Op.cpp 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/HashTable.h>
  9. #include <LibJS/Bytecode/Interpreter.h>
  10. #include <LibJS/Bytecode/Op.h>
  11. #include <LibJS/Runtime/AbstractOperations.h>
  12. #include <LibJS/Runtime/Array.h>
  13. #include <LibJS/Runtime/BigInt.h>
  14. #include <LibJS/Runtime/DeclarativeEnvironment.h>
  15. #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
  16. #include <LibJS/Runtime/Environment.h>
  17. #include <LibJS/Runtime/FunctionEnvironment.h>
  18. #include <LibJS/Runtime/GlobalEnvironment.h>
  19. #include <LibJS/Runtime/GlobalObject.h>
  20. #include <LibJS/Runtime/Iterator.h>
  21. #include <LibJS/Runtime/IteratorOperations.h>
  22. #include <LibJS/Runtime/NativeFunction.h>
  23. #include <LibJS/Runtime/ObjectEnvironment.h>
  24. #include <LibJS/Runtime/RegExpObject.h>
  25. #include <LibJS/Runtime/Value.h>
  26. namespace JS::Bytecode {
  27. String Instruction::to_string(Bytecode::Executable const& executable) const
  28. {
  29. #define __BYTECODE_OP(op) \
  30. case Instruction::Type::op: \
  31. return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
  32. switch (type()) {
  33. ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
  34. default:
  35. VERIFY_NOT_REACHED();
  36. }
  37. #undef __BYTECODE_OP
  38. }
  39. }
  40. namespace JS::Bytecode::Op {
  41. static ThrowCompletionOr<void> put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind)
  42. {
  43. auto& vm = interpreter.vm();
  44. if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) {
  45. // The generator should only pass us functions for getters and setters.
  46. VERIFY(value.is_function());
  47. }
  48. switch (kind) {
  49. case PropertyKind::Getter: {
  50. auto& function = value.as_function();
  51. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  52. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("get {}", name));
  53. object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
  54. break;
  55. }
  56. case PropertyKind::Setter: {
  57. auto& function = value.as_function();
  58. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  59. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("set {}", name));
  60. object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
  61. break;
  62. }
  63. case PropertyKind::KeyValue: {
  64. bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object));
  65. if (!succeeded && vm.in_strict_mode())
  66. return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects());
  67. break;
  68. }
  69. case PropertyKind::Spread:
  70. TRY(object->copy_data_properties(vm, value, {}));
  71. break;
  72. case PropertyKind::ProtoSetter:
  73. if (value.is_object() || value.is_null())
  74. MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
  75. break;
  76. }
  77. return {};
  78. }
  79. ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter& interpreter) const
  80. {
  81. interpreter.accumulator() = interpreter.reg(m_src);
  82. return {};
  83. }
  84. ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
  85. {
  86. interpreter.accumulator() = m_value;
  87. return {};
  88. }
  89. ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter& interpreter) const
  90. {
  91. interpreter.reg(m_dst) = interpreter.accumulator();
  92. return {};
  93. }
  94. static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2)
  95. {
  96. return Value(!TRY(is_loosely_equal(vm, src1, src2)));
  97. }
  98. static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2)
  99. {
  100. return Value(TRY(is_loosely_equal(vm, src1, src2)));
  101. }
  102. static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2)
  103. {
  104. return Value(!is_strictly_equal(src1, src2));
  105. }
  106. static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2)
  107. {
  108. return Value(is_strictly_equal(src1, src2));
  109. }
  110. #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
  111. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  112. { \
  113. auto& vm = interpreter.vm(); \
  114. auto lhs = interpreter.reg(m_lhs_reg); \
  115. auto rhs = interpreter.accumulator(); \
  116. interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \
  117. return {}; \
  118. } \
  119. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  120. { \
  121. return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
  122. }
  123. JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
  124. static ThrowCompletionOr<Value> not_(VM&, Value value)
  125. {
  126. return Value(!value.to_boolean());
  127. }
  128. static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
  129. {
  130. return Value(js_string(vm, value.typeof()));
  131. }
  132. #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
  133. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  134. { \
  135. auto& vm = interpreter.vm(); \
  136. interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \
  137. return {}; \
  138. } \
  139. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  140. { \
  141. return #OpTitleCase; \
  142. }
  143. JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
  144. ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
  145. {
  146. interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
  147. return {};
  148. }
  149. ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
  150. {
  151. auto* array = MUST(Array::create(interpreter.realm(), 0));
  152. for (size_t i = 0; i < m_element_count; i++) {
  153. auto& value = interpreter.reg(Register(m_elements[0].index() + i));
  154. array->indexed_properties().put(i, value, default_attributes);
  155. }
  156. interpreter.accumulator() = array;
  157. return {};
  158. }
  159. ThrowCompletionOr<void> Append::execute_impl(Bytecode::Interpreter& interpreter) const
  160. {
  161. // Note: This OpCode is used to construct array literals and argument arrays for calls,
  162. // containing at least one spread element,
  163. // Iterating over such a spread element to unpack it has to be visible by
  164. // the user courtesy of
  165. // (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
  166. // SpreadElement : ... AssignmentExpression
  167. // 1. Let spreadRef be ? Evaluation of AssignmentExpression.
