CanvasPath.cpp 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. /*
  2. * Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/ExtraMathConstants.h>
  8. #include <LibWeb/HTML/Canvas/CanvasPath.h>
  9. namespace Web::HTML {
  10. Gfx::AffineTransform CanvasPath::active_transform() const
  11. {
  12. if (m_canvas_state.has_value())
  13. return m_canvas_state->drawing_state().transform;
  14. return {};
  15. }
  16. void CanvasPath::close_path()
  17. {
  18. m_path.close();
  19. }
  20. void CanvasPath::move_to(float x, float y)
  21. {
  22. m_path.move_to(active_transform().map(Gfx::FloatPoint { x, y }));
  23. }
  24. void CanvasPath::line_to(float x, float y)
  25. {
  26. m_path.line_to(active_transform().map(Gfx::FloatPoint { x, y }));
  27. }
  28. void CanvasPath::quadratic_curve_to(float cx, float cy, float x, float y)
  29. {
  30. auto transform = active_transform();
  31. m_path.quadratic_bezier_curve_to(transform.map(Gfx::FloatPoint { cx, cy }), transform.map(Gfx::FloatPoint { x, y }));
  32. }
  33. void CanvasPath::bezier_curve_to(double cp1x, double cp1y, double cp2x, double cp2y, double x, double y)
  34. {
  35. auto transform = active_transform();
  36. m_path.cubic_bezier_curve_to(
  37. transform.map(Gfx::FloatPoint { cp1x, cp1y }), transform.map(Gfx::FloatPoint { cp2x, cp2y }), transform.map(Gfx::FloatPoint { x, y }));
  38. }
  39. WebIDL::ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float start_angle, float end_angle, bool counter_clockwise)
  40. {
  41. if (radius < 0)
  42. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
  43. return ellipse(x, y, radius, radius, 0, start_angle, end_angle, counter_clockwise);
  44. }
  45. WebIDL::ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radius_x, float radius_y, float rotation, float start_angle, float end_angle, bool counter_clockwise)
  46. {
  47. if (radius_x < 0)
  48. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The major-axis radius provided ({}) is negative.", radius_x)));
  49. if (radius_y < 0)
  50. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The minor-axis radius provided ({}) is negative.", radius_y)));
  51. if (constexpr float tau = M_TAU; (!counter_clockwise && (end_angle - start_angle) >= tau)
  52. || (counter_clockwise && (start_angle - end_angle) >= tau)) {
  53. start_angle = 0;
  54. // FIXME: elliptical_arc_to() incorrectly handles the case where the start/end points are very close.
  55. // So we slightly fudge the numbers here to correct for that.
  56. end_angle = tau * 0.9999f;
  57. } else {
  58. start_angle = fmodf(start_angle, tau);
  59. end_angle = fmodf(end_angle, tau);
  60. }
  61. // Then, figure out where the ends of the arc are.
  62. // To do so, we can pretend that the center of this ellipse is at (0, 0),
  63. // and the whole coordinate system is rotated `rotation` radians around the x axis, centered on `center`.
  64. // The sign of the resulting relative positions is just whether our angle is on one of the left quadrants.
  65. float sin_rotation;
  66. float cos_rotation;
  67. AK::sincos(rotation, sin_rotation, cos_rotation);
  68. auto resolve_point_with_angle = [&](float angle) {
  69. auto tan_relative = tanf(angle);
  70. auto tan2 = tan_relative * tan_relative;
  71. auto ab = radius_x * radius_y;
  72. auto a2 = radius_x * radius_x;
  73. auto b2 = radius_y * radius_y;
  74. auto sqrt = sqrtf(b2 + a2 * tan2);
  75. auto relative_x_position = ab / sqrt;
  76. auto relative_y_position = ab * tan_relative / sqrt;
  77. // Make sure to set the correct sign
  78. // -1 if 0 ≤ θ < 90° or 270°< θ ≤ 360°
  79. // 1 if 90° < θ< 270°
  80. float sn = cosf(angle) >= 0 ? 1 : -1;
  81. relative_x_position *= sn;
  82. relative_y_position *= sn;
  83. // Now rotate it (back) around the center point by 'rotation' radians, then move it back to our actual origin.
  84. auto relative_rotated_x_position = relative_x_position * cos_rotation - relative_y_position * sin_rotation;
  85. auto relative_rotated_y_position = relative_x_position * sin_rotation + relative_y_position * cos_rotation;
  86. return Gfx::FloatPoint { relative_rotated_x_position + x, relative_rotated_y_position + y };
  87. };
  88. auto start_point = resolve_point_with_angle(start_angle);
  89. auto end_point = resolve_point_with_angle(end_angle);
  90. auto delta_theta = end_angle - start_angle;
  91. auto transform = active_transform();
  92. m_path.move_to(transform.map(start_point));
  93. m_path.elliptical_arc_to(
  94. transform.map(Gfx::FloatPoint { end_point }),
  95. transform.map(Gfx::FloatSize { radius_x, radius_y }),
  96. rotation + transform.rotation(),
  97. delta_theta > AK::Pi<float>, !counter_clockwise);
  98. return {};
  99. }
  100. // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
  101. WebIDL::ExceptionOr<void> CanvasPath::arc_to(double x1, double y1, double x2, double y2, double radius)
  102. {
  103. // 1. If any of the arguments are infinite or NaN, then return.
