init.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Types.h>
  7. #include <Kernel/Arch/InterruptManagement.h>
  8. #include <Kernel/Arch/Processor.h>
  9. #include <Kernel/BootInfo.h>
  10. #include <Kernel/Bus/PCI/Access.h>
  11. #include <Kernel/Bus/PCI/Initializer.h>
  12. #include <Kernel/Bus/USB/USBManagement.h>
  13. #include <Kernel/Bus/VirtIO/Device.h>
  14. #include <Kernel/CommandLine.h>
  15. #include <Kernel/Devices/Audio/Management.h>
  16. #include <Kernel/Devices/DeviceManagement.h>
  17. #include <Kernel/Devices/Generic/DeviceControlDevice.h>
  18. #include <Kernel/Devices/Generic/FullDevice.h>
  19. #include <Kernel/Devices/Generic/MemoryDevice.h>
  20. #include <Kernel/Devices/Generic/NullDevice.h>
  21. #include <Kernel/Devices/Generic/RandomDevice.h>
  22. #include <Kernel/Devices/Generic/SelfTTYDevice.h>
  23. #include <Kernel/Devices/Generic/ZeroDevice.h>
  24. #include <Kernel/Devices/HID/Management.h>
  25. #include <Kernel/Devices/KCOVDevice.h>
  26. #include <Kernel/Devices/PCISerialDevice.h>
  27. #include <Kernel/Devices/SerialDevice.h>
  28. #include <Kernel/FileSystem/SysFS/Registry.h>
  29. #include <Kernel/FileSystem/SysFS/Subsystems/Firmware/Directory.h>
  30. #include <Kernel/FileSystem/VirtualFileSystem.h>
  31. #include <Kernel/Firmware/ACPI/Initialize.h>
  32. #include <Kernel/Firmware/ACPI/Parser.h>
  33. #include <Kernel/Graphics/Console/BootFramebufferConsole.h>
  34. #include <Kernel/Graphics/Console/VGATextModeConsole.h>
  35. #include <Kernel/Graphics/GraphicsManagement.h>
  36. #include <Kernel/Heap/kmalloc.h>
  37. #include <Kernel/KSyms.h>
  38. #include <Kernel/Memory/MemoryManager.h>
  39. #include <Kernel/Multiboot.h>
  40. #include <Kernel/Net/NetworkTask.h>
  41. #include <Kernel/Net/NetworkingManagement.h>
  42. #include <Kernel/Panic.h>
  43. #include <Kernel/Prekernel/Prekernel.h>
  44. #include <Kernel/Process.h>
  45. #include <Kernel/Random.h>
  46. #include <Kernel/Scheduler.h>
  47. #include <Kernel/Sections.h>
  48. #include <Kernel/Storage/StorageManagement.h>
  49. #include <Kernel/TTY/ConsoleManagement.h>
  50. #include <Kernel/TTY/PTYMultiplexer.h>
  51. #include <Kernel/TTY/VirtualConsole.h>
  52. #include <Kernel/Tasks/FinalizerTask.h>
  53. #include <Kernel/Tasks/SyncTask.h>
  54. #include <Kernel/Time/TimeManagement.h>
  55. #include <Kernel/WorkQueue.h>
  56. #include <Kernel/kstdio.h>
  57. #if ARCH(X86_64)
  58. # include <Kernel/Arch/x86_64/Hypervisor/VMWareBackdoor.h>
  59. # include <Kernel/Arch/x86_64/Interrupts/APIC.h>
  60. # include <Kernel/Arch/x86_64/Interrupts/PIC.h>
  61. #elif ARCH(AARCH64)
  62. # include <Kernel/Arch/aarch64/RPi/Framebuffer.h>
  63. # include <Kernel/Arch/aarch64/RPi/Mailbox.h>
  64. # include <Kernel/Arch/aarch64/RPi/MiniUART.h>
  65. #endif
  66. // Defined in the linker script
  67. typedef void (*ctor_func_t)();
  68. extern ctor_func_t start_heap_ctors[];
  69. extern ctor_func_t end_heap_ctors[];
  70. extern ctor_func_t start_ctors[];
  71. extern ctor_func_t end_ctors[];
  72. extern uintptr_t __stack_chk_guard;
  73. READONLY_AFTER_INIT uintptr_t __stack_chk_guard __attribute__((used));
  74. #if ARCH(X86_64)
  75. extern "C" u8 start_of_safemem_text[];
  76. extern "C" u8 end_of_safemem_text[];
  77. extern "C" u8 start_of_safemem_atomic_text[];
  78. extern "C" u8 end_of_safemem_atomic_text[];
  79. #endif
  80. extern "C" u8 end_of_kernel_image[];
  81. multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  82. size_t multiboot_copy_boot_modules_count;
  83. READONLY_AFTER_INIT bool g_in_early_boot;
  84. namespace Kernel {
  85. [[noreturn]] static void init_stage2(void*);
  86. static void setup_serial_debug();
  87. // boot.S expects these functions to exactly have the following signatures.
