MemoryManager.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/CMOS.h>
  10. #include <Kernel/FileSystem/Inode.h>
  11. #include <Kernel/Heap/kmalloc.h>
  12. #include <Kernel/Multiboot.h>
  13. #include <Kernel/Panic.h>
  14. #include <Kernel/Process.h>
  15. #include <Kernel/Sections.h>
  16. #include <Kernel/StdLib.h>
  17. #include <Kernel/VM/AnonymousVMObject.h>
  18. #include <Kernel/VM/ContiguousVMObject.h>
  19. #include <Kernel/VM/MemoryManager.h>
  20. #include <Kernel/VM/PageDirectory.h>
  21. #include <Kernel/VM/PhysicalRegion.h>
  22. #include <Kernel/VM/SharedInodeVMObject.h>
  23. extern u8* start_of_kernel_image;
  24. extern u8* end_of_kernel_image;
  25. extern FlatPtr start_of_kernel_text;
  26. extern FlatPtr start_of_kernel_data;
  27. extern FlatPtr end_of_kernel_bss;
  28. extern FlatPtr start_of_ro_after_init;
  29. extern FlatPtr end_of_ro_after_init;
  30. extern FlatPtr start_of_unmap_after_init;
  31. extern FlatPtr end_of_unmap_after_init;
  32. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  33. extern size_t multiboot_copy_boot_modules_count;
  34. // Treat the super pages as logically separate from .bss
  35. __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
  36. namespace Kernel {
  37. // NOTE: We can NOT use AK::Singleton for this class, because
  38. // MemoryManager::initialize is called *before* global constructors are
  39. // run. If we do, then AK::Singleton would get re-initialized, causing
  40. // the memory manager to be initialized twice!
  41. static MemoryManager* s_the;
  42. RecursiveSpinLock s_mm_lock;
  43. MemoryManager& MM
  44. {
  45. return *s_the;
  46. }
  47. bool MemoryManager::is_initialized()
  48. {
  49. return s_the != nullptr;
  50. }
  51. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  52. {
  53. ScopedSpinLock lock(s_mm_lock);
  54. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  55. parse_memory_map();
  56. write_cr3(kernel_page_directory().cr3());
  57. protect_kernel_image();
  58. // We're temporarily "committing" to two pages that we need to allocate below
  59. if (!commit_user_physical_pages(2))
  60. VERIFY_NOT_REACHED();
  61. m_shared_zero_page = allocate_committed_user_physical_page();
  62. // We're wasting a page here, we just need a special tag (physical
  63. // address) so that we know when we need to lazily allocate a page
  64. // that we should be drawing this page from the committed pool rather
  65. // than potentially failing if no pages are available anymore.
  66. // By using a tag we don't have to query the VMObject for every page
  67. // whether it was committed or not
  68. m_lazy_committed_page = allocate_committed_user_physical_page();
  69. }
  70. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  71. {
  72. }
  73. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  74. {
  75. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  76. // Disable writing to the kernel text and rodata segments.
  77. for (auto i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  78. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  79. pte.set_writable(false);
  80. }
  81. if (Processor::current().has_feature(CPUFeature::NX)) {
  82. // Disable execution of the kernel data, bss and heap segments.