  168. // 2. Let spreadObj be ? GetValue(spreadRef).
  169. // 3. Let iteratorRecord be ? GetIterator(spreadObj).
  170. // 4. Repeat,
  171. // a. Let next be ? IteratorStep(iteratorRecord).
  172. // b. If next is false, return nextIndex.
  173. // c. Let nextValue be ? IteratorValue(next).
  174. // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue).
  175. // e. Set nextIndex to nextIndex + 1.
  176. // (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  177. // ArgumentList : ... AssignmentExpression
  178. // 1. Let list be a new empty List.
  179. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  180. // 3. Let spreadObj be ? GetValue(spreadRef).
  181. // 4. Let iteratorRecord be ? GetIterator(spreadObj).
  182. // 5. Repeat,
  183. // a. Let next be ? IteratorStep(iteratorRecord).
  184. // b. If next is false, return list.
  185. // c. Let nextArg be ? IteratorValue(next).
  186. // d. Append nextArg to list.
  187. // ArgumentList : ArgumentList , ... AssignmentExpression
  188. // 1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList.
  189. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  190. // 3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)).
  191. // 4. Repeat,
  192. // a. Let next be ? IteratorStep(iteratorRecord).
  193. // b. If next is false, return precedingArgs.
  194. // c. Let nextArg be ? IteratorValue(next).
  195. // d. Append nextArg to precedingArgs.
  196. auto& vm = interpreter.vm();
  197. // Note: We know from codegen, that lhs is a plain array with only indexed properties
  198. auto& lhs = interpreter.reg(m_lhs).as_array();
  199. auto lhs_size = lhs.indexed_properties().array_like_size();
  200. auto rhs = interpreter.accumulator();
  201. if (m_is_spread) {
  202. // ...rhs
  203. size_t i = lhs_size;
  204. TRY(get_iterator_values(vm, rhs, [&i, &lhs](Value iterator_value) -> Optional<Completion> {
  205. lhs.indexed_properties().put(i, iterator_value, default_attributes);
  206. ++i;
  207. return {};
  208. }));
  209. } else {
  210. lhs.indexed_properties().put(lhs_size, rhs, default_attributes);
  211. }
  212. return {};
  213. }
  214. // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
  215. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
  216. static Object* iterator_to_object(VM& vm, Iterator iterator)
  217. {
  218. auto& realm = *vm.current_realm();
  219. auto* object = Object::create(realm, nullptr);
  220. object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
  221. object->define_direct_property(vm.names.next, iterator.next_method, 0);
  222. object->define_direct_property(vm.names.done, Value(iterator.done), 0);
  223. return object;
  224. }
  225. static Iterator object_to_iterator(VM& vm, Object& object)
  226. {
  227. return Iterator {
  228. .iterator = &MUST(object.get(vm.names.iterator)).as_object(),
  229. .next_method = MUST(object.get(vm.names.next)),
  230. .done = MUST(object.get(vm.names.done)).as_bool()
  231. };
  232. }
  233. ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
  234. {
  235. auto& vm = interpreter.vm();
  236. auto iterator_object = TRY(interpreter.accumulator().to_object(vm));
  237. auto iterator = object_to_iterator(vm, *iterator_object);
  238. auto* array = MUST(Array::create(interpreter.realm(), 0));
  239. size_t index = 0;
  240. while (true) {
  241. auto* iterator_result = TRY(iterator_next(vm, iterator));
  242. auto complete = TRY(iterator_complete(vm, *iterator_result));
  243. if (complete) {
  244. interpreter.accumulator() = array;
  245. return {};
  246. }
  247. auto value = TRY(iterator_value(vm, *iterator_result));
  248. MUST(array->create_data_property_or_throw(index, value));
  249. index++;
  250. }
  251. return {};
  252. }
  253. ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const
  254. {
  255. interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
  256. return {};
  257. }
  258. ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
  259. {
  260. auto& vm = interpreter.vm();
  261. auto& realm = *vm.current_realm();
  262. interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype());
  263. return {};
  264. }
  265. ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
  266. {
  267. auto& vm = interpreter.vm();
