Device.cpp 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566
  1. /*
  2. * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
  3. * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
  4. * Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/AnyOf.h>
  9. #include <AK/Error.h>
  10. #include <AK/Math.h>
  11. #include <AK/NumericLimits.h>
  12. #include <AK/SIMDExtras.h>
  13. #include <AK/SIMDMath.h>
  14. #include <LibCore/ElapsedTimer.h>
  15. #include <LibGfx/Painter.h>
  16. #include <LibGfx/Vector2.h>
  17. #include <LibGfx/Vector3.h>
  18. #include <LibSoftGPU/Config.h>
  19. #include <LibSoftGPU/Device.h>
  20. #include <LibSoftGPU/PixelQuad.h>
  21. #include <LibSoftGPU/SIMD.h>
  22. #include <math.h>
  23. namespace SoftGPU {
  24. static i64 g_num_rasterized_triangles;
  25. static i64 g_num_pixels;
  26. static i64 g_num_pixels_shaded;
  27. static i64 g_num_pixels_blended;
  28. static i64 g_num_sampler_calls;
  29. static i64 g_num_stencil_writes;
  30. static i64 g_num_quads;
  31. using AK::abs;
  32. using AK::SIMD::any;
  33. using AK::SIMD::exp;
  34. using AK::SIMD::expand4;
  35. using AK::SIMD::f32x4;
  36. using AK::SIMD::i32x4;
  37. using AK::SIMD::load4_masked;
  38. using AK::SIMD::maskbits;
  39. using AK::SIMD::maskcount;
  40. using AK::SIMD::store4_masked;
  41. using AK::SIMD::to_f32x4;
  42. using AK::SIMD::to_u32x4;
  43. using AK::SIMD::u32x4;
  44. static constexpr int subpixel_factor = 1 << SUBPIXEL_BITS;
  45. // Returns positive values for counter-clockwise rotation of vertices. Note that it returns the
  46. // area of a parallelogram with sides {a, b} and {b, c}, so _double_ the area of the triangle {a, b, c}.
  47. constexpr static i32 edge_function(IntVector2 const& a, IntVector2 const& b, IntVector2 const& c)
  48. {
  49. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  50. }
  51. constexpr static i32x4 edge_function4(IntVector2 const& a, IntVector2 const& b, Vector2<i32x4> const& c)
  52. {
  53. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  54. }
  55. template<typename T, typename U>
  56. constexpr static auto interpolate(T const& v0, T const& v1, T const& v2, Vector3<U> const& barycentric_coords)
  57. {
  58. return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
  59. }
  60. static GPU::ColorType to_bgra32(FloatVector4 const& color)
  61. {
  62. auto clamped = color.clamped(0.0f, 1.0f);
  63. auto r = static_cast<u8>(clamped.x() * 255);
  64. auto g = static_cast<u8>(clamped.y() * 255);
  65. auto b = static_cast<u8>(clamped.z() * 255);
  66. auto a = static_cast<u8>(clamped.w() * 255);
  67. return a << 24 | r << 16 | g << 8 | b;
  68. }
  69. ALWAYS_INLINE static u32x4 to_bgra32(Vector4<f32x4> const& v)
  70. {
  71. auto clamped = v.clamped(expand4(0.0f), expand4(1.0f));
  72. auto r = to_u32x4(clamped.x() * 255);
  73. auto g = to_u32x4(clamped.y() * 255);
  74. auto b = to_u32x4(clamped.z() * 255);
  75. auto a = to_u32x4(clamped.w() * 255);
  76. return a << 24 | r << 16 | g << 8 | b;
  77. }
  78. static Vector4<f32x4> to_vec4(u32x4 bgra)
  79. {
  80. auto constexpr one_over_255 = expand4(1.0f / 255);
  81. return {
  82. to_f32x4((bgra >> 16) & 0xff) * one_over_255,
  83. to_f32x4((bgra >> 8) & 0xff) * one_over_255,
  84. to_f32x4(bgra & 0xff) * one_over_255,
  85. to_f32x4((bgra >> 24) & 0xff) * one_over_255,
  86. };
  87. }
  88. void Device::setup_blend_factors()
  89. {
  90. m_alpha_blend_factors = {};
  91. switch (m_options.blend_source_factor) {
  92. case GPU::BlendFactor::Zero:
  93. break;
  94. case GPU::BlendFactor::One:
  95. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  96. break;
  97. case GPU::BlendFactor::SrcColor:
  98. m_alpha_blend_factors.src_factor_src_color = 1;
  99. break;
  100. case GPU::BlendFactor::OneMinusSrcColor:
  101. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  102. m_alpha_blend_factors.src_factor_src_color = -1;
  103. break;
  104. case GPU::BlendFactor::SrcAlpha:
  105. m_alpha_blend_factors.src_factor_src_alpha = 1;
  106. break;
  107. case GPU::BlendFactor::OneMinusSrcAlpha:
  108. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  109. m_alpha_blend_factors.src_factor_src_alpha = -1;
  110. break;
  111. case GPU::BlendFactor::DstAlpha:
  112. m_alpha_blend_factors.src_factor_dst_alpha = 1;
  113. break;
  114. case GPU::BlendFactor::OneMinusDstAlpha:
  115. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  116. m_alpha_blend_factors.src_factor_dst_alpha = -1;
  117. break;
  118. case GPU::BlendFactor::DstColor:
  119. m_alpha_blend_factors.src_factor_dst_color = 1;
  120. break;
  121. case GPU::BlendFactor::OneMinusDstColor:
  122. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  123. m_alpha_blend_factors.src_factor_dst_color = -1;
  124. break;
  125. case GPU::BlendFactor::SrcAlphaSaturate:
  126. default:
  127. VERIFY_NOT_REACHED();
  128. }
  129. switch (m_options.blend_destination_factor) {
  130. case GPU::BlendFactor::Zero:
  131. break;
  132. case GPU::BlendFactor::One:
  133. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  134. break;
  135. case GPU::BlendFactor::SrcColor:
  136. m_alpha_blend_factors.dst_factor_src_color = 1;
  137. break;
  138. case GPU::BlendFactor::OneMinusSrcColor:
  139. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  140. m_alpha_blend_factors.dst_factor_src_color = -1;
  141. break;
  142. case GPU::BlendFactor::SrcAlpha:
  143. m_alpha_blend_factors.dst_factor_src_alpha = 1;
  144. break;
  145. case GPU::BlendFactor::OneMinusSrcAlpha:
  146. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  147. m_alpha_blend_factors.dst_factor_src_alpha = -1;
  148. break;
  149. case GPU::BlendFactor::DstAlpha:
  150. m_alpha_blend_factors.dst_factor_dst_alpha = 1;
  151. break;
  152. case GPU::BlendFactor::OneMinusDstAlpha:
  153. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  154. m_alpha_blend_factors.dst_factor_dst_alpha = -1;
  155. break;
  156. case GPU::BlendFactor::DstColor:
  157. m_alpha_blend_factors.dst_factor_dst_color = 1;
  158. break;
  159. case GPU::BlendFactor::OneMinusDstColor:
  160. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  161. m_alpha_blend_factors.dst_factor_dst_color = -1;
  162. break;
  163. case GPU::BlendFactor::SrcAlphaSaturate:
  164. default:
  165. VERIFY_NOT_REACHED();
  166. }
  167. }
  168. template<typename CB1, typename CB2, typename CB3>
  169. ALWAYS_INLINE void Device::rasterize(Gfx::IntRect& render_bounds, CB1 set_coverage_mask, CB2 set_quad_depth, CB3 set_quad_attributes)
  170. {
  171. // Return if alpha testing is a no-op
  172. if (m_options.enable_alpha_test && m_options.alpha_test_func == GPU::AlphaTestFunction::Never)
  173. return;
  174. // Buffers
  175. auto color_buffer = m_frame_buffer->color_buffer();
  176. auto depth_buffer = m_frame_buffer->depth_buffer();
  177. auto stencil_buffer = m_frame_buffer->stencil_buffer();
  178. // Stencil configuration and writing
  179. auto const& stencil_configuration = m_stencil_configuration[GPU::Face::Front];
  180. auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask;
  181. auto write_to_stencil = [](GPU::StencilType* stencil_ptrs[4], i32x4 stencil_value, GPU::StencilOperation op, GPU::StencilType reference_value, GPU::StencilType write_mask, i32x4 pixel_mask) {