  83. for (auto i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_image; i += PAGE_SIZE) {
  84. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  85. pte.set_execute_disabled(true);
  86. }
  87. }
  88. }
  89. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  90. {
  91. ScopedSpinLock mm_lock(s_mm_lock);
  92. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  93. // Disable writing to the .ro_after_init section
  94. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  95. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  96. pte.set_writable(false);
  97. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  98. }
  99. }
  100. void MemoryManager::unmap_memory_after_init()
  101. {
  102. ScopedSpinLock mm_lock(s_mm_lock);
  103. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  104. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  105. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
  106. // Unmap the entire .unmap_after_init section
  107. for (auto i = start; i < end; i += PAGE_SIZE) {
  108. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  109. pte.clear();
  110. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  111. }
  112. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  113. //Processor::halt();
  114. }
  115. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  116. {
  117. VERIFY(!m_physical_memory_ranges.is_empty());
  118. ContiguousReservedMemoryRange range;
  119. for (auto& current_range : m_physical_memory_ranges) {
  120. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  121. if (range.start.is_null())
  122. continue;
  123. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  124. range.start.set((FlatPtr) nullptr);
  125. continue;
  126. }
  127. if (!range.start.is_null()) {
  128. continue;
  129. }
  130. range.start = current_range.start;
  131. }
  132. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  133. return;
  134. if (range.start.is_null())
  135. return;
  136. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  137. }
  138. bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, const Range& range) const
  139. {
  140. VERIFY(!m_reserved_memory_ranges.is_empty());
  141. for (auto& current_range : m_reserved_memory_ranges) {
  142. if (!(current_range.start <= start_address))
  143. continue;
  144. if (!(current_range.start.offset(current_range.length) > start_address))
  145. continue;
  146. if (current_range.length < range.size())
  147. return false;
  148. return true;
  149. }
  150. return false;
  151. }
  152. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  153. {
  154. RefPtr<PhysicalRegion> physical_region;
  155. // Register used memory regions that we know of.
  156. m_used_memory_ranges.ensure_capacity(4);
  157. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  158. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical(FlatPtr(&start_of_kernel_image))), PhysicalAddress(page_round_up(virtual_to_low_physical(FlatPtr(&end_of_kernel_image)))) });
  159. if (multiboot_info_ptr->flags & 0x4) {
  160. auto* bootmods_start = multiboot_copy_boot_modules_array;
  161. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  162. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  163. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  164. }
  165. }
  166. auto* mmap_begin = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  167. auto* mmap_end = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr) + multiboot_info_ptr->mmap_length);
  168. for (auto& used_range : m_used_memory_ranges) {
  169. dmesgln("MM: {} range @ {} - {}", UserMemoryRangeTypeNames[static_cast<int>(used_range.type)], used_range.start, used_range.end);
  170. }
  171. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  172. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
  173. auto start_address = PhysicalAddress(mmap->addr);
  174. auto length = static_cast<size_t>(mmap->len);
  175. switch (mmap->type) {
  176. case (MULTIBOOT_MEMORY_AVAILABLE):
  177. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  178. break;
  179. case (MULTIBOOT_MEMORY_RESERVED):
  180. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  181. break;
  182. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  183. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  184. break;
  185. case (MULTIBOOT_MEMORY_NVS):
  186. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  187. break;
  188. case (MULTIBOOT_MEMORY_BADRAM):
  189. dmesgln("MM: Warning, detected bad memory range!");
  190. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  191. break;
  192. default:
  193. dbgln("MM: Unknown range!");
  194. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  195. break;
  196. }
  197. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  198. continue;
  199. if ((mmap->addr + mmap->len) > 0xffffffff)
  200. continue;
  201. // Fix up unaligned memory regions.
  202. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  203. if (diff != 0) {
  204. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
  205. diff = PAGE_SIZE - diff;
  206. mmap->addr += diff;
  207. mmap->len -= diff;
  208. }
  209. if ((mmap->len % PAGE_SIZE) != 0) {
  210. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
  211. mmap->len -= mmap->len % PAGE_SIZE;
  212. }
  213. if (mmap->len < PAGE_SIZE) {
  214. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
  215. continue;
  216. }
  217. for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  218. auto addr = PhysicalAddress(page_base);
  219. // Skip used memory ranges.
  220. bool should_skip = false;
  221. for (auto& used_range : m_used_memory_ranges) {
  222. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  223. should_skip = true;
  224. break;
  225. }
  226. }
  227. if (should_skip)
  228. continue;
  229. // Assign page to user physical physical_region.
  230. if (physical_region.is_null() || physical_region->upper().offset(PAGE_SIZE) != addr) {
  231. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  232. physical_region = m_user_physical_regions.last();
  233. } else {
  234. physical_region->expand(physical_region->lower(), addr);
  235. }
  236. }
  237. }
  238. // Append statically-allocated super physical physical_region.