  268. auto source = interpreter.current_executable().get_string(m_source_index);
  269. auto flags = interpreter.current_executable().get_string(m_flags_index);
  270. interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags)));
  271. return {};
  272. }
  273. ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
  274. {
  275. auto& vm = interpreter.vm();
  276. auto& realm = *vm.current_realm();
  277. auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm));
  278. auto* to_object = Object::create(realm, realm.intrinsics().object_prototype());
  279. HashTable<Value, ValueTraits> excluded_names;
  280. for (size_t i = 0; i < m_excluded_names_count; ++i)
  281. excluded_names.set(interpreter.reg(m_excluded_names[i]));
  282. auto own_keys = TRY(from_object->internal_own_property_keys());
  283. for (auto& key : own_keys) {
  284. if (!excluded_names.contains(key)) {
  285. auto property_key = TRY(key.to_property_key(vm));
  286. auto property_value = TRY(from_object->get(property_key));
  287. to_object->define_direct_property(property_key, property_value, JS::default_attributes);
  288. }
  289. }
  290. interpreter.accumulator() = to_object;
  291. return {};
  292. }
  293. ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
  294. {
  295. auto& vm = interpreter.vm();
  296. interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator()));
  297. return {};
  298. }
  299. ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  300. {
  301. auto& vm = interpreter.vm();
  302. auto get_reference = [&]() -> ThrowCompletionOr<Reference> {
  303. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  304. if (m_cached_environment_coordinate.has_value()) {
  305. auto* environment = vm.running_execution_context().lexical_environment;
  306. for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
  307. environment = environment->outer_environment();
  308. VERIFY(environment);
  309. VERIFY(environment->is_declarative_environment());
  310. if (!environment->is_permanently_screwed_by_eval()) {
  311. return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate };
  312. }
  313. m_cached_environment_coordinate = {};
  314. }
  315. auto reference = TRY(vm.resolve_binding(string));
  316. if (reference.environment_coordinate().has_value())
  317. m_cached_environment_coordinate = reference.environment_coordinate();
  318. return reference;
  319. };
  320. auto reference = TRY(get_reference());
  321. interpreter.accumulator() = TRY(reference.get_value(vm));
  322. return {};
  323. }
  324. ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  325. {
  326. auto& vm = interpreter.vm();
  327. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  328. auto reference = TRY(vm.resolve_binding(string));
  329. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  330. return {};
  331. }
  332. ThrowCompletionOr<void> CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  333. {
  334. auto make_and_swap_envs = [&](auto*& old_environment) {
  335. Environment* environment = new_declarative_environment(*old_environment);
  336. swap(old_environment, environment);
  337. return environment;
  338. };
  339. if (m_mode == EnvironmentMode::Lexical)
  340. interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment));
  341. else if (m_mode == EnvironmentMode::Var)
  342. interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment));
  343. return {};
  344. }
  345. ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  346. {
  347. auto& vm = interpreter.vm();
  348. auto& old_environment = vm.running_execution_context().lexical_environment;
  349. interpreter.saved_lexical_environment_stack().append(old_environment);
  350. auto object = TRY(interpreter.accumulator().to_object(vm));
  351. vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment);
  352. return {};
  353. }
  354. ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  355. {
  356. auto& vm = interpreter.vm();
  357. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  358. if (m_mode == EnvironmentMode::Lexical) {
  359. VERIFY(!m_is_global);
  360. // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
  361. // Instead of crashing in there, we'll just raise an exception here.