  182. if (write_mask == 0 || op == GPU::StencilOperation::Keep)
  183. return;
  184. switch (op) {
  185. case GPU::StencilOperation::Decrement:
  186. stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask);
  187. break;
  188. case GPU::StencilOperation::DecrementWrap:
  189. stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask);
  190. break;
  191. case GPU::StencilOperation::Increment:
  192. stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask);
  193. break;
  194. case GPU::StencilOperation::IncrementWrap:
  195. stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask);
  196. break;
  197. case GPU::StencilOperation::Invert:
  198. stencil_value ^= write_mask;
  199. break;
  200. case GPU::StencilOperation::Replace:
  201. stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask);
  202. break;
  203. case GPU::StencilOperation::Zero:
  204. stencil_value &= ~write_mask;
  205. break;
  206. default:
  207. VERIFY_NOT_REACHED();
  208. }
  209. INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask));
  210. store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask);
  211. };
  212. // Limit rendering to framebuffer and scissor rects
  213. render_bounds.intersect(m_frame_buffer->rect());
  214. if (m_options.scissor_enabled)
  215. render_bounds.intersect(m_options.scissor_box);
  216. // Quad bounds
  217. auto const render_bounds_left = render_bounds.left();
  218. auto const render_bounds_right = render_bounds.right();
  219. auto const render_bounds_top = render_bounds.top();
  220. auto const render_bounds_bottom = render_bounds.bottom();
  221. auto const qx0 = render_bounds_left & ~1;
  222. auto const qx1 = render_bounds_right & ~1;
  223. auto const qy0 = render_bounds_top & ~1;
  224. auto const qy1 = render_bounds_bottom & ~1;
  225. // Rasterize all quads
  226. // FIXME: this could be embarrasingly parallel
  227. for (int qy = qy0; qy <= qy1; qy += 2) {
  228. for (int qx = qx0; qx <= qx1; qx += 2) {
  229. PixelQuad quad;
  230. quad.screen_coordinates = {
  231. i32x4 { qx, qx + 1, qx, qx + 1 },
  232. i32x4 { qy, qy, qy + 1, qy + 1 },
  233. };
  234. // Set coverage mask and test against render bounds
  235. set_coverage_mask(quad);
  236. quad.mask &= quad.screen_coordinates.x() >= render_bounds_left
  237. && quad.screen_coordinates.x() <= render_bounds_right
  238. && quad.screen_coordinates.y() >= render_bounds_top
  239. && quad.screen_coordinates.y() <= render_bounds_bottom;
  240. auto coverage_bits = maskbits(quad.mask);
  241. if (coverage_bits == 0)
  242. continue;
  243. INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
  244. INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
  245. // Stencil testing
  246. GPU::StencilType* stencil_ptrs[4];
  247. i32x4 stencil_value;
  248. if (m_options.enable_stencil_test) {
  249. stencil_ptrs[0] = coverage_bits & 1 ? &stencil_buffer->scanline(qy)[qx] : nullptr;
  250. stencil_ptrs[1] = coverage_bits & 2 ? &stencil_buffer->scanline(qy)[qx + 1] : nullptr;
  251. stencil_ptrs[2] = coverage_bits & 4 ? &stencil_buffer->scanline(qy + 1)[qx] : nullptr;
  252. stencil_ptrs[3] = coverage_bits & 8 ? &stencil_buffer->scanline(qy + 1)[qx + 1] : nullptr;
  253. stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask);
  254. stencil_value &= stencil_configuration.test_mask;
  255. i32x4 stencil_test_passed;
  256. switch (stencil_configuration.test_function) {
  257. case GPU::StencilTestFunction::Always:
  258. stencil_test_passed = expand4(~0);
  259. break;
  260. case GPU::StencilTestFunction::Equal:
  261. stencil_test_passed = stencil_value == stencil_reference_value;
  262. break;
  263. case GPU::StencilTestFunction::Greater:
  264. stencil_test_passed = stencil_value > stencil_reference_value;
  265. break;
  266. case GPU::StencilTestFunction::GreaterOrEqual:
  267. stencil_test_passed = stencil_value >= stencil_reference_value;
  268. break;
  269. case GPU::StencilTestFunction::Less:
  270. stencil_test_passed = stencil_value < stencil_reference_value;
  271. break;
  272. case GPU::StencilTestFunction::LessOrEqual:
  273. stencil_test_passed = stencil_value <= stencil_reference_value;
  274. break;
  275. case GPU::StencilTestFunction::Never:
  276. stencil_test_passed = expand4(0);
  277. break;
  278. case GPU::StencilTestFunction::NotEqual:
  279. stencil_test_passed = stencil_value != stencil_reference_value;
  280. break;
  281. default:
  282. VERIFY_NOT_REACHED();
  283. }
  284. // Update stencil buffer for pixels that failed the stencil test
  285. write_to_stencil(
  286. stencil_ptrs,
  287. stencil_value,
  288. stencil_configuration.on_stencil_test_fail,
  289. stencil_reference_value,
  290. stencil_configuration.write_mask,
  291. quad.mask & ~stencil_test_passed);
  292. // Update coverage mask + early quad rejection
  293. quad.mask &= stencil_test_passed;
  294. coverage_bits = maskbits(quad.mask);
  295. if (coverage_bits == 0)
  296. continue;
  297. }
  298. // Depth testing
  299. GPU::DepthType* depth_ptrs[4] = {
  300. coverage_bits & 1 ? &depth_buffer->scanline(qy)[qx] : nullptr,
  301. coverage_bits & 2 ? &depth_buffer->scanline(qy)[qx + 1] : nullptr,
  302. coverage_bits & 4 ? &depth_buffer->scanline(qy + 1)[qx] : nullptr,
  303. coverage_bits & 8 ? &depth_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  304. };
  305. if (m_options.enable_depth_test) {
  306. set_quad_depth(quad);
  307. auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  308. i32x4 depth_test_passed;
  309. switch (m_options.depth_func) {
  310. case GPU::DepthTestFunction::Always:
  311. depth_test_passed = expand4(~0);
  312. break;
  313. case GPU::DepthTestFunction::Never:
  314. depth_test_passed = expand4(0);
  315. break;
  316. case GPU::DepthTestFunction::Greater:
  317. depth_test_passed = quad.depth > depth;
  318. break;
  319. case GPU::DepthTestFunction::GreaterOrEqual:
  320. depth_test_passed = quad.depth >= depth;
  321. break;
  322. case GPU::DepthTestFunction::NotEqual:
  323. #ifdef __SSE__
  324. depth_test_passed = quad.depth != depth;
  325. #else
  326. depth_test_passed = i32x4 {
  327. bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0,
  328. bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0,
  329. bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0,
  330. bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0,
  331. };
  332. #endif
  333. break;
  334. case GPU::DepthTestFunction::Equal:
  335. #ifdef __SSE__
  336. depth_test_passed = quad.depth == depth;
  337. #else
  338. //
  339. // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
  340. // compiled for the i686 target. When we calculate our depth value to be stored in the buffer,
  341. // it is an 80-bit x87 floating point number, however, when stored into the depth buffer, this is
  342. // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
  343. // used here the comparison fails.
  344. // This could be solved by using a `long double` for the depth buffer, however this would take
  345. // up significantly more space and is completely overkill for a depth buffer. As such, comparing
  346. // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
  347. // equal, we can pretty much guarantee that it's actually equal.
