MemoryManager.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. #include <Kernel/VM/PurgeableVMObject.h>
  13. //#define MM_DEBUG
  14. //#define PAGE_FAULT_DEBUG
  15. static MemoryManager* s_the;
  16. MemoryManager& MM
  17. {
  18. return *s_the;
  19. }
  20. MemoryManager::MemoryManager(u32 physical_address_for_kernel_page_tables)
  21. {
  22. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(physical_address_for_kernel_page_tables));
  23. for (size_t i = 0; i < 4; ++i) {
  24. m_low_page_tables[i] = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE * (5 + i));
  25. memset(m_low_page_tables[i], 0, PAGE_SIZE);
  26. }
  27. initialize_paging();
  28. kprintf("MM initialized.\n");
  29. }
  30. MemoryManager::~MemoryManager()
  31. {
  32. }
  33. void MemoryManager::initialize_paging()
  34. {
  35. if (!g_cpu_supports_pae) {
  36. kprintf("x86: Cannot boot on machines without PAE support.\n");
  37. hang();
  38. }
  39. #ifdef MM_DEBUG
  40. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  41. #endif
  42. #ifdef MM_DEBUG
  43. dbgprintf("MM: Protect against null dereferences\n");
  44. #endif
  45. // Make null dereferences crash.
  46. map_protected(VirtualAddress(0), PAGE_SIZE);
  47. #ifdef MM_DEBUG
  48. dbgprintf("MM: Identity map bottom 8MB\n");
  49. #endif
  50. // The bottom 8 MB (except for the null page) are identity mapped & supervisor only.
  51. // Every process shares these mappings.
  52. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (8 * MB) - PAGE_SIZE);
  53. // Disable execution from 0MB through 1MB (BIOS data, legacy things, ...)
  54. for (size_t i = 0; i < (1 * MB); ++i) {
  55. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  56. if (g_cpu_supports_nx)
  57. pte.set_execute_disabled(true);
  58. }
  59. // Disable execution from 2MB through 8MB (kmalloc, kmalloc_eternal, slabs, page tables, ...)
  60. for (size_t i = 1; i < 4; ++i) {
  61. auto& pte = kernel_page_directory().table().directory(0)[i];
  62. if (g_cpu_supports_nx)
  63. pte.set_execute_disabled(true);
  64. }
  65. // FIXME: We should move everything kernel-related above the 0xc0000000 virtual mark.
  66. // Basic physical memory map:
  67. // 0 -> 1 MB We're just leaving this alone for now.
  68. // 1 -> 3 MB Kernel image.
  69. // (last page before 2MB) Used by quickmap_page().
  70. // 2 MB -> 4 MB kmalloc_eternal() space.
  71. // 4 MB -> 7 MB kmalloc() space.
  72. // 7 MB -> 8 MB Supervisor physical pages (available for allocation!)
  73. // 8 MB -> MAX Userspace physical pages (available for allocation!)
  74. // Basic virtual memory map:
  75. // 0 -> 4 KB Null page (so nullptr dereferences crash!)
  76. // 4 KB -> 8 MB Identity mapped.
  77. // 8 MB -> 3 GB Available to userspace.
  78. // 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
  79. #ifdef MM_DEBUG
  80. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  81. #endif
  82. m_quickmap_addr = VirtualAddress((2 * MB) - PAGE_SIZE);
  83. RefPtr<PhysicalRegion> region;
  84. bool region_is_super = false;
  85. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  86. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  87. (u32)(mmap->addr >> 32),
  88. (u32)(mmap->addr & 0xffffffff),
  89. (u32)(mmap->len >> 32),
  90. (u32)(mmap->len & 0xffffffff),
  91. (u32)mmap->type);
  92. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  93. continue;
  94. // FIXME: Maybe make use of stuff below the 1MB mark?
