page(page_index_in_vmobject);
  395. return PageFaultResponse::Continue;
  396. }
  397. }