  362. if (TRY(vm.lexical_environment()->has_binding(name)))
  363. return vm.throw_completion<InternalError>(String::formatted("Lexical environment already has binding '{}'", name));
  364. if (m_is_immutable)
  365. vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  366. else
  367. vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  368. } else {
  369. if (!m_is_global) {
  370. if (m_is_immutable)
  371. vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  372. else
  373. vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  374. } else {
  375. // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
  376. // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
  377. verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
  378. }
  379. }
  380. return {};
  381. }
  382. ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  383. {
  384. auto& vm = interpreter.vm();
  385. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  386. auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
  387. auto reference = TRY(vm.resolve_binding(name, environment));
  388. switch (m_initialization_mode) {
  389. case InitializationMode::Initialize:
  390. TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator()));
  391. break;
  392. case InitializationMode::Set:
  393. TRY(reference.put_value(vm, interpreter.accumulator()));
  394. break;
  395. case InitializationMode::InitializeOrSet:
  396. VERIFY(reference.is_environment_reference());
  397. VERIFY(reference.base_environment().is_declarative_environment());
  398. TRY(static_cast<DeclarativeEnvironment&>(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator()));
  399. break;
  400. }
  401. return {};
  402. }
  403. ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
  404. {
  405. auto& vm = interpreter.vm();
  406. auto* object = TRY(interpreter.accumulator().to_object(vm));
  407. interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property)));
  408. return {};
  409. }
  410. ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
  411. {
  412. auto& vm = interpreter.vm();
  413. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  414. PropertyKey name = interpreter.current_executable().get_identifier(m_property);
  415. auto value = interpreter.accumulator();
  416. return put_by_property_key(object, value, name, interpreter, m_kind);
  417. }
  418. ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
  419. {
  420. auto& vm = interpreter.vm();
  421. auto* object = TRY(interpreter.accumulator().to_object(vm));
  422. auto const& identifier = interpreter.current_executable().get_identifier(m_property);
  423. bool strict = vm.in_strict_mode();
  424. auto reference = Reference { object, identifier, {}, strict };
  425. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  426. return {};
  427. };
  428. ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter& interpreter) const
  429. {
  430. interpreter.jump(*m_true_target);
  431. return {};
  432. }
  433. ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
  434. {
  435. auto& vm = interpreter.vm();
  436. interpreter.accumulator() = TRY(vm.resolve_this_binding());
  437. return {};
  438. }
  439. ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
  440. {
  441. interpreter.accumulator() = interpreter.vm().get_new_target();
  442. return {};
  443. }
  444. void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  445. {
  446. if (m_true_target.has_value() && &m_true_target->block() == &from)
  447. m_true_target = Label { to };
  448. if (m_false_target.has_value() && &m_false_target->block() == &from)
  449. m_false_target = Label { to };
  450. }
  451. ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
  452. {
  453. VERIFY(m_true_target.has_value());
  454. VERIFY(m_false_target.has_value());
  455. auto result = interpreter.accumulator();
  456. if (result.to_boolean())
  457. interpreter.jump(m_true_target.value());
  458. else
  459. interpreter.jump(m_false_target.value());
  460. return {};
  461. }
  462. ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
  463. {
  464. VERIFY(m_true_target.has_value());
  465. VERIFY(m_false_target.has_value());
  466. auto result = interpreter.accumulator();
  467. if (result.is_nullish())
  468. interpreter.jump(m_true_target.value());
  469. else
  470. interpreter.jump(m_false_target.value());
  471. return {};
  472. }
  473. ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
  474. {
  475. VERIFY(m_true_target.has_value());
  476. VERIFY(m_false_target.has_value());
  477. auto result = interpreter.accumulator();
  478. if (result.is_undefined())
  479. interpreter.jump(m_true_target.value());
  480. else
  481. interpreter.jump(m_false_target.value());
  482. return {};
  483. }
  484. // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  485. static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter)
  486. {
  487. // Note: Any spreading and actual evaluation is handled in preceding opcodes
  488. // Note: The spec uses the concept of a list, while we create a temporary array
  489. // in the preceding opcodes, so we have to convert in a manner that is not
  490. // visible to the user
  491. auto& vm = interpreter.vm();
  492. MarkedVector<Value> argument_values { vm.heap() };
  493. auto arguments = interpreter.accumulator();
  494. auto& argument_array = arguments.as_array();
  495. auto array_length = argument_array.indexed_properties().array_like_size();
  496. argument_values.ensure_capacity(array_length);
  497. for (size_t i = 0; i < array_length; ++i) {
  498. if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
  499. argument_values.append(maybe_value.release_value().value);
  500. else
  501. argument_values.append(js_undefined());
  502. }
  503. return argument_values;
  504. }
  505. ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
  506. {
  507. auto& vm = interpreter.vm();
  508. auto callee = interpreter.reg(m_callee);
  509. if (m_type == CallType::Call && !callee.is_function())
  510. return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), "function"sv);
  511. if (m_type == CallType::Construct && !callee.is_constructor())
  512. return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), "constructor"sv);
  513. auto& function = callee.as_function();
  514. auto this_value = interpreter.reg(m_this_value);
  515. auto argument_values = argument_list_evaluation(interpreter);
  516. Value return_value;
  517. if (m_type == CallType::Call)
  518. return_value = TRY(call(vm, function, this_value, move(argument_values)));
  519. else
  520. return_value = TRY(construct(vm, function, move(argument_values)));
  521. interpreter.accumulator() = return_value;
  522. return {};
  523. }
  524. // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
  525. ThrowCompletionOr<void> SuperCall::execute_impl(Bytecode::Interpreter& interpreter) const
  526. {
  527. auto& vm = interpreter.vm();
  528. // 1. Let newTarget be GetNewTarget().