  348. //
  349. depth_test_passed = i32x4 {
  350. bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0,
  351. bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0,
  352. bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0,
  353. bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0,
  354. };
  355. #endif
  356. break;
  357. case GPU::DepthTestFunction::LessOrEqual:
  358. depth_test_passed = quad.depth <= depth;
  359. break;
  360. case GPU::DepthTestFunction::Less:
  361. depth_test_passed = quad.depth < depth;
  362. break;
  363. default:
  364. VERIFY_NOT_REACHED();
  365. }
  366. // Update stencil buffer for pixels that failed the depth test
  367. if (m_options.enable_stencil_test) {
  368. write_to_stencil(
  369. stencil_ptrs,
  370. stencil_value,
  371. stencil_configuration.on_depth_test_fail,
  372. stencil_reference_value,
  373. stencil_configuration.write_mask,
  374. quad.mask & ~depth_test_passed);
  375. }
  376. // Update coverage mask + early quad rejection
  377. quad.mask &= depth_test_passed;
  378. coverage_bits = maskbits(quad.mask);
  379. if (coverage_bits == 0)
  380. continue;
  381. }
  382. // Update stencil buffer for passed pixels
  383. if (m_options.enable_stencil_test) {
  384. write_to_stencil(
  385. stencil_ptrs,
  386. stencil_value,
  387. stencil_configuration.on_pass,
  388. stencil_reference_value,
  389. stencil_configuration.write_mask,
  390. quad.mask);
  391. }
  392. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
  393. set_quad_attributes(quad);
  394. shade_fragments(quad);
  395. // Alpha testing
  396. if (m_options.enable_alpha_test) {
  397. test_alpha(quad);
  398. coverage_bits = maskbits(quad.mask);
  399. if (coverage_bits == 0)
  400. continue;
  401. }
  402. // Write to depth buffer
  403. if (m_options.enable_depth_test && m_options.enable_depth_write)
  404. store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  405. // We will not update the color buffer at all
  406. if ((m_options.color_mask == 0) || !m_options.enable_color_write)
  407. continue;
  408. GPU::ColorType* color_ptrs[4] = {
  409. coverage_bits & 1 ? &color_buffer->scanline(qy)[qx] : nullptr,
  410. coverage_bits & 2 ? &color_buffer->scanline(qy)[qx + 1] : nullptr,
  411. coverage_bits & 4 ? &color_buffer->scanline(qy + 1)[qx] : nullptr,
  412. coverage_bits & 8 ? &color_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  413. };
  414. u32x4 dst_u32;
  415. if (m_options.enable_blending || m_options.color_mask != 0xffffffff)
  416. dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  417. if (m_options.enable_blending) {
  418. INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
  419. // Blend color values from pixel_staging into color_buffer
  420. auto const& src = quad.out_color;
  421. auto dst = to_vec4(dst_u32);
  422. auto src_factor = expand4(m_alpha_blend_factors.src_constant)
  423. + src * m_alpha_blend_factors.src_factor_src_color
  424. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.src_factor_src_alpha
  425. + dst * m_alpha_blend_factors.src_factor_dst_color
  426. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.src_factor_dst_alpha;
  427. auto dst_factor = expand4(m_alpha_blend_factors.dst_constant)
  428. + src * m_alpha_blend_factors.dst_factor_src_color
  429. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.dst_factor_src_alpha
  430. + dst * m_alpha_blend_factors.dst_factor_dst_color
  431. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.dst_factor_dst_alpha;
  432. quad.out_color = src * src_factor + dst * dst_factor;
  433. }
  434. if (m_options.color_mask == 0xffffffff)
  435. store4_masked(to_bgra32(quad.out_color), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  436. else
  437. store4_masked((to_bgra32(quad.out_color) & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  438. }
  439. }
  440. }
  441. void Device::rasterize_line_aliased(GPU::Vertex& from, GPU::Vertex& to)
  442. {
  443. // FIXME: implement aliased lines; for now we fall back to anti-aliased logic
  444. rasterize_line_antialiased(from, to);
  445. }
  446. void Device::rasterize_line_antialiased(GPU::Vertex& from, GPU::Vertex& to)
  447. {
  448. auto const from_coords = from.window_coordinates.xy();
  449. auto const to_coords = to.window_coordinates.xy();
  450. auto const line_width = ceilf(m_options.line_width);
  451. auto const line_radius = line_width / 2;
  452. auto render_bounds = Gfx::IntRect {
  453. min(from_coords.x(), to_coords.x()),
  454. min(from_coords.y(), to_coords.y()),
  455. abs(from_coords.x() - to_coords.x()) + 1,
  456. abs(from_coords.y() - to_coords.y()) + 1,
  457. };
  458. render_bounds.inflate(line_width, line_width);
  459. auto const from_coords4 = expand4(from_coords);
  460. auto const line_vector = to_coords - from_coords;
  461. auto const line_vector4 = expand4(line_vector);
  462. auto const line_dot4 = expand4(line_vector.dot(line_vector));
  463. auto const from_depth4 = expand4(from.window_coordinates.z());
  464. auto const to_depth4 = expand4(to.window_coordinates.z());
  465. auto const from_color4 = expand4(from.color);
  466. auto const from_fog_depth4 = expand4(abs(from.eye_coordinates.z()));
  467. // Rasterize using a 2D signed distance field for a line segment
  468. // FIXME: performance-wise, this might be the absolute worst way to draw an anti-aliased line
  469. f32x4 distance_along_line;
  470. rasterize(
  471. render_bounds,
  472. [&from_coords4, &distance_along_line, &line_vector4, &line_dot4, &line_radius](auto& quad) {
  473. auto const screen_coordinates4 = to_vec2_f32x4(quad.screen_coordinates);
  474. auto const pixel_vector = screen_coordinates4 - from_coords4;
  475. distance_along_line = AK::SIMD::clamp(pixel_vector.dot(line_vector4) / line_dot4, 0.f, 1.f);
  476. auto distance_to_line = length(pixel_vector - line_vector4 * distance_along_line) - line_radius;
  477. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  478. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_line + 0.5f, 0.f, 1.f);
  479. quad.mask = quad.coverage > 0.f;
  480. },
  481. [&from_depth4, &to_depth4, &distance_along_line](auto& quad) {
  482. quad.depth = mix(from_depth4, to_depth4, distance_along_line);
  483. },
  484. [&from_color4, &from, &from_fog_depth4](auto& quad) {
  485. // FIXME: interpolate color, tex coords and fog depth along the distance of the line
  486. // in clip space (i.e. NOT distance_from_line)
  487. quad.vertex_color = from_color4;
  488. for (size_t i = 0; i < GPU::NUM_SAMPLERS; ++i)
  489. quad.texture_coordinates[i] = expand4(from.tex_coords[i]);