  95. if (mmap->addr < (1 * MB))
  96. continue;
  97. if ((mmap->addr + mmap->len) > 0xffffffff)
  98. continue;
  99. auto diff = (u32)mmap->addr % PAGE_SIZE;
  100. if (diff != 0) {
  101. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  102. diff = PAGE_SIZE - diff;
  103. mmap->addr += diff;
  104. mmap->len -= diff;
  105. }
  106. if ((mmap->len % PAGE_SIZE) != 0) {
  107. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  108. mmap->len -= mmap->len % PAGE_SIZE;
  109. }
  110. if (mmap->len < PAGE_SIZE) {
  111. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  112. continue;
  113. }
  114. #ifdef MM_DEBUG
  115. kprintf("MM: considering memory at %p - %p\n",
  116. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  117. #endif
  118. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  119. auto addr = PhysicalAddress(page_base);
  120. if (page_base < 7 * MB) {
  121. // nothing
  122. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  123. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  124. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  125. region = m_super_physical_regions.last();
  126. region_is_super = true;
  127. } else {
  128. region->expand(region->lower(), addr);
  129. }
  130. } else {
  131. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  132. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  133. region = m_user_physical_regions.last();
  134. region_is_super = false;
  135. } else {
  136. region->expand(region->lower(), addr);
  137. }
  138. }
  139. }
  140. }
  141. for (auto& region : m_super_physical_regions)
  142. m_super_physical_pages += region.finalize_capacity();
  143. for (auto& region : m_user_physical_regions)
  144. m_user_physical_pages += region.finalize_capacity();
  145. #ifdef MM_DEBUG
  146. dbgprintf("MM: Installing page directory\n");
  147. #endif
  148. // Turn on CR4.PAE
  149. asm volatile(
  150. "mov %cr4, %eax\n"
  151. "orl $0x20, %eax\n"
  152. "mov %eax, %cr4\n");
  153. if (g_cpu_supports_pge) {
  154. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  155. asm volatile(
  156. "mov %cr4, %eax\n"
  157. "orl $0x80, %eax\n"
  158. "mov %eax, %cr4\n");
  159. kprintf("x86: PGE support enabled\n");
  160. } else {
  161. kprintf("x86: PGE support not detected\n");
  162. }
  163. if (g_cpu_supports_smep) {
  164. // Turn on CR4.SMEP
  165. asm volatile(
  166. "mov %cr4, %eax\n"
  167. "orl $0x100000, %eax\n"
  168. "mov %eax, %cr4\n");
  169. kprintf("x86: SMEP support enabled\n");
  170. } else {
  171. kprintf("x86: SMEP support not detected\n");
  172. }
  173. if (g_cpu_supports_nx) {
  174. // Turn on IA32_EFER.NXE
  175. asm volatile(
  176. "movl $0xc0000080, %ecx\n"
  177. "rdmsr\n"
  178. "orl $0x800, %eax\n"
  179. "wrmsr\n");
  180. kprintf("x86: NX support enabled\n");
  181. } else {
  182. kprintf("x86: NX support not detected\n");
  183. }
  184. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  185. asm volatile(
  186. "movl %%cr0, %%eax\n"
  187. "orl $0x80010001, %%eax\n"
  188. "movl %%eax, %%cr0\n" ::
  189. : "%eax", "memory");
  190. #ifdef MM_DEBUG
  191. dbgprintf("MM: Paging initialized.\n");
  192. #endif
  193. }
  194. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  195. {
  196. ASSERT_INTERRUPTS_DISABLED();
  197. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  198. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  199. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  200. PageDirectoryEntry& pde = page_directory.table().directory(page_directory_table_index)[page_directory_index];
  201. if (!pde.is_present()) {
  202. #ifdef MM_DEBUG
  203. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  204. #endif
  205. if (page_directory_table_index == 0 && page_directory_index < 4) {
  206. ASSERT(&page_directory == m_kernel_page_directory);
  207. pde.set_page_table_base((u32)m_low_page_tables[page_directory_index]);
  208. pde.set_user_allowed(false);
  209. pde.set_present(true);
  210. pde.set_writable(true);
  211. pde.set_global(true);
  212. } else {
  213. auto page_table = allocate_supervisor_physical_page();
  214. #ifdef MM_DEBUG
  215. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  216. &page_directory,
