MathObject.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/Function.h>
  28. #include <LibJS/Runtime/GlobalObject.h>
  29. #include <LibJS/Runtime/MathObject.h>
  30. #include <math.h>
  31. namespace JS {
  32. MathObject::MathObject(GlobalObject& global_object)
  33. : Object(*global_object.object_prototype())
  34. {
  35. }
  36. void MathObject::initialize(GlobalObject& global_object)
  37. {
  38. auto& vm = this->vm();
  39. Object::initialize(global_object);
  40. u8 attr = Attribute::Writable | Attribute::Configurable;
  41. define_native_function(vm.names.abs, abs, 1, attr);
  42. define_native_function(vm.names.random, random, 0, attr);
  43. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  44. define_native_function(vm.names.floor, floor, 1, attr);
  45. define_native_function(vm.names.ceil, ceil, 1, attr);
  46. define_native_function(vm.names.round, round, 1, attr);
  47. define_native_function(vm.names.max, max, 2, attr);
  48. define_native_function(vm.names.min, min, 2, attr);
  49. define_native_function(vm.names.trunc, trunc, 1, attr);
  50. define_native_function(vm.names.sin, sin, 1, attr);
  51. define_native_function(vm.names.cos, cos, 1, attr);
  52. define_native_function(vm.names.tan, tan, 1, attr);
  53. define_native_function(vm.names.pow, pow, 2, attr);
  54. define_native_function(vm.names.exp, exp, 1, attr);
  55. define_native_function(vm.names.expm1, expm1, 1, attr);
  56. define_native_function(vm.names.sign, sign, 1, attr);
  57. define_native_function(vm.names.clz32, clz32, 1, attr);
  58. define_native_function(vm.names.acos, acos, 1, attr);
  59. define_native_function(vm.names.acosh, acosh, 1, attr);
  60. define_native_function(vm.names.asin, asin, 1, attr);
  61. define_native_function(vm.names.asinh, asinh, 1, attr);
  62. define_native_function(vm.names.atan, atan, 1, attr);
  63. define_native_function(vm.names.atanh, atanh, 1, attr);
  64. define_native_function(vm.names.log1p, log1p, 1, attr);
  65. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  66. define_native_function(vm.names.atan2, atan2, 2, attr);
  67. define_native_function(vm.names.fround, fround, 1, attr);
  68. define_native_function(vm.names.hypot, hypot, 2, attr);
  69. define_native_function(vm.names.log, log, 1, attr);
  70. define_native_function(vm.names.log2, log2, 1, attr);
  71. define_native_function(vm.names.log10, log10, 1, attr);
  72. define_native_function(vm.names.sinh, sinh, 1, attr);
  73. define_native_function(vm.names.cosh, cosh, 1, attr);
  74. define_native_function(vm.names.tanh, tanh, 1, attr);
  75. define_property(vm.names.E, Value(M_E), 0);
  76. define_property(vm.names.LN2, Value(M_LN2), 0);
  77. define_property(vm.names.LN10, Value(M_LN10), 0);
  78. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  79. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  80. define_property(vm.names.PI, Value(M_PI), 0);
  81. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  82. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  83. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  84. }
  85. MathObject::~MathObject()
  86. {
  87. }
  88. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  89. {
  90. auto number = vm.argument(0).to_number(global_object);
  91. if (vm.exception())
  92. return {};
  93. if (number.is_nan())
  94. return js_nan();
  95. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  96. }
  97. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  98. {
  99. #ifdef __serenity__
  100. double r = (double)arc4random() / (double)UINT32_MAX;
  101. #else
  102. double r = (double)rand() / (double)RAND_MAX;
  103. #endif
  104. return Value(r);
  105. }
  106. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  107. {
  108. auto number = vm.argument(0).to_number(global_object);
  109. if (vm.exception())
  110. return {};
  111. if (number.is_nan())
  112. return js_nan();
  113. return Value(::sqrt(number.as_double()));
  114. }
  115. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  116. {
  117. auto number = vm.argument(0).to_number(global_object);
  118. if (vm.exception())
  119. return {};
  120. if (number.is_nan())
  121. return js_nan();
  122. return Value(::floor(number.as_double()));
  123. }
  124. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  125. {
  126. auto number = vm.argument(0).to_number(global_object);
  127. if (vm.exception())
  128. return {};
  129. if (number.is_nan())
  130. return js_nan();
  131. auto number_double = number.as_double();
  132. if (number_double < 0 && number_double > -1)
  133. return Value(-0.f);
  134. return Value(::ceil(number.as_double()));
  135. }
  136. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  137. {
  138. auto number = vm.argument(0).to_number(global_object);
  139. if (vm.exception())
  140. return {};
  141. if (number.is_nan())
  142. return js_nan();
  143. double intpart = 0;
  144. double frac = modf(number.as_double(), &intpart);
  145. if (intpart >= 0) {
  146. if (frac >= 0.5)
  147. intpart += 1.0;
  148. } else {
  149. if (frac < -0.5)
  150. intpart -= 1.0;
  151. }
  152. return Value(intpart);
  153. }
  154. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  155. {