  490. quad.fog_depth = from_fog_depth4;
  491. });
  492. }
  493. void Device::rasterize_line(GPU::Vertex& from, GPU::Vertex& to)
  494. {
  495. if (m_options.line_smooth)
  496. rasterize_line_antialiased(from, to);
  497. else
  498. rasterize_line_aliased(from, to);
  499. }
  500. void Device::rasterize_point_aliased(GPU::Vertex& point)
  501. {
  502. // Determine aliased point width
  503. constexpr size_t maximum_aliased_point_size = 64;
  504. auto point_width = clamp(round_to<int>(m_options.point_size), 1, maximum_aliased_point_size);
  505. // Determine aliased center coordinates
  506. IntVector2 point_center;
  507. if (point_width % 2 == 1)
  508. point_center = point.window_coordinates.xy().to_type<int>();
  509. else
  510. point_center = (point.window_coordinates.xy() + FloatVector2 { .5f, .5f }).to_type<int>();
  511. // Aliased points are rects; calculate boundaries around center
  512. auto point_rect = Gfx::IntRect {
  513. point_center.x() - point_width / 2,
  514. point_center.y() - point_width / 2,
  515. point_width,
  516. point_width,
  517. };
  518. // Rasterize the point as a rect
  519. rasterize(
  520. point_rect,
  521. [](auto& quad) {
  522. // We already passed in point_rect, so this doesn't matter
  523. quad.mask = expand4(~0);
  524. },
  525. [&point](auto& quad) {
  526. quad.depth = expand4(point.window_coordinates.z());
  527. },
  528. [&point](auto& quad) {
  529. quad.vertex_color = expand4(point.color);
  530. for (size_t i = 0; i < GPU::NUM_SAMPLERS; ++i)
  531. quad.texture_coordinates[i] = expand4(point.tex_coords[i]);
  532. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  533. });
  534. }
  535. void Device::rasterize_point_antialiased(GPU::Vertex& point)
  536. {
  537. auto const center = point.window_coordinates.xy();
  538. auto const center4 = expand4(center);
  539. auto const radius = m_options.point_size / 2;
  540. auto render_bounds = Gfx::IntRect {
  541. center.x() - radius,
  542. center.y() - radius,
  543. radius * 2 + 1,
  544. radius * 2 + 1,
  545. };
  546. // Rasterize using a 2D signed distance field for a circle
  547. rasterize(
  548. render_bounds,
  549. [&center4, &radius](auto& quad) {
  550. auto screen_coords = to_vec2_f32x4(quad.screen_coordinates);
  551. auto distance_to_point = length(center4 - screen_coords) - radius;
  552. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  553. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_point + .5f, 0.f, 1.f);
  554. quad.mask = quad.coverage > 0.f;
  555. },
  556. [&point](auto& quad) {
  557. quad.depth = expand4(point.window_coordinates.z());
  558. },
  559. [&point](auto& quad) {
  560. quad.vertex_color = expand4(point.color);
  561. for (size_t i = 0; i < GPU::NUM_SAMPLERS; ++i)
  562. quad.texture_coordinates[i] = expand4(point.tex_coords[i]);
  563. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  564. });
  565. }
  566. void Device::rasterize_point(GPU::Vertex& point)
  567. {
  568. // Divide texture coordinates R, S and T by Q
  569. for (size_t i = 0; i < GPU::NUM_SAMPLERS; ++i) {
  570. auto& tex_coord = point.tex_coords[i];
  571. auto one_over_w = 1 / tex_coord.w();
  572. tex_coord = {
  573. tex_coord.x() * one_over_w,
  574. tex_coord.y() * one_over_w,
  575. tex_coord.z() * one_over_w,
  576. tex_coord.w(),
  577. };
  578. }
  579. if (m_options.point_smooth)
  580. rasterize_point_antialiased(point);
  581. else
  582. rasterize_point_aliased(point);
  583. }
  584. void Device::rasterize_triangle(Triangle& triangle)
  585. {
  586. INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);
  587. auto v0 = (triangle.vertices[0].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  588. auto v1 = (triangle.vertices[1].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  589. auto v2 = (triangle.vertices[2].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  590. auto triangle_area = edge_function(v0, v1, v2);
  591. if (triangle_area == 0)
  592. return;
  593. // Perform face culling
  594. if (m_options.enable_culling) {
  595. bool is_front = (m_options.front_face == GPU::WindingOrder::CounterClockwise ? triangle_area > 0 : triangle_area < 0);
  596. if (!is_front && m_options.cull_back)
  597. return;
  598. if (is_front && m_options.cull_front)
  599. return;
  600. }
  601. // Force counter-clockwise ordering of vertices
  602. if (triangle_area < 0) {
  603. swap(triangle.vertices[0], triangle.vertices[1]);
  604. swap(v0, v1);
  605. triangle_area *= -1;
  606. }
  607. auto const& vertex0 = triangle.vertices[0];
  608. auto const& vertex1 = triangle.vertices[1];
  609. auto const& vertex2 = triangle.vertices[2];
  610. auto const one_over_area = 1.0f / triangle_area;
  611. // This function calculates the 3 edge values for the pixel relative to the triangle.
  612. auto calculate_edge_values4 = [v0, v1, v2](Vector2<i32x4> const& p) -> Vector3<i32x4> {
  613. return {
  614. edge_function4(v1, v2, p),
  615. edge_function4(v2, v0, p),
  616. edge_function4(v0, v1, p),
  617. };
  618. };
  619. // Zero is used in testing against edge values below, applying the "top-left rule". If a pixel
  620. // lies exactly on an edge shared by two triangles, we only render that pixel if the edge in
  621. // question is a "top" or "left" edge. By setting either a 1 or 0, we effectively change the
  622. // comparisons against the edge values below from "> 0" into ">= 0".
  623. IntVector3 const zero {
  624. (v2.y() < v1.y() || (v2.y() == v1.y() && v2.x() < v1.x())) ? 0 : 1,
  625. (v0.y() < v2.y() || (v0.y() == v2.y() && v0.x() < v2.x())) ? 0 : 1,
  626. (v1.y() < v0.y() || (v1.y() == v0.y() && v1.x() < v0.x())) ? 0 : 1,
  627. };
  628. // This function tests whether a point as identified by its 3 edge values lies within the triangle
  629. auto test_point4 = [zero](Vector3<i32x4> const& edges) -> i32x4 {
  630. return edges.x() >= zero.x()
  631. && edges.y() >= zero.y()
  632. && edges.z() >= zero.z();
  633. };
  634. // Calculate render bounds based on the triangle's vertices
  635. Gfx::IntRect render_bounds;
  636. render_bounds.set_left(min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  637. render_bounds.set_right(max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  638. render_bounds.set_top(min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  639. render_bounds.set_bottom(max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  640. // Calculate depth of fragment for fog;
  641. // OpenGL 1.5 chapter 3.10: "An implementation may choose to approximate the
  642. // eye-coordinate distance from the eye to each fragment center by |Ze|."