  529. auto new_target = vm.get_new_target();
  530. // 2. Assert: Type(newTarget) is Object.
  531. VERIFY(new_target.is_object());
  532. // 3. Let func be GetSuperConstructor().
  533. auto* func = get_super_constructor(vm);
  534. // 4. Let argList be ? ArgumentListEvaluation of Arguments.
  535. MarkedVector<Value> arg_list { vm.heap() };
  536. if (m_is_synthetic) {
  537. auto const& value = interpreter.accumulator();
  538. VERIFY(value.is_object() && is<Array>(value.as_object()));
  539. auto const& array_value = static_cast<Array const&>(value.as_object());
  540. auto length = MUST(length_of_array_like(vm, array_value));
  541. for (size_t i = 0; i < length; ++i)
  542. arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
  543. } else {
  544. arg_list = argument_list_evaluation(interpreter);
  545. }
  546. // 5. If IsConstructor(func) is false, throw a TypeError exception.
  547. if (!Value(func).is_constructor())
  548. return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
  549. // 6. Let result be ? Construct(func, argList, newTarget).
  550. auto* result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
  551. // 7. Let thisER be GetThisEnvironment().
  552. auto& this_environment = verify_cast<FunctionEnvironment>(get_this_environment(vm));
  553. // 8. Perform ? thisER.BindThisValue(result).
  554. TRY(this_environment.bind_this_value(vm, result));
  555. // 9. Let F be thisER.[[FunctionObject]].
  556. auto& f = this_environment.function_object();
  557. // 10. Assert: F is an ECMAScript function object.
  558. // NOTE: This is implied by the strong C++ type.
  559. // 11. Perform ? InitializeInstanceElements(result, F).
  560. TRY(vm.initialize_instance_elements(*result, f));
  561. // 12. Return result.
  562. interpreter.accumulator() = result;
  563. return {};
  564. }
  565. ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
  566. {
  567. auto& vm = interpreter.vm();
  568. interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function());
  569. return {};
  570. }
  571. ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const
  572. {
  573. interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
  574. return {};
  575. }
  576. ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
  577. {
  578. auto& vm = interpreter.vm();
  579. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  580. if (old_value.is_number())
  581. interpreter.accumulator() = Value(old_value.as_double() + 1);
  582. else
  583. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
  584. return {};
  585. }
  586. ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
  587. {
  588. auto& vm = interpreter.vm();
  589. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  590. if (old_value.is_number())
  591. interpreter.accumulator() = Value(old_value.as_double() - 1);
  592. else
  593. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
  594. return {};
  595. }
  596. ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
  597. {
  598. return throw_completion(interpreter.accumulator());
  599. }
  600. ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  601. {
  602. interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
  603. interpreter.jump(m_entry_point);
  604. return {};
  605. }
  606. void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  607. {
  608. if (&m_entry_point.block() == &from)
  609. m_entry_point = Label { to };
  610. if (m_handler_target.has_value() && &m_handler_target->block() == &from)
  611. m_handler_target = Label { to };
  612. if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
  613. m_finalizer_target = Label { to };
  614. }
  615. ThrowCompletionOr<void> FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  616. {
  617. interpreter.leave_unwind_context();
  618. interpreter.jump(m_next_target);
  619. return {};
  620. }
  621. void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  622. {
  623. if (&m_next_target.block() == &from)
  624. m_next_target = Label { to };
  625. }
  626. ThrowCompletionOr<void> LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  627. {
  628. if (m_mode == EnvironmentMode::Lexical)
  629. interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
  630. if (m_mode == EnvironmentMode::Var)
  631. interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last();
  632. return {};
  633. }
  634. ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  635. {
  636. interpreter.leave_unwind_context();
  637. return {};
  638. }
  639. ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  640. {
  641. return interpreter.continue_pending_unwind(m_resume_target);
  642. }
  643. void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  644. {
  645. if (&m_resume_target.block() == &from)
  646. m_resume_target = Label { to };
  647. }
  648. ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  649. {
  650. auto* environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment());
  651. interpreter.vm().running_execution_context().lexical_environment = environment;
  652. interpreter.vm().running_execution_context().variable_environment = environment;
  653. return {};
  654. }
  655. ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const
  656. {
  657. auto yielded_value = interpreter.accumulator().value_or(js_undefined());
  658. auto object = Object::create(interpreter.realm(), nullptr);
  659. object->define_direct_property("result", yielded_value, JS::default_attributes);
  660. if (m_continuation_label.has_value())
  661. object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
  662. else
  663. object->define_direct_property("continuation", Value(0), JS::default_attributes);
  664. interpreter.do_return(object);
  665. return {};
  666. }
  667. void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  668. {
  669. if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
  670. m_continuation_label = Label { to };
  671. }
  672. ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  673. {
  674. auto& vm = interpreter.vm();