  156. if (!vm.argument_count())
  157. return js_negative_infinity();
  158. auto max = vm.argument(0).to_number(global_object);
  159. if (vm.exception())
  160. return {};
  161. for (size_t i = 1; i < vm.argument_count(); ++i) {
  162. auto cur = vm.argument(i).to_number(global_object);
  163. if (vm.exception())
  164. return {};
  165. max = Value(cur.as_double() > max.as_double() ? cur : max);
  166. }
  167. return max;
  168. }
  169. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  170. {
  171. if (!vm.argument_count())
  172. return js_infinity();
  173. auto min = vm.argument(0).to_number(global_object);
  174. if (vm.exception())
  175. return {};
  176. for (size_t i = 1; i < vm.argument_count(); ++i) {
  177. auto cur = vm.argument(i).to_number(global_object);
  178. if (vm.exception())
  179. return {};
  180. min = Value(cur.as_double() < min.as_double() ? cur : min);
  181. }
  182. return min;
  183. }
  184. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  185. {
  186. auto number = vm.argument(0).to_number(global_object);
  187. if (vm.exception())
  188. return {};
  189. if (number.is_nan())
  190. return js_nan();
  191. if (number.as_double() < 0)
  192. return MathObject::ceil(vm, global_object);
  193. return MathObject::floor(vm, global_object);
  194. }
  195. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  196. {
  197. auto number = vm.argument(0).to_number(global_object);
  198. if (vm.exception())
  199. return {};
  200. if (number.is_nan())
  201. return js_nan();
  202. return Value(::sin(number.as_double()));
  203. }
  204. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  205. {
  206. auto number = vm.argument(0).to_number(global_object);
  207. if (vm.exception())
  208. return {};
  209. if (number.is_nan())
  210. return js_nan();
  211. return Value(::cos(number.as_double()));
  212. }
  213. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  214. {
  215. auto number = vm.argument(0).to_number(global_object);
  216. if (vm.exception())
  217. return {};
  218. if (number.is_nan())
  219. return js_nan();
  220. return Value(::tan(number.as_double()));
  221. }
  222. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  223. {
  224. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  225. }
  226. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  227. {
  228. auto number = vm.argument(0).to_number(global_object);
  229. if (vm.exception())
  230. return {};
  231. if (number.is_nan())
  232. return js_nan();
  233. return Value(::exp(number.as_double()));
  234. }
  235. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  236. {
  237. auto number = vm.argument(0).to_number(global_object);
  238. if (vm.exception())
  239. return {};
  240. if (number.is_nan())
  241. return js_nan();
  242. return Value(::expm1(number.as_double()));
  243. }
  244. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  245. {
  246. auto number = vm.argument(0).to_number(global_object);
  247. if (vm.exception())
  248. return {};
  249. if (number.is_positive_zero())
  250. return Value(0);
  251. if (number.is_negative_zero())
  252. return Value(-0.0);
  253. if (number.as_double() > 0)
  254. return Value(1);
  255. if (number.as_double() < 0)
  256. return Value(-1);
  257. return js_nan();
  258. }
  259. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  260. {
  261. auto number = vm.argument(0).to_number(global_object);
  262. if (vm.exception())
  263. return {};
  264. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  265. return Value(32);
  266. return Value(__builtin_clz((unsigned)number.as_double()));
  267. }
  268. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  269. {
  270. auto number = vm.argument(0).to_number(global_object);
  271. if (vm.exception())
  272. return {};
  273. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  274. return js_nan();
  275. if (number.as_double() == 1)
  276. return Value(0);
  277. return Value(::acos(number.as_double()));
  278. }
  279. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  280. {
  281. auto number = vm.argument(0).to_number(global_object);
  282. if (vm.exception())
  283. return {};
  284. if (number.as_double() < 1)
  285. return js_nan();
  286. return Value(::acosh(number.as_double()));
  287. }
  288. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  289. {
  290. auto number = vm.argument(0).to_number(global_object);
  291. if (vm.exception())
  292. return {};
  293. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  294. return number;
  295. return Value(::asin(number.as_double()));
  296. }
  297. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  298. {
  299. auto number = vm.argument(0).to_number(global_object);
  300. if (vm.exception())
  301. return {};
  302. return Value(::asinh(number.as_double()));
  303. }
  304. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  305. {
  306. auto number = vm.argument(0).to_number(global_object);
  307. if (vm.exception())
  308. return {};
  309. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  310. return number;
  311. if (number.is_positive_infinity())