  643. Vector3<f32x4> fog_depth;
  644. if (m_options.fog_enabled) {
  645. fog_depth = {
  646. expand4(abs(vertex0.eye_coordinates.z())),
  647. expand4(abs(vertex1.eye_coordinates.z())),
  648. expand4(abs(vertex2.eye_coordinates.z())),
  649. };
  650. }
  651. auto const half_pixel_offset = Vector2<i32x4> { expand4(subpixel_factor / 2), expand4(subpixel_factor / 2) };
  652. auto const window_w_coordinates = Vector3<f32x4> {
  653. expand4(vertex0.window_coordinates.w()),
  654. expand4(vertex1.window_coordinates.w()),
  655. expand4(vertex2.window_coordinates.w()),
  656. };
  657. // Calculate depth offset to apply
  658. float depth_offset = 0.f;
  659. if (m_options.depth_offset_enabled) {
  660. // Edge value deltas
  661. auto edge_value_step_x = FloatVector3 {
  662. static_cast<float>(v1.y() - v2.y()),
  663. static_cast<float>(v2.y() - v0.y()),
  664. static_cast<float>(v0.y() - v1.y()),
  665. };
  666. auto edge_value_step_y = FloatVector3 {
  667. static_cast<float>(v2.x() - v1.x()),
  668. static_cast<float>(v0.x() - v2.x()),
  669. static_cast<float>(v1.x() - v0.x()),
  670. };
  671. // Barycentric deltas
  672. auto barycentric_step_x = edge_value_step_x * one_over_area;
  673. auto barycentric_step_y = edge_value_step_y * one_over_area;
  674. // Depth delta vector and slope (magnitude)
  675. auto depth_coordinates = FloatVector3 {
  676. vertex0.window_coordinates.z(),
  677. vertex1.window_coordinates.z(),
  678. vertex2.window_coordinates.z(),
  679. };
  680. auto depth_step = FloatVector2 {
  681. depth_coordinates.dot(barycentric_step_x),
  682. depth_coordinates.dot(barycentric_step_y),
  683. };
  684. auto depth_max_slope = depth_step.length();
  685. // Calculate total depth offset
  686. depth_offset = depth_max_slope * m_options.depth_offset_factor + NumericLimits<float>::epsilon() * m_options.depth_offset_constant;
  687. }
  688. auto const window_z_coordinates = Vector3<f32x4> {
  689. expand4(vertex0.window_coordinates.z() + depth_offset),
  690. expand4(vertex1.window_coordinates.z() + depth_offset),
  691. expand4(vertex2.window_coordinates.z() + depth_offset),
  692. };
  693. rasterize(
  694. render_bounds,
  695. [&](auto& quad) {
  696. auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor + half_pixel_offset);
  697. quad.mask = test_point4(edge_values);
  698. quad.barycentrics = {
  699. to_f32x4(edge_values.x()),
  700. to_f32x4(edge_values.y()),
  701. to_f32x4(edge_values.z()),
  702. };
  703. },
  704. [&](auto& quad) {
  705. // Determine each edge's ratio to the total area
  706. quad.barycentrics = quad.barycentrics * one_over_area;
  707. // Because the Z coordinates were divided by W, we can interpolate between them
  708. quad.depth = AK::SIMD::clamp(window_z_coordinates.dot(quad.barycentrics), 0.f, 1.f);
  709. },
  710. [&](auto& quad) {
  711. auto const interpolated_reciprocal_w = window_w_coordinates.dot(quad.barycentrics);
  712. quad.barycentrics = quad.barycentrics * window_w_coordinates / interpolated_reciprocal_w;
  713. // FIXME: make this more generic. We want to interpolate more than just color and uv
  714. if (m_options.shade_smooth)
  715. quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics);
  716. else
  717. quad.vertex_color = expand4(vertex0.color);
  718. for (size_t i = 0; i < GPU::NUM_SAMPLERS; ++i)
  719. quad.texture_coordinates[i] = interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics);
  720. if (m_options.fog_enabled)
  721. quad.fog_depth = fog_depth.dot(quad.barycentrics);
  722. });
  723. }
  724. Device::Device(Gfx::IntSize const& size)
  725. : m_frame_buffer(FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size).release_value_but_fixme_should_propagate_errors())
  726. {
  727. m_options.scissor_box = m_frame_buffer->rect();
  728. m_options.viewport = m_frame_buffer->rect();
  729. }
  730. GPU::DeviceInfo Device::info() const
  731. {
  732. return {
  733. .vendor_name = "SerenityOS",
  734. .device_name = "SoftGPU",
  735. .num_texture_units = GPU::NUM_SAMPLERS,
  736. .num_lights = NUM_LIGHTS,
  737. .max_clip_planes = MAX_CLIP_PLANES,
  738. .stencil_bits = sizeof(GPU::StencilType) * 8,
  739. .supports_npot_textures = true,
  740. };
  741. }
  742. static void generate_texture_coordinates(GPU::Vertex& vertex, GPU::RasterizerOptions const& options)
  743. {
  744. auto generate_coordinate = [&](size_t texcoord_index, size_t config_index) -> float {
  745. auto mode = options.texcoord_generation_config[texcoord_index][config_index].mode;
  746. switch (mode) {
  747. case GPU::TexCoordGenerationMode::ObjectLinear: {
  748. auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients;
  749. return coefficients.dot(vertex.position);
  750. }
  751. case GPU::TexCoordGenerationMode::EyeLinear: {
  752. auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients;
  753. return coefficients.dot(vertex.eye_coordinates);
  754. }
  755. case GPU::TexCoordGenerationMode::SphereMap: {
  756. auto const eye_unit = vertex.eye_coordinates.normalized();
  757. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  758. auto const normal = vertex.normal;
  759. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  760. reflection.set_z(reflection.z() + 1);
  761. auto const reflection_value = reflection[config_index];
  762. return reflection_value / (2 * reflection.length()) + 0.5f;
  763. }
  764. case GPU::TexCoordGenerationMode::ReflectionMap: {
  765. auto const eye_unit = vertex.eye_coordinates.normalized();
  766. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  767. auto const normal = vertex.normal;
  768. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  769. return reflection[config_index];
  770. }
  771. case GPU::TexCoordGenerationMode::NormalMap: {
  772. return vertex.normal[config_index];
  773. }
  774. default:
  775. VERIFY_NOT_REACHED();
  776. }
  777. };
  778. for (size_t i = 0; i < vertex.tex_coords.size(); ++i) {
  779. auto& tex_coord = vertex.tex_coords[i];
  780. auto const enabled_coords = options.texcoord_generation_enabled_coordinates[i];
  781. tex_coord = {
  782. ((enabled_coords & GPU::TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(i, 0) : tex_coord.x(),
  783. ((enabled_coords & GPU::TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(i, 1) : tex_coord.y(),
  784. ((enabled_coords & GPU::TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(i, 2) : tex_coord.z(),
  785. ((enabled_coords & GPU::TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(i, 3) : tex_coord.w(),
  786. };
  787. }
  788. }
  789. void Device::calculate_vertex_lighting(GPU::Vertex& vertex) const
  790. {
  791. if (!m_options.lighting_enabled)
  792. return;
  793. auto const& material = m_materials.at(0);
  794. auto ambient = material.ambient;
  795. auto diffuse = material.diffuse;
  796. auto emissive = material.emissive;
  797. auto specular = material.specular;
  798. if (m_options.color_material_enabled
  799. && (m_options.color_material_face == GPU::ColorMaterialFace::Front || m_options.color_material_face == GPU::ColorMaterialFace::FrontAndBack)) {
  800. switch (m_options.color_material_mode) {
  801. case GPU::ColorMaterialMode::Ambient:
  802. ambient = vertex.color;
  803. break;
  804. case GPU::ColorMaterialMode::AmbientAndDiffuse:
  805. ambient = vertex.color;
  806. diffuse = vertex.color;
  807. break;
  808. case GPU::ColorMaterialMode::Diffuse:
  809. diffuse = vertex.color;
  810. break;
  811. case GPU::ColorMaterialMode::Emissive:
  812. emissive = vertex.color;
  813. break;
  814. case GPU::ColorMaterialMode::Specular:
  815. specular = vertex.color;
  816. break;
  817. }
  818. }
  819. FloatVector4 result_color = emissive + ambient * m_lighting_model.scene_ambient_color;
  820. for (auto const& light : m_lights) {
  821. if (!light.is_enabled)
  822. continue;
  823. // We need to save the length here because the attenuation factor requires a non-normalized vector!
  824. auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& output_length) {
  825. FloatVector3 light_vector;
  826. if ((p1.w() != 0.f) && (p2.w() == 0.f))
  827. light_vector = p2.xyz();
  828. else if ((p1.w() == 0.f) && (p2.w() != 0.f))
  829. light_vector = -p1.xyz();
  830. else
  831. light_vector = p2.xyz() - p1.xyz();
  832. output_length = light_vector.length();
  833. if (output_length == 0.f)
  834. return light_vector;
  835. return light_vector / output_length;
  836. };
  837. auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) {
  838. return AK::max(d1.dot(d2), 0.0f);
  839. };
  840. float vertex_to_light_length = 0.f;
  841. FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vertex_to_light_length);
  842. // Light attenuation value.
  843. float light_attenuation_factor = 1.0f;
  844. if (light.position.w() != 0.0f)
  845. light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length * vertex_to_light_length));
  846. // Spotlight factor
  847. float spotlight_factor = 1.0f;
  848. if (light.spotlight_cutoff_angle != 180.0f) {
  849. auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized());
  850. auto const cos_spotlight_cutoff = AK::cos<float>(light.spotlight_cutoff_angle * AK::Pi<float> / 180.f);
  851. if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff)
  852. spotlight_factor = AK::pow<float>(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent);
  853. else
  854. spotlight_factor = 0.0f;
  855. }
  856. // FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means.