  675. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  676. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  677. interpreter.accumulator() = TRY(object->get(property_key));
  678. return {};
  679. }
  680. ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  681. {
  682. auto& vm = interpreter.vm();
  683. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  684. auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm));
  685. return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind);
  686. }
  687. ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  688. {
  689. auto& vm = interpreter.vm();
  690. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  691. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  692. bool strict = vm.in_strict_mode();
  693. auto reference = Reference { object, property_key, {}, strict };
  694. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  695. return {};
  696. }
  697. ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  698. {
  699. auto& vm = interpreter.vm();
  700. auto iterator = TRY(get_iterator(vm, interpreter.accumulator()));
  701. interpreter.accumulator() = iterator_to_object(vm, iterator);
  702. return {};
  703. }
  704. // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
  705. ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  706. {
  707. // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
  708. // 1- Returned property keys do not include keys that are Symbols
  709. // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
  710. // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
  711. // 4- A property name will be returned by the iterator's next method at most once in any enumeration.
  712. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
  713. // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
  714. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
  715. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
  716. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
  717. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
  718. // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
  719. // Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO.
  720. auto& vm = interpreter.vm();
  721. auto* object = TRY(interpreter.accumulator().to_object(vm));
  722. // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
  723. // so we just keep the order consistent anyway.
  724. OrderedHashTable<PropertyKey> properties;
  725. HashTable<Object*> seen_objects;
  726. // Collect all keys immediately (invariant no. 5)
  727. for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
  728. seen_objects.set(object_to_check);
  729. for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) {
  730. properties.set(TRY(PropertyKey::from_value(vm, key)));
  731. }
  732. }
  733. Iterator iterator {
  734. .iterator = object,
  735. .next_method = NativeFunction::create(
  736. interpreter.realm(),
  737. [seen_items = HashTable<PropertyKey>(), items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
  738. auto& realm = *vm.current_realm();
  739. auto iterated_object_value = vm.this_value();
  740. if (!iterated_object_value.is_object())
  741. return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next");
  742. auto& iterated_object = iterated_object_value.as_object();
  743. auto* result_object = Object::create(realm, nullptr);
  744. while (true) {
  745. if (items.is_empty()) {
  746. result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
  747. return result_object;
  748. }
  749. auto it = items.begin();
  750. auto key = *it;
  751. items.remove(it);
  752. // If the key was already seen, skip over it (invariant no. 4)
  753. auto result = seen_items.set(key);
  754. if (result != AK::HashSetResult::InsertedNewEntry)
  755. continue;
  756. // If the property is deleted, don't include it (invariant no. 2)
  757. if (!TRY(iterated_object.has_property(key)))
  758. continue;
  759. result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
  760. if (key.is_number())
  761. result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes);
  762. else if (key.is_string())
  763. result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes);
  764. else
  765. VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
  766. return result_object;
  767. }
  768. },
  769. 1,
  770. vm.names.next),
  771. .done = false,
  772. };
  773. interpreter.accumulator() = iterator_to_object(vm, move(iterator));
  774. return {};
  775. }
  776. ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
  777. {
  778. auto& vm = interpreter.vm();
  779. auto* iterator_object = TRY(interpreter.accumulator().to_object(vm));
  780. auto iterator = object_to_iterator(vm, *iterator_object);
  781. interpreter.accumulator() = TRY(iterator_next(vm, iterator));
  782. return {};
  783. }
  784. ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
  785. {
  786. auto& vm = interpreter.vm();
  787. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  788. auto complete = TRY(iterator_complete(vm, *iterator_result));
  789. interpreter.accumulator() = Value(complete);
  790. return {};
  791. }
  792. ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
  793. {
  794. auto& vm = interpreter.vm();
  795. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  796. interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result));
  797. return {};
  798. }
  799. ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
  800. {
  801. auto name = m_class_expression.name();
  802. auto scope = interpreter.ast_interpreter_scope();
  803. auto& ast_interpreter = scope.interpreter();
  804. auto* class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name));
  805. class_object->set_source_text(m_class_expression.source_text());
  806. interpreter.accumulator() = class_object;
  807. return {};
  808. }
  809. // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
  810. ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  811. {
  812. auto& vm = interpreter.vm();
  813. // 1. Let val be the result of evaluating UnaryExpression.