  239. m_super_physical_regions.append(PhysicalRegion::create(
  240. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  241. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages))))));
  242. for (auto& region : m_super_physical_regions) {
  243. m_super_physical_pages += region.finalize_capacity();
  244. dmesgln("MM: Super physical region: {} - {}", region.lower(), region.upper());
  245. }
  246. for (auto& region : m_user_physical_regions) {
  247. m_user_physical_pages += region.finalize_capacity();
  248. dmesgln("MM: User physical region: {} - {}", region.lower(), region.upper());
  249. }
  250. VERIFY(m_super_physical_pages > 0);
  251. VERIFY(m_user_physical_pages > 0);
  252. // We start out with no committed pages
  253. m_user_physical_pages_uncommitted = m_user_physical_pages.load();
  254. register_reserved_ranges();
  255. for (auto& range : m_reserved_memory_ranges) {
  256. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  257. }
  258. }
  259. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  260. {
  261. VERIFY_INTERRUPTS_DISABLED();
  262. VERIFY(s_mm_lock.own_lock());
  263. VERIFY(page_directory.get_lock().own_lock());
  264. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  265. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  266. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  267. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  268. const PageDirectoryEntry& pde = pd[page_directory_index];
  269. if (!pde.is_present())
  270. return nullptr;
  271. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  272. }
  273. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  274. {
  275. VERIFY_INTERRUPTS_DISABLED();
  276. VERIFY(s_mm_lock.own_lock());
  277. VERIFY(page_directory.get_lock().own_lock());
  278. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  279. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  280. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  281. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  282. PageDirectoryEntry& pde = pd[page_directory_index];
  283. if (!pde.is_present()) {
  284. bool did_purge = false;
  285. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  286. if (!page_table) {
  287. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  288. return nullptr;
  289. }
  290. if (did_purge) {
  291. // If any memory had to be purged, ensure_pte may have been called as part
  292. // of the purging process. So we need to re-map the pd in this case to ensure
  293. // we're writing to the correct underlying physical page
  294. pd = quickmap_pd(page_directory, page_directory_table_index);
  295. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  296. VERIFY(!pde.is_present()); // Should have not changed
  297. }
  298. pde.set_page_table_base(page_table->paddr().get());
  299. pde.set_user_allowed(true);
  300. pde.set_present(true);
  301. pde.set_writable(true);
  302. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  303. // Use page_directory_table_index and page_directory_index as key
  304. // This allows us to release the page table entry when no longer needed
  305. auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
  306. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  307. }
  308. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  309. }
  310. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  311. {
  312. VERIFY_INTERRUPTS_DISABLED();
  313. VERIFY(s_mm_lock.own_lock());
  314. VERIFY(page_directory.get_lock().own_lock());
  315. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  316. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  317. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  318. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  319. PageDirectoryEntry& pde = pd[page_directory_index];
  320. if (pde.is_present()) {
  321. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  322. auto& pte = page_table[page_table_index];
  323. pte.clear();
  324. if (is_last_release || page_table_index == 0x1ff) {
  325. // If this is the last PTE in a region or the last PTE in a page table then
  326. // check if we can also release the page table
  327. bool all_clear = true;
  328. for (u32 i = 0; i <= 0x1ff; i++) {
  329. if (!page_table[i].is_null()) {
  330. all_clear = false;
  331. break;
  332. }
  333. }
  334. if (all_clear) {
  335. pde.clear();
  336. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  337. VERIFY(result);
  338. }
  339. }
  340. }
  341. }
  342. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  343. {
  344. auto mm_data = new MemoryManagerData;
  345. Processor::current().set_mm_data(*mm_data);
  346. if (cpu == 0) {
  347. s_the = new MemoryManager;
  348. kmalloc_enable_expand();
  349. }
  350. }
  351. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  352. {
  353. ScopedSpinLock lock(s_mm_lock);
  354. for (auto& region : MM.m_kernel_regions) {
  355. if (region.contains(vaddr))
  356. return &region;
  357. }
  358. return nullptr;
  359. }
  360. Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr)
  361. {
  362. ScopedSpinLock lock(space.get_lock());