  857. (void)m_lighting_model.color_control;
  858. // FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material)
  859. (void)m_lighting_model.two_sided_lighting;
  860. // Ambient
  861. auto const ambient_component = ambient * light.ambient_intensity;
  862. // Diffuse
  863. auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light);
  864. auto const diffuse_component = diffuse * light.diffuse_intensity * normal_dot_vertex_to_light;
  865. // Specular
  866. FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f };
  867. if (normal_dot_vertex_to_light > 0.0f) {
  868. FloatVector3 half_vector_normalized;
  869. if (!m_lighting_model.viewer_at_infinity) {
  870. half_vector_normalized = vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f);
  871. } else {
  872. auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates, { 0.f, 0.f, 0.f, 1.f }, vertex_to_light_length);
  873. half_vector_normalized = vertex_to_light + vertex_to_eye_point;
  874. }
  875. half_vector_normalized.normalize();
  876. auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal, half_vector_normalized);
  877. auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess);
  878. specular_component = specular * light.specular_intensity * specular_coefficient;
  879. }
  880. auto color = ambient_component + diffuse_component + specular_component;
  881. color = color * light_attenuation_factor * spotlight_factor;
  882. result_color += color;
  883. }
  884. vertex.color = result_color;
  885. vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material"
  886. vertex.color.clamp(0.0f, 1.0f);
  887. }
  888. void Device::draw_primitives(GPU::PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform,
  889. FloatMatrix4x4 const& texture_transform, Vector<GPU::Vertex>& vertices, Vector<size_t> const& enabled_texture_units)
  890. {
  891. // At this point, the user has effectively specified that they are done with defining the geometry
  892. // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
  893. //
  894. // 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
  895. // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
  896. // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
  897. // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
  898. // 5. The triangle's vertices are sorted in a counter-clockwise orientation
  899. // 6. The triangles are then sent off to the rasterizer and drawn to the screen
  900. if (vertices.is_empty())
  901. return;
  902. m_enabled_texture_units = enabled_texture_units;
  903. // Set up normals transform by taking the upper left 3x3 elements from the model view matrix
  904. // See section 2.11.3 of the OpenGL 1.5 spec
  905. auto const normal_transform = model_view_transform.submatrix_from_topleft<3>().transpose().inverse();
  906. // Generate texture coordinates if at least one coordinate is enabled
  907. bool texture_coordinate_generation_enabled = any_of(
  908. m_options.texcoord_generation_enabled_coordinates,
  909. [](auto coordinates_enabled) { return coordinates_enabled != GPU::TexCoordGenerationCoordinate::None; });
  910. // First, transform all vertices
  911. for (auto& vertex : vertices) {
  912. vertex.eye_coordinates = model_view_transform * vertex.position;
  913. vertex.normal = normal_transform * vertex.normal;
  914. if (m_options.normalization_enabled)
  915. vertex.normal.normalize();
  916. calculate_vertex_lighting(vertex);
  917. vertex.clip_coordinates = projection_transform * vertex.eye_coordinates;
  918. if (texture_coordinate_generation_enabled)
  919. generate_texture_coordinates(vertex, m_options);
  920. for (size_t i = 0; i < GPU::NUM_SAMPLERS; ++i)
  921. vertex.tex_coords[i] = texture_transform * vertex.tex_coords[i];
  922. }
  923. // Window coordinate calculation
  924. auto const viewport = m_options.viewport;
  925. auto const viewport_half_width = viewport.width() / 2.f;
  926. auto const viewport_half_height = viewport.height() / 2.f;
  927. auto const viewport_center_x = viewport.x() + viewport_half_width;
  928. auto const viewport_center_y = viewport.y() + viewport_half_height;
  929. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  930. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  931. auto calculate_vertex_window_coordinates = [&](GPU::Vertex& vertex) {
  932. auto const one_over_w = 1 / vertex.clip_coordinates.w();
  933. auto const ndc_coordinates = vertex.clip_coordinates.xyz() * one_over_w;
  934. vertex.window_coordinates = {
  935. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  936. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  937. depth_halfway + ndc_coordinates.z() * depth_half_range,
  938. one_over_w,
  939. };
  940. };
  941. // Process points
  942. if (primitive_type == GPU::PrimitiveType::Points) {
  943. m_clipper.clip_points_against_frustum(vertices);
  944. for (auto& vertex : vertices) {
  945. calculate_vertex_window_coordinates(vertex);
  946. rasterize_point(vertex);
  947. }
  948. return;
  949. }
  950. // Process lines, line loop and line strips
  951. auto rasterize_line_segment = [&](GPU::Vertex& from, GPU::Vertex& to) {
  952. if (!m_clipper.clip_line_against_frustum(from, to))
  953. return;
  954. calculate_vertex_window_coordinates(from);
  955. calculate_vertex_window_coordinates(to);
  956. rasterize_line(from, to);
  957. };
  958. if (primitive_type == GPU::PrimitiveType::Lines) {
  959. if (vertices.size() < 2)
  960. return;
  961. for (size_t i = 0; i < vertices.size() - 1; i += 2)
  962. rasterize_line_segment(vertices[i], vertices[i + 1]);
  963. return;
  964. } else if (primitive_type == GPU::PrimitiveType::LineLoop) {
  965. if (vertices.size() < 2)
  966. return;
  967. for (size_t i = 0; i < vertices.size(); ++i)
  968. rasterize_line_segment(vertices[i], vertices[(i + 1) % vertices.size()]);
  969. return;
  970. } else if (primitive_type == GPU::PrimitiveType::LineStrip) {
  971. if (vertices.size() < 2)
  972. return;
  973. for (size_t i = 0; i < vertices.size() - 1; ++i)
  974. rasterize_line_segment(vertices[i], vertices[i + 1]);
  975. return;
  976. }
  977. // Let's construct some triangles
  978. m_triangle_list.clear_with_capacity();
  979. m_processed_triangles.clear_with_capacity();
  980. if (primitive_type == GPU::PrimitiveType::Triangles) {
  981. Triangle triangle;
  982. if (vertices.size() < 3)
  983. return;
  984. for (size_t i = 0; i < vertices.size() - 2; i += 3) {
  985. triangle.vertices[0] = vertices.at(i);
  986. triangle.vertices[1] = vertices.at(i + 1);
  987. triangle.vertices[2] = vertices.at(i + 2);
  988. m_triangle_list.append(triangle);
  989. }
  990. } else if (primitive_type == GPU::PrimitiveType::Quads) {
  991. // We need to construct two triangles to form the quad
  992. Triangle triangle;
  993. if (vertices.size() < 4)
  994. return;
  995. for (size_t i = 0; i < vertices.size() - 3; i += 4) {
  996. // Triangle 1
  997. triangle.vertices[0] = vertices.at(i);
  998. triangle.vertices[1] = vertices.at(i + 1);
  999. triangle.vertices[2] = vertices.at(i + 2);
  1000. m_triangle_list.append(triangle);
  1001. // Triangle 2
  1002. triangle.vertices[0] = vertices.at(i + 2);
  1003. triangle.vertices[1] = vertices.at(i + 3);
  1004. triangle.vertices[2] = vertices.at(i);
  1005. m_triangle_list.append(triangle);
  1006. }
  1007. } else if (primitive_type == GPU::PrimitiveType::TriangleFan) {
  1008. Triangle triangle;
  1009. triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
