Interpreter.cpp 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Badge.h>
  27. #include <LibJS/AST.h>
  28. #include <LibJS/Interpreter.h>
  29. #include <LibJS/Runtime/Error.h>
  30. #include <LibJS/Runtime/GlobalObject.h>
  31. #include <LibJS/Runtime/LexicalEnvironment.h>
  32. #include <LibJS/Runtime/MarkedValueList.h>
  33. #include <LibJS/Runtime/NativeFunction.h>
  34. #include <LibJS/Runtime/Object.h>
  35. #include <LibJS/Runtime/Reference.h>
  36. #include <LibJS/Runtime/Shape.h>
  37. #include <LibJS/Runtime/Value.h>
  38. namespace JS {
  39. Interpreter::Interpreter()
  40. : m_heap(*this)
  41. {
  42. }
  43. Interpreter::~Interpreter()
  44. {
  45. }
  46. Value Interpreter::run(const Statement& statement, ArgumentVector arguments, ScopeType scope_type)
  47. {
  48. if (statement.is_program()) {
  49. if (m_call_stack.is_empty()) {
  50. CallFrame global_call_frame;
  51. global_call_frame.this_value = m_global_object;
  52. global_call_frame.function_name = "(global execution context)";
  53. global_call_frame.environment = heap().allocate<LexicalEnvironment>();
  54. m_call_stack.append(move(global_call_frame));
  55. }
  56. }
  57. if (!statement.is_scope_node())
  58. return statement.execute(*this);
  59. auto& block = static_cast<const ScopeNode&>(statement);
  60. enter_scope(block, move(arguments), scope_type);
  61. m_last_value = js_undefined();
  62. for (auto& node : block.children()) {
  63. m_last_value = node.execute(*this);
  64. if (m_unwind_until != ScopeType::None)
  65. break;
  66. }
  67. bool did_return = m_unwind_until == ScopeType::Function;
  68. if (m_unwind_until == scope_type)
  69. m_unwind_until = ScopeType::None;
  70. exit_scope(block);
  71. return did_return ? m_last_value : js_undefined();
  72. }
  73. void Interpreter::enter_scope(const ScopeNode& scope_node, ArgumentVector arguments, ScopeType scope_type)
  74. {
  75. if (scope_type == ScopeType::Function) {
  76. m_scope_stack.append({ scope_type, scope_node, false });
  77. return;
  78. }
  79. HashMap<FlyString, Variable> scope_variables_with_declaration_kind;
  80. scope_variables_with_declaration_kind.ensure_capacity(16);
  81. for (auto& declaration : scope_node.variables()) {
  82. for (auto& declarator : declaration.declarations()) {
  83. if (scope_node.is_program())
  84. global_object().put(declarator.id().string(), js_undefined());
  85. else
  86. scope_variables_with_declaration_kind.set(declarator.id().string(), { js_undefined(), declaration.declaration_kind() });
  87. }
  88. }
  89. for (auto& argument : arguments) {
  90. scope_variables_with_declaration_kind.set(argument.name, { argument.value, DeclarationKind::Var });
  91. }
  92. bool pushed_lexical_environment = false;
  93. if (!scope_variables_with_declaration_kind.is_empty()) {
  94. auto* block_lexical_environment = heap().allocate<LexicalEnvironment>(move(scope_variables_with_declaration_kind), current_environment());
  95. m_call_stack.last().environment = block_lexical_environment;
  96. pushed_lexical_environment = true;
  97. }
  98. m_scope_stack.append({ scope_type, scope_node, pushed_lexical_environment });
  99. }
  100. void Interpreter::exit_scope(const ScopeNode& scope_node)
  101. {
  102. while (!m_scope_stack.is_empty()) {
  103. auto popped_scope = m_scope_stack.take_last();
  104. if (popped_scope.pushed_environment)
  105. m_call_stack.last().environment = m_call_stack.last().environment->parent();
  106. if (popped_scope.scope_node.ptr() == &scope_node)
  107. break;
  108. }
  109. // If we unwind all the way, just reset m_unwind_until so that future "return" doesn't break.