  363. return space.find_region_containing({ vaddr, 1 });
  364. }
  365. Region* MemoryManager::find_region_from_vaddr(Space& space, VirtualAddress vaddr)
  366. {
  367. ScopedSpinLock lock(s_mm_lock);
  368. if (auto* region = find_user_region_from_vaddr(space, vaddr))
  369. return region;
  370. return kernel_region_from_vaddr(vaddr);
  371. }
  372. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  373. {
  374. ScopedSpinLock lock(s_mm_lock);
  375. if (auto* region = kernel_region_from_vaddr(vaddr))
  376. return region;
  377. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  378. if (!page_directory)
  379. return nullptr;
  380. VERIFY(page_directory->space());
  381. return find_user_region_from_vaddr(*page_directory->space(), vaddr);
  382. }
  383. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  384. {
  385. VERIFY_INTERRUPTS_DISABLED();
  386. ScopedSpinLock lock(s_mm_lock);
  387. if (Processor::current().in_irq()) {
  388. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  389. Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
  390. dump_kernel_regions();
  391. return PageFaultResponse::ShouldCrash;
  392. }
  393. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
  394. auto* region = find_region_from_vaddr(fault.vaddr());
  395. if (!region) {
  396. return PageFaultResponse::ShouldCrash;
  397. }
  398. return region->handle_fault(fault, lock);
  399. }
  400. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, size_t physical_alignment, Region::Cacheable cacheable)
  401. {
  402. VERIFY(!(size % PAGE_SIZE));
  403. ScopedSpinLock lock(s_mm_lock);
  404. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  405. if (!range.has_value())
  406. return {};
  407. auto vmobject = ContiguousVMObject::create_with_size(size, physical_alignment);
  408. if (!vmobject) {
  409. kernel_page_directory().range_allocator().deallocate(range.value());
  410. return {};
  411. }
  412. return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable);
  413. }
  414. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  415. {
  416. VERIFY(!(size % PAGE_SIZE));
  417. auto vm_object = AnonymousVMObject::create_with_size(size, strategy);
  418. if (!vm_object)
  419. return {};
  420. ScopedSpinLock lock(s_mm_lock);
  421. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  422. if (!range.has_value())
  423. return {};
  424. return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
  425. }
  426. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  427. {
  428. auto vm_object = AnonymousVMObject::create_for_physical_range(paddr, size);
  429. if (!vm_object)
  430. return {};
  431. VERIFY(!(size % PAGE_SIZE));
  432. ScopedSpinLock lock(s_mm_lock);
  433. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  434. if (!range.has_value())
  435. return {};
  436. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  437. }
  438. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  439. {
  440. auto vm_object = AnonymousVMObject::create_for_physical_range(paddr, size);
  441. if (!vm_object)
  442. return {};
  443. VERIFY(!(size % PAGE_SIZE));
  444. ScopedSpinLock lock(s_mm_lock);
  445. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  446. if (!range.has_value())
  447. return {};
  448. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  449. }
  450. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  451. {
  452. ScopedSpinLock lock(s_mm_lock);
  453. auto region = Region::create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
  454. if (region)
  455. region->map(kernel_page_directory());
  456. return region;
  457. }
  458. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  459. {
  460. VERIFY(!(size % PAGE_SIZE));
  461. ScopedSpinLock lock(s_mm_lock);
  462. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  463. if (!range.has_value())
  464. return {};
  465. return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
  466. }
  467. bool MemoryManager::commit_user_physical_pages(size_t page_count)
  468. {
  469. VERIFY(page_count > 0);
  470. ScopedSpinLock lock(s_mm_lock);
  471. if (m_user_physical_pages_uncommitted < page_count)
  472. return false;
  473. m_user_physical_pages_uncommitted -= page_count;
  474. m_user_physical_pages_committed += page_count;
  475. return true;
  476. }
  477. void MemoryManager::uncommit_user_physical_pages(size_t page_count)
  478. {
  479. VERIFY(page_count > 0);
  480. ScopedSpinLock lock(s_mm_lock);
  481. VERIFY(m_user_physical_pages_committed >= page_count);
  482. m_user_physical_pages_uncommitted += page_count;
  483. m_user_physical_pages_committed -= page_count;
  484. }
  485. void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
  486. {
  487. ScopedSpinLock lock(s_mm_lock);
  488. for (auto& region : m_user_physical_regions) {
  489. if (!region.contains(page))
  490. continue;
  491. region.return_page(page);
  492. --m_user_physical_pages_used;
  493. // Always return pages to the uncommitted pool. Pages that were
  494. // committed and allocated are only freed upon request. Once
  495. // returned there is no guarantee being able to get them back.