  1010. // This is technically `n-2` triangles. We start at index 1
  1011. for (size_t i = 1; i < vertices.size() - 1; i++) {
  1012. triangle.vertices[1] = vertices.at(i);
  1013. triangle.vertices[2] = vertices.at(i + 1);
  1014. m_triangle_list.append(triangle);
  1015. }
  1016. } else if (primitive_type == GPU::PrimitiveType::TriangleStrip) {
  1017. Triangle triangle;
  1018. if (vertices.size() < 3)
  1019. return;
  1020. for (size_t i = 0; i < vertices.size() - 2; i++) {
  1021. if (i % 2 == 0) {
  1022. triangle.vertices[0] = vertices.at(i);
  1023. triangle.vertices[1] = vertices.at(i + 1);
  1024. triangle.vertices[2] = vertices.at(i + 2);
  1025. } else {
  1026. triangle.vertices[0] = vertices.at(i + 1);
  1027. triangle.vertices[1] = vertices.at(i);
  1028. triangle.vertices[2] = vertices.at(i + 2);
  1029. }
  1030. m_triangle_list.append(triangle);
  1031. }
  1032. }
  1033. // Clip triangles
  1034. for (auto& triangle : m_triangle_list) {
  1035. m_clipped_vertices.clear_with_capacity();
  1036. m_clipped_vertices.append(triangle.vertices[0]);
  1037. m_clipped_vertices.append(triangle.vertices[1]);
  1038. m_clipped_vertices.append(triangle.vertices[2]);
  1039. m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
  1040. if (m_clip_planes.size() > 0)
  1041. m_clipper.clip_triangle_against_user_defined(m_clipped_vertices, m_clip_planes);
  1042. if (m_clipped_vertices.size() < 3)
  1043. continue;
  1044. for (auto& vertex : m_clipped_vertices)
  1045. calculate_vertex_window_coordinates(vertex);
  1046. Triangle tri;
  1047. tri.vertices[0] = m_clipped_vertices[0];
  1048. for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
  1049. tri.vertices[1] = m_clipped_vertices[i];
  1050. tri.vertices[2] = m_clipped_vertices[i + 1];
  1051. m_processed_triangles.append(tri);
  1052. }
  1053. }
  1054. for (auto& triangle : m_processed_triangles)
  1055. rasterize_triangle(triangle);
  1056. }
  1057. ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad)
  1058. {
  1059. quad.out_color = quad.vertex_color;
  1060. for (size_t i : m_enabled_texture_units) {
  1061. // FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP
  1062. auto const& sampler = m_samplers[i];
  1063. auto texel = sampler.sample_2d(quad.texture_coordinates[i].xy());
  1064. INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);
  1065. // FIXME: Implement more blend modes
  1066. switch (sampler.config().fixed_function_texture_env_mode) {
  1067. case GPU::TextureEnvMode::Modulate:
  1068. quad.out_color = quad.out_color * texel;
  1069. break;
  1070. case GPU::TextureEnvMode::Replace:
  1071. quad.out_color = texel;
  1072. break;
  1073. case GPU::TextureEnvMode::Decal: {
  1074. auto dst_alpha = texel.w();
  1075. quad.out_color.set_x(mix(quad.out_color.x(), texel.x(), dst_alpha));
  1076. quad.out_color.set_y(mix(quad.out_color.y(), texel.y(), dst_alpha));
  1077. quad.out_color.set_z(mix(quad.out_color.z(), texel.z(), dst_alpha));
  1078. break;
  1079. }
  1080. case GPU::TextureEnvMode::Add:
  1081. quad.out_color.set_x(quad.out_color.x() + texel.x());
  1082. quad.out_color.set_y(quad.out_color.y() + texel.y());
  1083. quad.out_color.set_z(quad.out_color.z() + texel.z());
  1084. quad.out_color.set_w(quad.out_color.w() * texel.w()); // FIXME: If texture format is `GL_INTENSITY` alpha components must be added (https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glTexEnv.xml)
  1085. break;
  1086. default:
  1087. VERIFY_NOT_REACHED();
  1088. }
  1089. }
  1090. // Calculate fog
  1091. // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
  1092. // FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
  1093. if (m_options.fog_enabled) {
  1094. f32x4 factor;
  1095. switch (m_options.fog_mode) {
  1096. case GPU::FogMode::Linear:
  1097. factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
  1098. break;
  1099. case GPU::FogMode::Exp: {
  1100. auto argument = -m_options.fog_density * quad.fog_depth;
  1101. factor = exp(argument);
  1102. } break;
  1103. case GPU::FogMode::Exp2: {
  1104. auto argument = m_options.fog_density * quad.fog_depth;
  1105. argument *= -argument;
  1106. factor = exp(argument);
  1107. } break;
  1108. default:
  1109. VERIFY_NOT_REACHED();
  1110. }
  1111. // Mix texel's RGB with fog's RBG - leave alpha alone
  1112. auto fog_color = expand4(m_options.fog_color);
  1113. quad.out_color.set_x(mix(fog_color.x(), quad.out_color.x(), factor));
  1114. quad.out_color.set_y(mix(fog_color.y(), quad.out_color.y(), factor));
  1115. quad.out_color.set_z(mix(fog_color.z(), quad.out_color.z(), factor));
  1116. }
  1117. // Multiply coverage with the fragment's alpha to obtain the final alpha value
  1118. quad.out_color.set_w(quad.out_color.w() * quad.coverage);
  1119. }
  1120. ALWAYS_INLINE void Device::test_alpha(PixelQuad& quad)
  1121. {
  1122. auto const alpha = quad.out_color.w();
  1123. auto const ref_value = expand4(m_options.alpha_test_ref_value);
  1124. switch (m_options.alpha_test_func) {
  1125. case GPU::AlphaTestFunction::Always:
  1126. quad.mask &= expand4(~0);
  1127. break;
  1128. case GPU::AlphaTestFunction::Equal:
  1129. quad.mask &= alpha == ref_value;
  1130. break;
  1131. case GPU::AlphaTestFunction::Greater:
  1132. quad.mask &= alpha > ref_value;
  1133. break;
  1134. case GPU::AlphaTestFunction::GreaterOrEqual:
  1135. quad.mask &= alpha >= ref_value;
  1136. break;
  1137. case GPU::AlphaTestFunction::Less:
  1138. quad.mask &= alpha < ref_value;
  1139. break;
  1140. case GPU::AlphaTestFunction::LessOrEqual:
  1141. quad.mask &= alpha <= ref_value;
  1142. break;
  1143. case GPU::AlphaTestFunction::NotEqual:
  1144. quad.mask &= alpha != ref_value;
  1145. break;
  1146. case GPU::AlphaTestFunction::Never:
  1147. default:
  1148. VERIFY_NOT_REACHED();
  1149. }
  1150. }
  1151. void Device::resize(Gfx::IntSize const& size)
  1152. {
  1153. auto frame_buffer_or_error = FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size);
  1154. m_frame_buffer = MUST(frame_buffer_or_error);
  1155. }
  1156. void Device::clear_color(FloatVector4 const& color)
  1157. {
  1158. auto const fill_color = to_bgra32(color);
  1159. auto clear_rect = m_frame_buffer->rect();
  1160. if (m_options.scissor_enabled)
  1161. clear_rect.intersect(m_options.scissor_box);
  1162. m_frame_buffer->color_buffer()->fill(fill_color, clear_rect);
  1163. }
  1164. void Device::clear_depth(GPU::DepthType depth)
  1165. {
  1166. auto clear_rect = m_frame_buffer->rect();
  1167. if (m_options.scissor_enabled)
  1168. clear_rect.intersect(m_options.scissor_box);
  1169. m_frame_buffer->depth_buffer()->fill(depth, clear_rect);
  1170. }
  1171. void Device::clear_stencil(GPU::StencilType value)
  1172. {
  1173. auto clear_rect = m_frame_buffer->rect();
  1174. if (m_options.scissor_enabled)
  1175. clear_rect.intersect(m_options.scissor_box);
  1176. m_frame_buffer->stencil_buffer()->fill(value, clear_rect);
  1177. }
  1178. void Device::blit_to_color_buffer_at_raster_position(Gfx::Bitmap const& source)
  1179. {
  1180. if (!m_raster_position.valid)
  1181. return;
  1182. INCREASE_STATISTICS_COUNTER(g_num_pixels, source.width() * source.height());
  1183. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, source.width() * source.height());
  1184. auto const blit_rect = get_rasterization_rect_of_size({ source.width(), source.height() });
  1185. m_frame_buffer->color_buffer()->blit_from_bitmap(source, blit_rect);