  217. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  218. page_directory.cr3(),
  219. page_directory_index,
  220. vaddr.get(),
  221. page_table->paddr().get());
  222. #endif
  223. pde.set_page_table_base(page_table->paddr().get());
  224. pde.set_user_allowed(true);
  225. pde.set_present(true);
  226. pde.set_writable(true);
  227. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  228. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  229. }
  230. }
  231. return pde.page_table_base()[page_table_index];
  232. }
  233. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  234. {
  235. InterruptDisabler disabler;
  236. ASSERT(vaddr.is_page_aligned());
  237. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  238. auto pte_address = vaddr.offset(offset);
  239. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  240. pte.set_physical_page_base(pte_address.get());
  241. pte.set_user_allowed(false);
  242. pte.set_present(false);
  243. pte.set_writable(false);
  244. flush_tlb(pte_address);
  245. }
  246. }
  247. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  248. {
  249. InterruptDisabler disabler;
  250. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  251. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  252. auto pte_address = vaddr.offset(offset);
  253. auto& pte = ensure_pte(page_directory, pte_address);
  254. pte.set_physical_page_base(pte_address.get());
  255. pte.set_user_allowed(false);
  256. pte.set_present(true);
  257. pte.set_writable(true);
  258. page_directory.flush(pte_address);
  259. }
  260. }
  261. void MemoryManager::initialize(u32 physical_address_for_kernel_page_tables)
  262. {
  263. s_the = new MemoryManager(physical_address_for_kernel_page_tables);
  264. }
  265. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  266. {
  267. if (vaddr.get() < 0xc0000000)
  268. return nullptr;
  269. for (auto& region : MM.m_kernel_regions) {
  270. if (region.contains(vaddr))
  271. return &region;
  272. }
  273. return nullptr;
  274. }
  275. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  276. {
  277. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  278. for (auto& region : process.m_regions) {
  279. if (region.contains(vaddr))
  280. return &region;
  281. }
  282. dbg() << process << " Couldn't find user region for " << vaddr;
  283. return nullptr;
  284. }
  285. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  286. {
  287. if (auto* region = kernel_region_from_vaddr(vaddr))
  288. return region;
  289. return user_region_from_vaddr(process, vaddr);
  290. }
  291. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  292. {
  293. if (auto* region = kernel_region_from_vaddr(vaddr))
  294. return region;
  295. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  296. }
  297. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  298. {
  299. if (auto* region = kernel_region_from_vaddr(vaddr))
  300. return region;
  301. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  302. if (!page_directory)
  303. return nullptr;
  304. ASSERT(page_directory->process());
  305. return user_region_from_vaddr(*page_directory->process(), vaddr);
  306. }
  307. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  308. {
  309. ASSERT_INTERRUPTS_DISABLED();
  310. ASSERT(current);
  311. #ifdef PAGE_FAULT_DEBUG
  312. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  313. #endif
  314. ASSERT(fault.vaddr() != m_quickmap_addr);
  315. auto* region = region_from_vaddr(fault.vaddr());
  316. if (!region) {
  317. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  318. return PageFaultResponse::ShouldCrash;
  319. }
  320. return region->handle_fault(fault);
  321. }
  322. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit)
  323. {
  324. InterruptDisabler disabler;
  325. ASSERT(!(size % PAGE_SIZE));
  326. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  327. ASSERT(range.is_valid());
  328. OwnPtr<Region> region;
  329. if (user_accessible)
  330. region = Region::create_user_accessible(range, name, access);
  331. else
  332. region = Region::create_kernel_only(range, name, access);
  333. region->map(kernel_page_directory());
  334. // FIXME: It would be cool if these could zero-fill on demand instead.