  110. if (m_scope_stack.is_empty())
  111. m_unwind_until = ScopeType::None;
  112. }
  113. void Interpreter::set_variable(const FlyString& name, Value value, bool first_assignment)
  114. {
  115. if (m_call_stack.size()) {
  116. for (auto* environment = current_environment(); environment; environment = environment->parent()) {
  117. auto possible_match = environment->get(name);
  118. if (possible_match.has_value()) {
  119. if (!first_assignment && possible_match.value().declaration_kind == DeclarationKind::Const) {
  120. throw_exception<TypeError>("Assignment to constant variable");
  121. return;
  122. }
  123. environment->set(name, { value, possible_match.value().declaration_kind });
  124. return;
  125. }
  126. }
  127. }
  128. global_object().put(move(name), move(value));
  129. }
  130. Value Interpreter::get_variable(const FlyString& name)
  131. {
  132. if (m_call_stack.size()) {
  133. for (auto* environment = current_environment(); environment; environment = environment->parent()) {
  134. auto possible_match = environment->get(name);
  135. if (possible_match.has_value())
  136. return possible_match.value().value;
  137. }
  138. }
  139. return global_object().get(name);
  140. }
  141. Reference Interpreter::get_reference(const FlyString& name)
  142. {
  143. if (m_call_stack.size()) {
  144. for (auto* environment = current_environment(); environment; environment = environment->parent()) {
  145. auto possible_match = environment->get(name);
  146. if (possible_match.has_value())
  147. return { Reference::LocalVariable, name };
  148. }
  149. }
  150. return { Reference::GlobalVariable, name };
  151. }
  152. void Interpreter::gather_roots(Badge<Heap>, HashTable<Cell*>& roots)
  153. {
  154. roots.set(m_global_object);
  155. roots.set(m_exception);
  156. if (m_last_value.is_cell())
  157. roots.set(m_last_value.as_cell());
  158. for (auto& call_frame : m_call_stack) {
  159. if (call_frame.this_value.is_cell())
  160. roots.set(call_frame.this_value.as_cell());
  161. for (auto& argument : call_frame.arguments) {
  162. if (argument.is_cell())
  163. roots.set(argument.as_cell());
  164. }
  165. roots.set(call_frame.environment);
  166. }
  167. }
  168. Value Interpreter::call(Function& function, Value this_value, Optional<MarkedValueList> arguments)
  169. {
  170. auto& call_frame = push_call_frame();
  171. call_frame.function_name = function.name();
  172. call_frame.this_value = this_value;
  173. if (arguments.has_value())
  174. call_frame.arguments = arguments.value().values();
  175. call_frame.environment = function.create_environment();
  176. auto result = function.call(*this);
  177. pop_call_frame();
  178. return result;
  179. }
  180. Value Interpreter::throw_exception(Exception* exception)
  181. {
  182. if (exception->value().is_object() && exception->value().as_object().is_error()) {
  183. auto& error = static_cast<Error&>(exception->value().as_object());
  184. dbg() << "Throwing JavaScript Error: " << error.name() << ", " << error.message();
  185. for (ssize_t i = m_call_stack.size() - 1; i >= 0; --i) {
  186. auto function_name = m_call_stack[i].function_name;
  187. if (function_name.is_empty())
  188. function_name = "<anonymous>";
  189. dbg() << " " << function_name;
  190. }
  191. }
  192. m_exception = exception;
  193. unwind(ScopeType::Try);
  194. return {};
  195. }
  196. GlobalObject& Interpreter::global_object()
  197. {
  198. return static_cast<GlobalObject&>(*m_global_object);
  199. }
  200. const GlobalObject& Interpreter::global_object() const
  201. {
  202. return static_cast<const GlobalObject&>(*m_global_object);
  203. }
  204. }