  312. return Value(M_PI_2);
  313. if (number.is_negative_infinity())
  314. return Value(-M_PI_2);
  315. return Value(::atan(number.as_double()));
  316. }
  317. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  318. {
  319. auto number = vm.argument(0).to_number(global_object);
  320. if (vm.exception())
  321. return {};
  322. if (number.as_double() > 1 || number.as_double() < -1)
  323. return js_nan();
  324. return Value(::atanh(number.as_double()));
  325. }
  326. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  327. {
  328. auto number = vm.argument(0).to_number(global_object);
  329. if (vm.exception())
  330. return {};
  331. if (number.as_double() < -1)
  332. return js_nan();
  333. return Value(::log1p(number.as_double()));
  334. }
  335. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  336. {
  337. auto number = vm.argument(0).to_number(global_object);
  338. if (vm.exception())
  339. return {};
  340. return Value(::cbrt(number.as_double()));
  341. }
  342. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  343. {
  344. auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
  345. auto pi_4 = M_PI_2 / 2;
  346. auto three_pi_4 = pi_4 + M_PI_2;
  347. if (vm.exception())
  348. return {};
  349. if (x.is_positive_zero()) {
  350. if (y.is_positive_zero() || y.is_negative_zero())
  351. return y;
  352. else
  353. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  354. }
  355. if (x.is_negative_zero()) {
  356. if (y.is_positive_zero())
  357. return Value(M_PI);
  358. else if (y.is_negative_zero())
  359. return Value(-M_PI);
  360. else
  361. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  362. }
  363. if (x.is_positive_infinity()) {
  364. if (y.is_infinity())
  365. return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
  366. else
  367. return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
  368. }
  369. if (x.is_negative_infinity()) {
  370. if (y.is_infinity())
  371. return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
  372. else
  373. return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
  374. }
  375. if (y.is_infinity())
  376. return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
  377. if (y.is_positive_zero())
  378. return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
  379. if (y.is_negative_zero())
  380. return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
  381. return Value(::atan2(y.as_double(), x.as_double()));
  382. }
  383. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  384. {
  385. auto number = vm.argument(0).to_number(global_object);
  386. if (vm.exception())
  387. return {};
  388. if (number.is_nan())
  389. return js_nan();
  390. return Value((float)number.as_double());
  391. }
  392. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  393. {
  394. if (!vm.argument_count())
  395. return Value(0);
  396. auto hypot = vm.argument(0).to_number(global_object);
  397. if (vm.exception())
  398. return {};
  399. hypot = Value(hypot.as_double() * hypot.as_double());
  400. for (size_t i = 1; i < vm.argument_count(); ++i) {
  401. auto cur = vm.argument(i).to_number(global_object);
  402. if (vm.exception())
  403. return {};
  404. hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
  405. }
  406. return Value(::sqrt(hypot.as_double()));
  407. }
  408. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  409. {
  410. auto number = vm.argument(0).to_number(global_object);
  411. if (vm.exception())
  412. return {};
  413. if (number.as_double() < 0)
  414. return js_nan();
  415. return Value(::log(number.as_double()));
  416. }
  417. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  418. {
  419. auto number = vm.argument(0).to_number(global_object);
  420. if (vm.exception())
  421. return {};
  422. if (number.as_double() < 0)
  423. return js_nan();
  424. return Value(::log2(number.as_double()));
  425. }
  426. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  427. {
  428. auto number = vm.argument(0).to_number(global_object);
  429. if (vm.exception())
  430. return {};
  431. if (number.as_double() < 0)
  432. return js_nan();
  433. return Value(::log10(number.as_double()));
  434. }
  435. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  436. {
  437. auto number = vm.argument(0).to_number(global_object);
  438. if (vm.exception())
  439. return {};
  440. if (number.is_nan())
  441. return js_nan();
  442. return Value(::sinh(number.as_double()));
  443. }
  444. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  445. {
  446. auto number = vm.argument(0).to_number(global_object);
  447. if (vm.exception())
  448. return {};
  449. if (number.is_nan())
  450. return js_nan();
  451. return Value(::cosh(number.as_double()));
  452. }
  453. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  454. {
  455. auto number = vm.argument(0).to_number(global_object);
  456. if (vm.exception())
  457. return {};
  458. if (number.is_nan())
  459. return js_nan();
  460. if (number.is_positive_infinity())
  461. return Value(1);
  462. if (number.is_negative_infinity())
  463. return Value(-1);
  464. return Value(::tanh(number.as_double()));
  465. }
  466. }