  335. if (should_commit)
  336. region->commit();
  337. return region;
  338. }
  339. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access)
  340. {
  341. return allocate_kernel_region(size, name, access, true);
  342. }
  343. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access)
  344. {
  345. InterruptDisabler disabler;
  346. ASSERT(!(size % PAGE_SIZE));
  347. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  348. ASSERT(range.is_valid());
  349. auto region = make<Region>(range, vmobject, 0, name, access);
  350. region->map(kernel_page_directory());
  351. return region;
  352. }
  353. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  354. {
  355. for (auto& region : m_user_physical_regions) {
  356. if (!region.contains(page)) {
  357. kprintf(
  358. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  359. page.paddr().get(), region.lower().get(), region.upper().get());
  360. continue;
  361. }
  362. region.return_page(move(page));
  363. --m_user_physical_pages_used;
  364. return;
  365. }
  366. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  367. ASSERT_NOT_REACHED();
  368. }
  369. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  370. {
  371. RefPtr<PhysicalPage> page;
  372. for (auto& region : m_user_physical_regions) {
  373. page = region.take_free_page(false);
  374. if (!page.is_null())
  375. break;
  376. }
  377. return page;
  378. }
  379. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  380. {
  381. InterruptDisabler disabler;
  382. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  383. if (!page) {
  384. if (m_user_physical_regions.is_empty()) {
  385. kprintf("MM: no user physical regions available (?)\n");
  386. }
  387. for_each_vmobject([&](auto& vmobject) {
  388. if (vmobject.is_purgeable()) {
  389. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  390. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  391. if (purged_page_count) {
  392. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  393. page = find_free_user_physical_page();
  394. ASSERT(page);
  395. return IterationDecision::Break;
  396. }
  397. }
  398. return IterationDecision::Continue;
  399. });
  400. if (!page) {
  401. kprintf("MM: no user physical pages available\n");
  402. ASSERT_NOT_REACHED();
  403. return {};
  404. }
  405. }
  406. #ifdef MM_DEBUG
  407. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  408. #endif
  409. if (should_zero_fill == ShouldZeroFill::Yes) {
  410. auto* ptr = (u32*)quickmap_page(*page);
  411. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  412. unquickmap_page();
  413. }
  414. ++m_user_physical_pages_used;
  415. return page;
  416. }
  417. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  418. {
  419. for (auto& region : m_super_physical_regions) {
  420. if (!region.contains(page)) {
  421. kprintf(
  422. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  423. page.paddr().get(), region.lower().get(), region.upper().get());
  424. continue;
  425. }
  426. region.return_page(move(page));
  427. --m_super_physical_pages_used;
  428. return;
  429. }
  430. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  431. ASSERT_NOT_REACHED();
  432. }
  433. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  434. {
  435. InterruptDisabler disabler;
  436. RefPtr<PhysicalPage> page;
  437. for (auto& region : m_super_physical_regions) {
  438. page = region.take_free_page(true);
  439. if (page.is_null())
  440. continue;
  441. }
  442. if (!page) {
  443. if (m_super_physical_regions.is_empty()) {
  444. kprintf("MM: no super physical regions available (?)\n");
  445. }
  446. kprintf("MM: no super physical pages available\n");
  447. ASSERT_NOT_REACHED();
  448. return {};
  449. }
  450. #ifdef MM_DEBUG
  451. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  452. #endif
  453. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  454. ++m_super_physical_pages_used;
  455. return page;
  456. }
  457. void MemoryManager::enter_process_paging_scope(Process& process)
  458. {
  459. ASSERT(current);
  460. InterruptDisabler disabler;
  461. current->tss().cr3 = process.page_directory().cr3();
  462. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  463. : "memory");
  464. }
  465. void MemoryManager::flush_entire_tlb()
  466. {
  467. asm volatile(
  468. "mov %%cr3, %%eax\n"
  469. "mov %%eax, %%cr3\n" ::
  470. : "%eax", "memory");
  471. }
  472. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  473. {
  474. asm volatile("invlpg %0"
  475. :
  476. : "m"(*(char*)vaddr.get())
  477. : "memory");
  478. }
  479. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  480. {