  814. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  815. auto reference = TRY(vm.resolve_binding(string));
  816. // 2. If val is a Reference Record, then
  817. // a. If IsUnresolvableReference(val) is true, return "undefined".
  818. if (reference.is_unresolvable()) {
  819. interpreter.accumulator() = js_string(vm, "undefined"sv);
  820. return {};
  821. }
  822. // 3. Set val to ? GetValue(val).
  823. auto value = TRY(reference.get_value(vm));
  824. // 4. NOTE: This step is replaced in section B.3.6.3.
  825. // 5. Return a String according to Table 41.
  826. interpreter.accumulator() = js_string(vm, value.typeof());
  827. return {};
  828. }
  829. String Load::to_string_impl(Bytecode::Executable const&) const
  830. {
  831. return String::formatted("Load {}", m_src);
  832. }
  833. String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
  834. {
  835. return String::formatted("LoadImmediate {}", m_value);
  836. }
  837. String Store::to_string_impl(Bytecode::Executable const&) const
  838. {
  839. return String::formatted("Store {}", m_dst);
  840. }
  841. String NewBigInt::to_string_impl(Bytecode::Executable const&) const
  842. {
  843. return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
  844. }
  845. String NewArray::to_string_impl(Bytecode::Executable const&) const
  846. {
  847. StringBuilder builder;
  848. builder.append("NewArray"sv);
  849. if (m_element_count != 0) {
  850. builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]);
  851. }
  852. return builder.to_string();
  853. }
  854. String Append::to_string_impl(Bytecode::Executable const&) const
  855. {
  856. if (m_is_spread)
  857. return String::formatted("Append lhs: **{}", m_lhs);
  858. return String::formatted("Append lhs: {}", m_lhs);
  859. }
  860. String IteratorToArray::to_string_impl(Bytecode::Executable const&) const
  861. {
  862. return "IteratorToArray";
  863. }
  864. String NewString::to_string_impl(Bytecode::Executable const& executable) const
  865. {
  866. return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
  867. }
  868. String NewObject::to_string_impl(Bytecode::Executable const&) const
  869. {
  870. return "NewObject";
  871. }
  872. String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
  873. {
  874. return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
  875. }
  876. String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const
  877. {
  878. StringBuilder builder;
  879. builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
  880. if (m_excluded_names_count != 0) {
  881. builder.append(" excluding:["sv);
  882. builder.join(", "sv, Span<Register const>(m_excluded_names, m_excluded_names_count));
  883. builder.append(']');
  884. }
  885. return builder.to_string();
  886. }
  887. String ConcatString::to_string_impl(Bytecode::Executable const&) const
  888. {
  889. return String::formatted("ConcatString {}", m_lhs);
  890. }
  891. String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
  892. {
  893. return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  894. }
  895. String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const
  896. {
  897. return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  898. }
  899. String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const
  900. {
  901. auto mode_string = m_mode == EnvironmentMode::Lexical
  902. ? "Lexical"
  903. : "Variable";
  904. return String::formatted("CreateEnvironment mode:{}", mode_string);
  905. }
  906. String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const
  907. {
  908. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  909. return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier));
  910. }
  911. String EnterObjectEnvironment::to_string_impl(Executable const&) const
  912. {
  913. return String::formatted("EnterObjectEnvironment");
  914. }
  915. String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
  916. {
  917. auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize"
  918. : m_initialization_mode == InitializationMode::Set ? "Set"
  919. : "InitializeOrSet";
  920. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  921. return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier));
  922. }
  923. String PutById::to_string_impl(Bytecode::Executable const& executable) const
  924. {
  925. auto kind = m_kind == PropertyKind::Getter
  926. ? "getter"
  927. : m_kind == PropertyKind::Setter
  928. ? "setter"
  929. : "property";
  930. return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property));
  931. }
  932. String GetById::to_string_impl(Bytecode::Executable const& executable) const
  933. {
  934. return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
  935. }
  936. String DeleteById::to_string_impl(Bytecode::Executable const& executable) const
  937. {
  938. return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property));
  939. }
  940. String Jump::to_string_impl(Bytecode::Executable const&) const
  941. {
  942. if (m_true_target.has_value())
  943. return String::formatted("Jump {}", *m_true_target);
  944. return String::formatted("Jump <empty>");
  945. }
  946. String JumpConditional::to_string_impl(Bytecode::Executable const&) const
  947. {