  88. // We declare them here to ensure their signatures don't accidentally change.
  89. extern "C" void init_finished(u32 cpu) __attribute__((used));
  90. extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
  91. extern "C" [[noreturn]] void init(BootInfo const&);
  92. READONLY_AFTER_INIT VirtualConsole* tty0;
  93. ProcessID g_init_pid { 0 };
  94. ALWAYS_INLINE static Processor& bsp_processor()
  95. {
  96. // This solves a problem where the bsp Processor instance
  97. // gets "re"-initialized in init() when we run all global constructors.
  98. alignas(Processor) static u8 bsp_processor_storage[sizeof(Processor)];
  99. return (Processor&)bsp_processor_storage;
  100. }
  101. // SerenityOS Kernel C++ entry point :^)
  102. //
  103. // This is where C++ execution begins, after boot.S transfers control here.
  104. //
  105. // The purpose of init() is to start multi-tasking. It does the bare minimum
  106. // amount of work needed to start the scheduler.
  107. //
  108. // Once multi-tasking is ready, we spawn a new thread that starts in the
  109. // init_stage2() function. Initialization continues there.
  110. extern "C" {
  111. READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
  112. READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
  113. READONLY_AFTER_INIT size_t physical_to_virtual_offset;
  114. READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
  115. READONLY_AFTER_INIT FlatPtr kernel_load_base;
  116. READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
  117. READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
  118. READONLY_AFTER_INIT PhysicalAddress boot_pd0;
  119. READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
  120. READONLY_AFTER_INIT Memory::PageTableEntry* boot_pd_kernel_pt1023;
  121. READONLY_AFTER_INIT StringView kernel_cmdline;
  122. READONLY_AFTER_INIT u32 multiboot_flags;
  123. READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
  124. READONLY_AFTER_INIT size_t multiboot_memory_map_count;
  125. READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
  126. READONLY_AFTER_INIT size_t multiboot_modules_count;
  127. READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
  128. READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
  129. READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
  130. READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
  131. READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
  132. READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
  133. }
  134. Atomic<Graphics::Console*> g_boot_console;
  135. #if ARCH(AARCH64)
  136. READONLY_AFTER_INIT static u8 s_command_line_buffer[512];
  137. #endif
  138. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init([[maybe_unused]] BootInfo const& boot_info)
  139. {
  140. g_in_early_boot = true;
  141. #if ARCH(X86_64)
  142. start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
  143. end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
  144. physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
  145. kernel_mapping_base = boot_info.kernel_mapping_base;
  146. kernel_load_base = boot_info.kernel_load_base;
  147. gdt64ptr = boot_info.gdt64ptr;
  148. code64_sel = boot_info.code64_sel;
  149. boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
  150. boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
  151. boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
  152. boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
  153. boot_pd_kernel_pt1023 = (Memory::PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
  154. char const* cmdline = (char const*)boot_info.kernel_cmdline;
  155. kernel_cmdline = StringView { cmdline, strlen(cmdline) };
  156. multiboot_flags = boot_info.multiboot_flags;
  157. multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
  158. multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
  159. multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
  160. multiboot_modules_count = boot_info.multiboot_modules_count;
  161. multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
  162. multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
  163. multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
  164. multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
  165. multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
  166. multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
  167. #elif ARCH(AARCH64)
  168. // FIXME: For the aarch64 platforms, we should get the information by parsing a device tree instead of using multiboot.
  169. multiboot_memory_map_t mmap[] = {
  170. { sizeof(struct multiboot_mmap_entry) - sizeof(u32),
  171. (u64)0x0,
  172. (u64)0x3F000000,
  173. MULTIBOOT_MEMORY_AVAILABLE }
  174. };
  175. multiboot_memory_map = mmap;
  176. multiboot_memory_map_count = 1;
  177. multiboot_modules = nullptr;
  178. multiboot_modules_count = 0;
  179. // FIXME: Read the /chosen/bootargs property.