  496. ++m_user_physical_pages_uncommitted;
  497. return;
  498. }
  499. dmesgln("MM: deallocate_user_physical_page couldn't figure out region for user page @ {}", page.paddr());
  500. VERIFY_NOT_REACHED();
  501. }
  502. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  503. {
  504. VERIFY(s_mm_lock.is_locked());
  505. RefPtr<PhysicalPage> page;
  506. if (committed) {
  507. // Draw from the committed pages pool. We should always have these pages available
  508. VERIFY(m_user_physical_pages_committed > 0);
  509. m_user_physical_pages_committed--;
  510. } else {
  511. // We need to make sure we don't touch pages that we have committed to
  512. if (m_user_physical_pages_uncommitted == 0)
  513. return {};
  514. m_user_physical_pages_uncommitted--;
  515. }
  516. for (auto& region : m_user_physical_regions) {
  517. page = region.take_free_page(false);
  518. if (!page.is_null()) {
  519. ++m_user_physical_pages_used;
  520. break;
  521. }
  522. }
  523. VERIFY(!committed || !page.is_null());
  524. return page;
  525. }
  526. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
  527. {
  528. ScopedSpinLock lock(s_mm_lock);
  529. auto page = find_free_user_physical_page(true);
  530. if (should_zero_fill == ShouldZeroFill::Yes) {
  531. auto* ptr = quickmap_page(*page);
  532. memset(ptr, 0, PAGE_SIZE);
  533. unquickmap_page();
  534. }
  535. return page.release_nonnull();
  536. }
  537. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  538. {
  539. ScopedSpinLock lock(s_mm_lock);
  540. auto page = find_free_user_physical_page(false);
  541. bool purged_pages = false;
  542. if (!page) {
  543. // We didn't have a single free physical page. Let's try to free something up!
  544. // First, we look for a purgeable VMObject in the volatile state.
  545. for_each_vmobject([&](auto& vmobject) {
  546. if (!vmobject.is_anonymous())
  547. return IterationDecision::Continue;
  548. int purged_page_count = static_cast<AnonymousVMObject&>(vmobject).purge_with_interrupts_disabled({});
  549. if (purged_page_count) {
  550. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  551. page = find_free_user_physical_page(false);
  552. purged_pages = true;
  553. VERIFY(page);
  554. return IterationDecision::Break;
  555. }
  556. return IterationDecision::Continue;
  557. });
  558. if (!page) {
  559. dmesgln("MM: no user physical pages available");
  560. return {};
  561. }
  562. }
  563. if (should_zero_fill == ShouldZeroFill::Yes) {
  564. auto* ptr = quickmap_page(*page);
  565. memset(ptr, 0, PAGE_SIZE);
  566. unquickmap_page();
  567. }
  568. if (did_purge)
  569. *did_purge = purged_pages;
  570. return page;
  571. }
  572. void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
  573. {
  574. ScopedSpinLock lock(s_mm_lock);
  575. for (auto& region : m_super_physical_regions) {
  576. if (!region.contains(page)) {
  577. dbgln("MM: deallocate_supervisor_physical_page: {} not in {} - {}", page.paddr(), region.lower(), region.upper());
  578. continue;
  579. }
  580. region.return_page(page);
  581. --m_super_physical_pages_used;
  582. return;
  583. }
  584. dbgln("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ {}", page.paddr());
  585. VERIFY_NOT_REACHED();
  586. }
  587. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size, size_t physical_alignment)
  588. {
  589. VERIFY(!(size % PAGE_SIZE));
  590. ScopedSpinLock lock(s_mm_lock);
  591. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  592. NonnullRefPtrVector<PhysicalPage> physical_pages;
  593. for (auto& region : m_super_physical_regions) {
  594. physical_pages = region.take_contiguous_free_pages(count, true, physical_alignment);
  595. if (!physical_pages.is_empty())
  596. continue;
  597. }
  598. if (physical_pages.is_empty()) {
  599. if (m_super_physical_regions.is_empty()) {
  600. dmesgln("MM: no super physical regions available (?)");
  601. }