  948. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  949. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  950. return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
  951. }
  952. String JumpNullish::to_string_impl(Bytecode::Executable const&) const
  953. {
  954. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  955. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  956. return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
  957. }
  958. String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
  959. {
  960. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  961. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  962. return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
  963. }
  964. String Call::to_string_impl(Bytecode::Executable const&) const
  965. {
  966. return String::formatted("Call callee:{}, this:{}, arguments:[...acc]", m_callee, m_this_value);
  967. }
  968. String SuperCall::to_string_impl(Bytecode::Executable const&) const
  969. {
  970. return "SuperCall arguments:[...acc]"sv;
  971. }
  972. String NewFunction::to_string_impl(Bytecode::Executable const&) const
  973. {
  974. return "NewFunction";
  975. }
  976. String NewClass::to_string_impl(Bytecode::Executable const&) const
  977. {
  978. auto name = m_class_expression.name();
  979. return String::formatted("NewClass '{}'", name.is_null() ? ""sv : name);
  980. }
  981. String Return::to_string_impl(Bytecode::Executable const&) const
  982. {
  983. return "Return";
  984. }
  985. String Increment::to_string_impl(Bytecode::Executable const&) const
  986. {
  987. return "Increment";
  988. }
  989. String Decrement::to_string_impl(Bytecode::Executable const&) const
  990. {
  991. return "Decrement";
  992. }
  993. String Throw::to_string_impl(Bytecode::Executable const&) const
  994. {
  995. return "Throw";
  996. }
  997. String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
  998. {
  999. auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
  1000. auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
  1001. return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
  1002. }
  1003. String FinishUnwind::to_string_impl(Bytecode::Executable const&) const
  1004. {
  1005. return String::formatted("FinishUnwind next:{}", m_next_target);
  1006. }
  1007. String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const
  1008. {
  1009. auto mode_string = m_mode == EnvironmentMode::Lexical
  1010. ? "Lexical"
  1011. : "Variable";
  1012. return String::formatted("LeaveEnvironment env:{}", mode_string);
  1013. }
  1014. String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1015. {
  1016. return "LeaveUnwindContext";
  1017. }
  1018. String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
  1019. {
  1020. return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
  1021. }
  1022. String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const
  1023. {
  1024. StringBuilder builder;
  1025. builder.append("PushDeclarativeEnvironment"sv);
  1026. if (!m_variables.is_empty()) {
  1027. builder.append(" {"sv);
  1028. Vector<String> names;
  1029. for (auto& it : m_variables)
  1030. names.append(executable.get_string(it.key));
  1031. builder.append('}');
  1032. builder.join(", "sv, names);
  1033. }
  1034. return builder.to_string();
  1035. }
  1036. String Yield::to_string_impl(Bytecode::Executable const&) const
  1037. {
  1038. if (m_continuation_label.has_value())
  1039. return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
  1040. return String::formatted("Yield return");
  1041. }
  1042. String GetByValue::to_string_impl(Bytecode::Executable const&) const
  1043. {
  1044. return String::formatted("GetByValue base:{}", m_base);
  1045. }
  1046. String PutByValue::to_string_impl(Bytecode::Executable const&) const
  1047. {
  1048. auto kind = m_kind == PropertyKind::Getter
  1049. ? "getter"
  1050. : m_kind == PropertyKind::Setter
  1051. ? "setter"
  1052. : "property";
  1053. return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property);
  1054. }
  1055. String DeleteByValue::to_string_impl(Bytecode::Executable const&) const
  1056. {
  1057. return String::formatted("DeleteByValue base:{}", m_base);
  1058. }
  1059. String GetIterator::to_string_impl(Executable const&) const
  1060. {
  1061. return "GetIterator";
  1062. }
  1063. String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const
  1064. {
  1065. return "GetObjectPropertyIterator";
  1066. }
  1067. String IteratorNext::to_string_impl(Executable const&) const
  1068. {
  1069. return "IteratorNext";
  1070. }
  1071. String IteratorResultDone::to_string_impl(Executable const&) const
  1072. {
  1073. return "IteratorResultDone";
  1074. }
  1075. String IteratorResultValue::to_string_impl(Executable const&) const
  1076. {
  1077. return "IteratorResultValue";
  1078. }
  1079. String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
  1080. {
  1081. return "ResolveThisBinding"sv;
  1082. }
  1083. String GetNewTarget::to_string_impl(Bytecode::Executable const&) const
  1084. {
  1085. return "GetNewTarget"sv;
  1086. }
  1087. String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const
  1088. {
  1089. return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  1090. }
  1091. }