  180. kernel_cmdline = RPi::Mailbox::the().query_kernel_command_line(s_command_line_buffer);
  181. #endif
  182. setup_serial_debug();
  183. // We need to copy the command line before kmalloc is initialized,
  184. // as it may overwrite parts of multiboot!
  185. CommandLine::early_initialize(kernel_cmdline);
  186. if (multiboot_modules_count > 0) {
  187. VERIFY(multiboot_modules);
  188. memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
  189. }
  190. multiboot_copy_boot_modules_count = multiboot_modules_count;
  191. new (&bsp_processor()) Processor();
  192. bsp_processor().early_initialize(0);
  193. // Invoke the constructors needed for the kernel heap
  194. for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
  195. (*ctor)();
  196. kmalloc_init();
  197. load_kernel_symbol_table();
  198. bsp_processor().initialize(0);
  199. CommandLine::initialize();
  200. Memory::MemoryManager::initialize(0);
  201. #if ARCH(AARCH64)
  202. auto firmware_version = RPi::Mailbox::the().query_firmware_version();
  203. dmesgln("RPi: Firmware version: {}", firmware_version);
  204. RPi::Framebuffer::initialize();
  205. #endif
  206. // NOTE: If the bootloader provided a framebuffer, then set up an initial console.
  207. // If the bootloader didn't provide a framebuffer, then set up an initial text console.
  208. // We do so we can see the output on the screen as soon as possible.
  209. if (!kernel_command_line().is_early_boot_console_disabled()) {
  210. if (!multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
  211. g_boot_console = &try_make_lock_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
  212. } else {
  213. g_boot_console = &Graphics::VGATextModeConsole::initialize().leak_ref();
  214. }
  215. }
  216. dmesgln("Starting SerenityOS...");
  217. DeviceManagement::initialize();
  218. SysFSComponentRegistry::initialize();
  219. DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
  220. DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
  221. DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
  222. MM.unmap_prekernel();
  223. #if ARCH(X86_64)
  224. // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
  225. VERIFY(+start_of_safemem_text != +end_of_safemem_text);
  226. VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
  227. #endif
  228. // Invoke all static global constructors in the kernel.
  229. // Note that we want to do this as early as possible.
  230. for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
  231. (*ctor)();
  232. InterruptManagement::initialize();
  233. ACPI::initialize();
  234. // Initialize TimeManagement before using randomness!
  235. TimeManagement::initialize(0);
  236. __stack_chk_guard = get_fast_random<uintptr_t>();
  237. Process::initialize();
  238. Scheduler::initialize();
  239. #if ARCH(X86_64)
  240. // FIXME: Add an abstraction for the smp related functions, instead of using ifdefs in this file.
  241. if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  242. // We must set up the AP boot environment before switching to a kernel process,
  243. // as pages below address USER_RANGE_BASE are only accessible through the kernel
  244. // page directory.
  245. APIC::the().setup_ap_boot_environment();
  246. }
  247. #endif
  248. MUST(Process::create_kernel_process(KString::must_create("init_stage2"sv), init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No));
  249. Scheduler::start();
  250. VERIFY_NOT_REACHED();
  251. }
  252. #if ARCH(X86_64)
  253. //
  254. // This is where C++ execution begins for APs, after boot.S transfers control here.
  255. //
  256. // The purpose of init_ap() is to initialize APs for multi-tasking.
  257. //
  258. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
  259. {
  260. processor_info->early_initialize(cpu);
  261. processor_info->initialize(cpu);
  262. Memory::MemoryManager::initialize(cpu);
  263. Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
  264. Scheduler::start();
  265. VERIFY_NOT_REACHED();
  266. }
  267. //
  268. // This method is called once a CPU enters the scheduler and its idle thread
  269. // At this point the initial boot stack can be freed
  270. //
  271. extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
  272. {
  273. if (cpu == 0) {
  274. // TODO: we can reuse the boot stack, maybe for kmalloc()?
  275. } else {
  276. APIC::the().init_finished(cpu);
  277. TimeManagement::initialize(cpu);
  278. }
  279. }
  280. #endif
  281. void init_stage2(void*)
  282. {
  283. // This is a little bit of a hack. We can't register our process at the time we're
  284. // creating it, but we need to be registered otherwise finalization won't be happy.