  602. dmesgln("MM: no super physical pages available");
  603. VERIFY_NOT_REACHED();
  604. return {};
  605. }
  606. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  607. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  608. m_super_physical_pages_used += count;
  609. return physical_pages;
  610. }
  611. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  612. {
  613. ScopedSpinLock lock(s_mm_lock);
  614. RefPtr<PhysicalPage> page;
  615. for (auto& region : m_super_physical_regions) {
  616. page = region.take_free_page(true);
  617. if (!page.is_null())
  618. break;
  619. }
  620. if (!page) {
  621. if (m_super_physical_regions.is_empty()) {
  622. dmesgln("MM: no super physical regions available (?)");
  623. }
  624. dmesgln("MM: no super physical pages available");
  625. VERIFY_NOT_REACHED();
  626. return {};
  627. }
  628. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  629. ++m_super_physical_pages_used;
  630. return page;
  631. }
  632. void MemoryManager::enter_process_paging_scope(Process& process)
  633. {
  634. enter_space(process.space());
  635. }
  636. void MemoryManager::enter_space(Space& space)
  637. {
  638. auto current_thread = Thread::current();
  639. VERIFY(current_thread != nullptr);
  640. ScopedSpinLock lock(s_mm_lock);
  641. #if ARCH(I386)
  642. current_thread->tss().cr3 = space.page_directory().cr3();
  643. write_cr3(space.page_directory().cr3());
  644. #else
  645. (void)space;
  646. PANIC("MemoryManager::enter_space not implemented");
  647. #endif
  648. }
  649. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  650. {
  651. Processor::flush_tlb_local(vaddr, page_count);
  652. }
  653. void MemoryManager::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
  654. {
  655. Processor::flush_tlb(page_directory, vaddr, page_count);
  656. }
  657. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  658. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  659. {
  660. VERIFY(s_mm_lock.own_lock());
  661. auto& mm_data = get_data();
  662. auto& pte = boot_pd3_pt1023[4];
  663. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  664. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  665. pte.set_physical_page_base(pd_paddr.get());
  666. pte.set_present(true);
  667. pte.set_writable(true);
  668. pte.set_user_allowed(false);
  669. // Because we must continue to hold the MM lock while we use this
  670. // mapping, it is sufficient to only flush on the current CPU. Other
  671. // CPUs trying to use this API must wait on the MM lock anyway
  672. flush_tlb_local(VirtualAddress(0xffe04000));
  673. } else {
  674. // Even though we don't allow this to be called concurrently, it's
  675. // possible that this PD was mapped on a different CPU and we don't
  676. // broadcast the flush. If so, we still need to flush the TLB.
  677. if (mm_data.m_last_quickmap_pd != pd_paddr)
  678. flush_tlb_local(VirtualAddress(0xffe04000));
  679. }
  680. mm_data.m_last_quickmap_pd = pd_paddr;
  681. return (PageDirectoryEntry*)0xffe04000;
  682. }
  683. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  684. {
  685. VERIFY(s_mm_lock.own_lock());
  686. auto& mm_data = get_data();
  687. auto& pte = boot_pd3_pt1023[0];
  688. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  689. pte.set_physical_page_base(pt_paddr.get());
  690. pte.set_present(true);
  691. pte.set_writable(true);
  692. pte.set_user_allowed(false);
  693. // Because we must continue to hold the MM lock while we use this
  694. // mapping, it is sufficient to only flush on the current CPU. Other
  695. // CPUs trying to use this API must wait on the MM lock anyway
  696. flush_tlb_local(VirtualAddress(0xffe00000));
  697. } else {
  698. // Even though we don't allow this to be called concurrently, it's
  699. // possible that this PT was mapped on a different CPU and we don't
  700. // broadcast the flush. If so, we still need to flush the TLB.