  481. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  482. pte.set_physical_page_base(paddr.get());
  483. pte.set_present(true);
  484. pte.set_writable(true);
  485. pte.set_user_allowed(false);
  486. pte.set_cache_disabled(cache_disabled);
  487. flush_tlb(vaddr);
  488. }
  489. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  490. {
  491. ASSERT_INTERRUPTS_DISABLED();
  492. ASSERT(!m_quickmap_in_use);
  493. m_quickmap_in_use = true;
  494. auto page_vaddr = m_quickmap_addr;
  495. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  496. pte.set_physical_page_base(physical_page.paddr().get());
  497. pte.set_present(true);
  498. pte.set_writable(true);
  499. pte.set_user_allowed(false);
  500. flush_tlb(page_vaddr);
  501. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  502. #ifdef MM_DEBUG
  503. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  504. #endif
  505. return page_vaddr.as_ptr();
  506. }
  507. void MemoryManager::unquickmap_page()
  508. {
  509. ASSERT_INTERRUPTS_DISABLED();
  510. ASSERT(m_quickmap_in_use);
  511. auto page_vaddr = m_quickmap_addr;
  512. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  513. #ifdef MM_DEBUG
  514. auto old_physical_address = pte.physical_page_base();
  515. #endif
  516. pte.set_physical_page_base(0);
  517. pte.set_present(false);
  518. pte.set_writable(false);
  519. flush_tlb(page_vaddr);
  520. #ifdef MM_DEBUG
  521. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  522. #endif
  523. m_quickmap_in_use = false;
  524. }
  525. static inline bool is_user_address(VirtualAddress vaddr)
  526. {
  527. return vaddr.get() >= (8 * MB) && vaddr.get() < 0xc0000000;
  528. }
  529. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  530. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  531. {
  532. ASSERT(size);
  533. VirtualAddress vaddr = base_vaddr.page_base();
  534. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  535. if (end_vaddr < vaddr) {
  536. dbg() << *current << " Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  537. return false;
  538. }
  539. const Region* region = nullptr;
  540. while (vaddr <= end_vaddr) {
  541. if (!region || !region->contains(vaddr)) {
  542. if (space == AccessSpace::Kernel)
  543. region = kernel_region_from_vaddr(vaddr);
  544. if (!region || !region->contains(vaddr))
  545. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  546. if (!region
  547. || (space == AccessSpace::User && !region->is_user_accessible())
  548. || (access_type == AccessType::Read && !region->is_readable())
  549. || (access_type == AccessType::Write && !region->is_writable())) {
  550. return false;
  551. }
  552. }
  553. vaddr = vaddr.offset(PAGE_SIZE);
  554. }
  555. return true;
  556. }
  557. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  558. {
  559. if (!is_user_address(vaddr))
  560. return false;
  561. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  562. return region && region->is_user_accessible() && region->is_stack();
  563. }
  564. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  565. {
  566. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  567. }
  568. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  569. {
  570. if (!is_user_address(vaddr))
  571. return false;
  572. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  573. }
  574. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  575. {
  576. if (!is_user_address(vaddr))
  577. return false;
  578. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  579. }
  580. void MemoryManager::register_vmobject(VMObject& vmobject)
  581. {
  582. InterruptDisabler disabler;
  583. m_vmobjects.append(&vmobject);
  584. }
  585. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  586. {
  587. InterruptDisabler disabler;
  588. m_vmobjects.remove(&vmobject);
  589. }
  590. void MemoryManager::register_region(Region& region)
  591. {
  592. InterruptDisabler disabler;
  593. if (region.vaddr().get() >= 0xc0000000)
  594. m_kernel_regions.append(&region);
  595. else
  596. m_user_regions.append(&region);
  597. }
  598. void MemoryManager::unregister_region(Region& region)
  599. {
  600. InterruptDisabler disabler;
  601. if (region.vaddr().get() >= 0xc0000000)
  602. m_kernel_regions.remove(&region);
  603. else
  604. m_user_regions.remove(&region);
  605. }
  606. ProcessPagingScope::ProcessPagingScope(Process& process)
  607. {
  608. ASSERT(current);
  609. MM.enter_process_paging_scope(process);
  610. }
  611. ProcessPagingScope::~ProcessPagingScope()
  612. {
  613. MM.enter_process_paging_scope(current->process());
  614. }