  285. // The colonel process gets away without having to do this because it never exits.
  286. Process::register_new(Process::current());
  287. WorkQueue::initialize();
  288. #if ARCH(X86_64)
  289. if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  290. // We can't start the APs until we have a scheduler up and running.
  291. // We need to be able to process ICI messages, otherwise another
  292. // core may send too many and end up deadlocking once the pool is
  293. // exhausted
  294. APIC::the().boot_aps();
  295. }
  296. #endif
  297. // Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
  298. PCI::initialize();
  299. if (!PCI::Access::is_disabled()) {
  300. PCISerialDevice::detect();
  301. }
  302. VirtualFileSystem::initialize();
  303. #if ARCH(X86_64)
  304. if (!is_serial_debug_enabled())
  305. (void)SerialDevice::must_create(0).leak_ref();
  306. (void)SerialDevice::must_create(1).leak_ref();
  307. (void)SerialDevice::must_create(2).leak_ref();
  308. (void)SerialDevice::must_create(3).leak_ref();
  309. #elif ARCH(AARCH64)
  310. (void)MUST(RPi::MiniUART::create()).leak_ref();
  311. #endif
  312. #if ARCH(X86_64)
  313. VMWareBackdoor::the(); // don't wait until first mouse packet
  314. #endif
  315. MUST(HIDManagement::initialize());
  316. GraphicsManagement::the().initialize();
  317. ConsoleManagement::the().initialize();
  318. SyncTask::spawn();
  319. FinalizerTask::spawn();
  320. auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
  321. if (!PCI::Access::is_disabled()) {
  322. USB::USBManagement::initialize();
  323. }
  324. FirmwareSysFSDirectory::initialize();
  325. if (!PCI::Access::is_disabled()) {
  326. VirtIO::detect();
  327. }
  328. NetworkingManagement::the().initialize();
  329. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  330. (void)KCOVDevice::must_create().leak_ref();
  331. #endif
  332. (void)MemoryDevice::must_create().leak_ref();
  333. (void)ZeroDevice::must_create().leak_ref();
  334. (void)FullDevice::must_create().leak_ref();
  335. (void)RandomDevice::must_create().leak_ref();
  336. (void)SelfTTYDevice::must_create().leak_ref();
  337. PTYMultiplexer::initialize();
  338. AudioManagement::the().initialize();
  339. StorageManagement::the().initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
  340. if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
  341. PANIC("VirtualFileSystem::mount_root failed");
  342. }
  343. // Switch out of early boot mode.
  344. g_in_early_boot = false;
  345. // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
  346. MM.protect_readonly_after_init_memory();
  347. // NOTE: Everything in the .ksyms section becomes read-only after this point.
  348. MM.protect_ksyms_after_init();
  349. // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
  350. MM.unmap_text_after_init();
  351. auto userspace_init = kernel_command_line().userspace_init();
  352. auto init_args = kernel_command_line().userspace_init_args();
  353. auto init_or_error = Process::create_user_process(userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
  354. if (init_or_error.is_error())
  355. PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
  356. auto [init_process, init_thread] = init_or_error.release_value();
  357. g_init_pid = init_process->pid();
  358. init_thread->set_priority(THREAD_PRIORITY_HIGH);
  359. NetworkTask::spawn();
  360. // NOTE: All kernel processes must be created before enabling boot profiling.
  361. // This is so profiling_enable() can emit process created performance events for them.
  362. if (boot_profiling) {
  363. dbgln("Starting full system boot profiling");
  364. MutexLocker mutex_locker(Process::current().big_lock());
  365. auto const enable_all = ~(u64)0;
  366. auto result = Process::current().profiling_enable(-1, enable_all);
  367. VERIFY(!result.is_error());
  368. }
  369. Process::current().sys$exit(0);
  370. VERIFY_NOT_REACHED();
  371. }
  372. UNMAP_AFTER_INIT void setup_serial_debug()
  373. {
  374. // serial_debug will output all the dbgln() data to COM1 at
  375. // 8-N-1 57600 baud. this is particularly useful for debugging the boot
  376. // process on live hardware.
  377. if (kernel_cmdline.contains("serial_debug"sv)) {
  378. set_serial_debug_enabled(true);
  379. }
  380. }
  381. // Define some Itanium C++ ABI methods to stop the linker from complaining.
  382. // If we actually call these something has gone horribly wrong
  383. void* __dso_handle __attribute__((visibility("hidden")));
  384. }