  1186. }
  1187. void Device::blit_to_depth_buffer_at_raster_position(Vector<GPU::DepthType> const& depth_values, int width, int height)
  1188. {
  1189. if (!m_raster_position.valid)
  1190. return;
  1191. auto const raster_rect = get_rasterization_rect_of_size({ width, height });
  1192. auto const y1 = raster_rect.y();
  1193. auto const y2 = y1 + height;
  1194. auto const x1 = raster_rect.x();
  1195. auto const x2 = x1 + width;
  1196. auto index = 0;
  1197. for (auto y = y1; y < y2; ++y) {
  1198. auto depth_line = m_frame_buffer->depth_buffer()->scanline(y);
  1199. for (auto x = x1; x < x2; ++x)
  1200. depth_line[x] = depth_values[index++];
  1201. }
  1202. }
  1203. void Device::blit_color_buffer_to(Gfx::Bitmap& target)
  1204. {
  1205. m_frame_buffer->color_buffer()->blit_flipped_to_bitmap(target, m_frame_buffer->rect());
  1206. if constexpr (ENABLE_STATISTICS_OVERLAY)
  1207. draw_statistics_overlay(target);
  1208. }
  1209. void Device::draw_statistics_overlay(Gfx::Bitmap& target)
  1210. {
  1211. static Core::ElapsedTimer timer;
  1212. static String debug_string;
  1213. static int frame_counter;
  1214. frame_counter++;
  1215. int milliseconds = 0;
  1216. if (timer.is_valid())
  1217. milliseconds = timer.elapsed();
  1218. else
  1219. timer.start();
  1220. Gfx::Painter painter { target };
  1221. if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) {
  1222. int num_rendertarget_pixels = m_frame_buffer->rect().size().area();
  1223. StringBuilder builder;
  1224. builder.append(String::formatted("Timings : {:.1}ms {:.1}FPS\n",
  1225. static_cast<double>(milliseconds) / frame_counter,
  1226. (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0));
  1227. builder.append(String::formatted("Triangles : {}\n", g_num_rasterized_triangles));
  1228. builder.append(String::formatted("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0));
  1229. builder.append(String::formatted("Pixels : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
  1230. g_num_pixels,
  1231. g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0,
  1232. g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0,
  1233. g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0,
  1234. num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0));
  1235. builder.append(String::formatted("Sampler calls: {}\n", g_num_sampler_calls));
  1236. debug_string = builder.to_string();
  1237. frame_counter = 0;
  1238. timer.start();
  1239. }
  1240. g_num_rasterized_triangles = 0;
  1241. g_num_pixels = 0;
  1242. g_num_pixels_shaded = 0;
  1243. g_num_pixels_blended = 0;
  1244. g_num_sampler_calls = 0;
  1245. g_num_stencil_writes = 0;
  1246. g_num_quads = 0;
  1247. auto& font = Gfx::FontDatabase::default_fixed_width_font();
  1248. for (int y = -1; y < 2; y++)
  1249. for (int x = -1; x < 2; x++)
  1250. if (x != 0 && y != 0)
  1251. painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);
  1252. painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
  1253. }
  1254. void Device::set_options(GPU::RasterizerOptions const& options)
  1255. {
  1256. m_options = options;
  1257. if (m_options.enable_blending)
  1258. setup_blend_factors();
  1259. }
  1260. void Device::set_light_model_params(GPU::LightModelParameters const& lighting_model)
  1261. {
  1262. m_lighting_model = lighting_model;
  1263. }
  1264. GPU::ColorType Device::get_color_buffer_pixel(int x, int y)
  1265. {
  1266. // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
  1267. if (!m_frame_buffer->rect().contains(x, y))
  1268. return 0;
  1269. return m_frame_buffer->color_buffer()->scanline(y)[x];
  1270. }
  1271. GPU::DepthType Device::get_depthbuffer_value(int x, int y)
  1272. {
  1273. // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
  1274. if (!m_frame_buffer->rect().contains(x, y))
  1275. return 1.0f;
  1276. return m_frame_buffer->depth_buffer()->scanline(y)[x];
  1277. }
  1278. NonnullRefPtr<GPU::Image> Device::create_image(GPU::ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers)
  1279. {
  1280. VERIFY(format == GPU::ImageFormat::BGRA8888);
  1281. VERIFY(width > 0);
  1282. VERIFY(height > 0);
  1283. VERIFY(depth > 0);
  1284. VERIFY(levels > 0);
  1285. VERIFY(layers > 0);
  1286. return adopt_ref(*new Image(this, width, height, depth, levels, layers));
  1287. }
  1288. void Device::set_sampler_config(unsigned sampler, GPU::SamplerConfig const& config)
  1289. {
  1290. VERIFY(config.bound_image.is_null() || config.bound_image->ownership_token() == this);
  1291. m_samplers[sampler].set_config(config);
  1292. }
  1293. void Device::set_light_state(unsigned int light_id, GPU::Light const& light)
  1294. {
  1295. m_lights.at(light_id) = light;
  1296. }
  1297. void Device::set_material_state(GPU::Face face, GPU::Material const& material)
  1298. {
  1299. m_materials[face] = material;
  1300. }
  1301. void Device::set_stencil_configuration(GPU::Face face, GPU::StencilConfiguration const& stencil_configuration)
  1302. {
  1303. m_stencil_configuration[face] = stencil_configuration;
  1304. }
  1305. void Device::set_raster_position(GPU::RasterPosition const& raster_position)
  1306. {
  1307. m_raster_position = raster_position;
  1308. }
  1309. void Device::set_clip_planes(Vector<FloatVector4> const& clip_planes)
  1310. {
  1311. m_clip_planes = clip_planes;
  1312. }
  1313. void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform)
  1314. {
  1315. auto const eye_coordinates = model_view_transform * position;
  1316. auto const clip_coordinates = projection_transform * eye_coordinates;
  1317. // FIXME: implement clipping
  1318. m_raster_position.valid = true;
  1319. auto ndc_coordinates = clip_coordinates / clip_coordinates.w();
  1320. ndc_coordinates.set_w(clip_coordinates.w());
  1321. auto const viewport = m_options.viewport;
  1322. auto const viewport_half_width = viewport.width() / 2.0f;
  1323. auto const viewport_half_height = viewport.height() / 2.0f;
  1324. auto const viewport_center_x = viewport.x() + viewport_half_width;
  1325. auto const viewport_center_y = viewport.y() + viewport_half_height;
  1326. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  1327. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  1328. // FIXME: implement other raster position properties such as color and texcoords
  1329. m_raster_position.window_coordinates = {
  1330. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  1331. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  1332. depth_halfway + ndc_coordinates.z() * depth_half_range,
  1333. ndc_coordinates.w(),
  1334. };
  1335. m_raster_position.eye_coordinate_distance = eye_coordinates.length();
  1336. }
  1337. Gfx::IntRect Device::get_rasterization_rect_of_size(Gfx::IntSize size) const
  1338. {
  1339. // Round the X and Y floating point coordinates to the nearest integer; OpenGL 1.5 spec:
  1340. // "Any fragments whose centers lie inside of this rectangle (or on its bottom or left
  1341. // boundaries) are produced in correspondence with this particular group of elements."
  1342. return {
  1343. round_to<int>(m_raster_position.window_coordinates.x()),
  1344. round_to<int>(m_raster_position.window_coordinates.y()),
  1345. size.width(),
  1346. size.height(),
  1347. };
  1348. }
  1349. }
  1350. extern "C" {
  1351. GPU::Device* serenity_gpu_create_device(Gfx::IntSize const& size)
  1352. {
  1353. return make<SoftGPU::Device>(size).leak_ptr();
  1354. }
  1355. }