  104. if (!isfinite(x1) || !isfinite(y1) || !isfinite(x2) || !isfinite(y2) || !isfinite(radius))
  105. return {};
  106. // 2. Ensure there is a subpath for (x1, y1).
  107. auto transform = active_transform();
  108. m_path.ensure_subpath(transform.map(Gfx::FloatPoint { x1, y1 }));
  109. // 3. If radius is negative, then throw an "IndexSizeError" DOMException.
  110. if (radius < 0)
  111. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
  112. // 4. Let the point (x0, y0) be the last point in the subpath,
  113. // transformed by the inverse of the current transformation matrix
  114. // (so that it is in the same coordinate system as the points passed to the method).
  115. // Point (x0, y0)
  116. auto p0 = m_path.last_point();
  117. // Point (x1, y1)
  118. auto p1 = transform.map(Gfx::FloatPoint { x1, y1 });
  119. // Point (x2, y2)
  120. auto p2 = transform.map(Gfx::FloatPoint { x2, y2 });
  121. // 5. If the point (x0, y0) is equal to the point (x1, y1),
  122. // or if the point (x1, y1) is equal to the point (x2, y2),
  123. // or if radius is zero, then add the point (x1, y1) to the subpath,
  124. // and connect that point to the previous point (x0, y0) by a straight line.
  125. if (p0 == p1 || p1 == p2 || radius == 0) {
  126. m_path.line_to(p1);
  127. return {};
  128. }
  129. auto v1 = Gfx::FloatVector2 { p0.x() - p1.x(), p0.y() - p1.y() };
  130. auto v2 = Gfx::FloatVector2 { p2.x() - p1.x(), p2.y() - p1.y() };
  131. auto cos_theta = v1.dot(v2) / (v1.length() * v2.length());
  132. // 6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line,
  133. // then add the point (x1, y1) to the subpath,
  134. // and connect that point to the previous point (x0, y0) by a straight line.
  135. if (-1 == cos_theta || 1 == cos_theta) {
  136. m_path.line_to(p1);
  137. return {};
  138. }
  139. // 7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius,
  140. // and that has one point tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1),
  141. // and that has a different point tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2).
  142. // The points at which this circle touches these two lines are called the start and end tangent points respectively.
  143. auto adjacent = radius / static_cast<double>(tan(acos(cos_theta) / 2));
  144. auto factor1 = adjacent / static_cast<double>(v1.length());
  145. auto x3 = static_cast<double>(p1.x()) + factor1 * static_cast<double>(p0.x() - p1.x());
  146. auto y3 = static_cast<double>(p1.y()) + factor1 * static_cast<double>(p0.y() - p1.y());
  147. auto start_tangent = Gfx::FloatPoint { x3, y3 };
  148. auto factor2 = adjacent / static_cast<double>(v2.length());
  149. auto x4 = static_cast<double>(p1.x()) + factor2 * static_cast<double>(p2.x() - p1.x());
  150. auto y4 = static_cast<double>(p1.y()) + factor2 * static_cast<double>(p2.y() - p1.y());
  151. auto end_tangent = Gfx::FloatPoint { x4, y4 };
  152. // Connect the point (x0, y0) to the start tangent point by a straight line, adding the start tangent point to the subpath.
  153. m_path.line_to(start_tangent);
  154. bool const large_arc = false; // always small since tangent points define arc endpoints and lines meet at (x1, y1)
  155. auto cross_product = v1.x() * v2.y() - v1.y() * v2.x();
  156. bool const sweep = cross_product < 0; // right-hand rule, true means clockwise
  157. // and then connect the start tangent point to the end tangent point by The Arc, adding the end tangent point to the subpath.
  158. m_path.arc_to(end_tangent, radius, large_arc, sweep);
  159. return {};
  160. }
  161. void CanvasPath::rect(float x, float y, float width, float height)
  162. {
  163. auto transform = active_transform();
  164. m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
  165. if (width == 0 || height == 0)
  166. return;
  167. m_path.line_to(transform.map(Gfx::FloatPoint { x + width, y }));
  168. m_path.line_to(transform.map(Gfx::FloatPoint { x + width, y + height }));
  169. m_path.line_to(transform.map(Gfx::FloatPoint { x, y + height }));
  170. m_path.close();
  171. }
  172. }