  701. if (mm_data.m_last_quickmap_pt != pt_paddr)
  702. flush_tlb_local(VirtualAddress(0xffe00000));
  703. }
  704. mm_data.m_last_quickmap_pt = pt_paddr;
  705. return (PageTableEntry*)0xffe00000;
  706. }
  707. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  708. {
  709. VERIFY_INTERRUPTS_DISABLED();
  710. auto& mm_data = get_data();
  711. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  712. ScopedSpinLock lock(s_mm_lock);
  713. u32 pte_idx = 8 + Processor::id();
  714. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  715. auto& pte = boot_pd3_pt1023[pte_idx];
  716. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  717. pte.set_physical_page_base(physical_page.paddr().get());
  718. pte.set_present(true);
  719. pte.set_writable(true);
  720. pte.set_user_allowed(false);
  721. flush_tlb_local(vaddr);
  722. }
  723. return vaddr.as_ptr();
  724. }
  725. void MemoryManager::unquickmap_page()
  726. {
  727. VERIFY_INTERRUPTS_DISABLED();
  728. ScopedSpinLock lock(s_mm_lock);
  729. auto& mm_data = get_data();
  730. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  731. u32 pte_idx = 8 + Processor::id();
  732. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  733. auto& pte = boot_pd3_pt1023[pte_idx];
  734. pte.clear();
  735. flush_tlb_local(vaddr);
  736. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  737. }
  738. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  739. {
  740. if (!is_user_address(vaddr))
  741. return false;
  742. ScopedSpinLock lock(s_mm_lock);
  743. auto* region = find_user_region_from_vaddr(const_cast<Process&>(process).space(), vaddr);
  744. return region && region->is_user() && region->is_stack();
  745. }
  746. void MemoryManager::register_vmobject(VMObject& vmobject)
  747. {
  748. ScopedSpinLock lock(s_mm_lock);
  749. m_vmobjects.append(vmobject);
  750. }
  751. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  752. {
  753. ScopedSpinLock lock(s_mm_lock);
  754. m_vmobjects.remove(vmobject);
  755. }
  756. void MemoryManager::register_region(Region& region)
  757. {
  758. ScopedSpinLock lock(s_mm_lock);
  759. if (region.is_kernel())
  760. m_kernel_regions.append(region);
  761. else
  762. m_user_regions.append(region);
  763. }
  764. void MemoryManager::unregister_region(Region& region)
  765. {
  766. ScopedSpinLock lock(s_mm_lock);
  767. if (region.is_kernel())
  768. m_kernel_regions.remove(region);
  769. else
  770. m_user_regions.remove(region);
  771. }
  772. void MemoryManager::dump_kernel_regions()
  773. {
  774. dbgln("Kernel regions:");
  775. dbgln("BEGIN END SIZE ACCESS NAME");
  776. ScopedSpinLock lock(s_mm_lock);
  777. for (auto& region : m_kernel_regions) {
  778. dbgln("{:08x} -- {:08x} {:08x} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  779. region.vaddr().get(),
  780. region.vaddr().offset(region.size() - 1).get(),
  781. region.size(),
  782. region.is_readable() ? 'R' : ' ',
  783. region.is_writable() ? 'W' : ' ',
  784. region.is_executable() ? 'X' : ' ',
  785. region.is_shared() ? 'S' : ' ',
  786. region.is_stack() ? 'T' : ' ',
  787. region.is_syscall_region() ? 'C' : ' ',
  788. region.name());
  789. }
  790. }
  791. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  792. {
  793. ScopedSpinLock lock(s_mm_lock);
  794. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  795. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  796. VERIFY(pte);
  797. if (pte->is_writable() == writable)
  798. return;
  799. pte->set_writable(writable);
  800. flush_tlb(&kernel_page_directory(), vaddr);
  801. }
  802. }