MemoryManager.cpp 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/CPU.h>
  9. #include <Kernel/Arch/PageDirectory.h>
  10. #include <Kernel/Arch/PageFault.h>
  11. #include <Kernel/Arch/RegisterState.h>
  12. #include <Kernel/BootInfo.h>
  13. #include <Kernel/FileSystem/Inode.h>
  14. #include <Kernel/Heap/kmalloc.h>
  15. #include <Kernel/InterruptDisabler.h>
  16. #include <Kernel/KSyms.h>
  17. #include <Kernel/Memory/AnonymousVMObject.h>
  18. #include <Kernel/Memory/MemoryManager.h>
  19. #include <Kernel/Memory/PhysicalRegion.h>
  20. #include <Kernel/Memory/SharedInodeVMObject.h>
  21. #include <Kernel/Multiboot.h>
  22. #include <Kernel/Panic.h>
  23. #include <Kernel/Prekernel/Prekernel.h>
  24. #include <Kernel/Process.h>
  25. #include <Kernel/Sections.h>
  26. #include <Kernel/StdLib.h>
  27. extern u8 start_of_kernel_image[];
  28. extern u8 end_of_kernel_image[];
  29. extern u8 start_of_kernel_text[];
  30. extern u8 start_of_kernel_data[];
  31. extern u8 end_of_kernel_bss[];
  32. extern u8 start_of_ro_after_init[];
  33. extern u8 end_of_ro_after_init[];
  34. extern u8 start_of_unmap_after_init[];
  35. extern u8 end_of_unmap_after_init[];
  36. extern u8 start_of_kernel_ksyms[];
  37. extern u8 end_of_kernel_ksyms[];
  38. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  39. extern size_t multiboot_copy_boot_modules_count;
  40. namespace Kernel::Memory {
  41. ErrorOr<FlatPtr> page_round_up(FlatPtr x)
  42. {
  43. if (x > (explode_byte(0xFF) & ~0xFFF)) {
  44. return Error::from_errno(EINVAL);
  45. }
  46. return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
  47. }
  48. // NOTE: We can NOT use Singleton for this class, because
  49. // MemoryManager::initialize is called *before* global constructors are
  50. // run. If we do, then Singleton would get re-initialized, causing
  51. // the memory manager to be initialized twice!
  52. static MemoryManager* s_the;
  53. MemoryManager& MemoryManager::the()
  54. {
  55. return *s_the;
  56. }
  57. bool MemoryManager::is_initialized()
  58. {
  59. return s_the != nullptr;
  60. }
  61. static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
  62. {
  63. #if ARCH(AARCH64)
  64. // NOTE: This is not the same as x86_64, because the aarch64 kernel currently doesn't use the pre-kernel.
  65. return VirtualRange { VirtualAddress(kernel_mapping_base), KERNEL_PD_END - kernel_mapping_base };
  66. #else
  67. size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
  68. return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
  69. #endif
  70. }
  71. MemoryManager::GlobalData::GlobalData()
  72. : region_tree(kernel_virtual_range())
  73. {
  74. }
  75. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  76. {
  77. s_the = this;
  78. parse_memory_map();
  79. activate_kernel_page_directory(kernel_page_directory());
  80. protect_kernel_image();
  81. // We're temporarily "committing" to two pages that we need to allocate below
  82. auto committed_pages = commit_physical_pages(2).release_value();
  83. m_shared_zero_page = committed_pages.take_one();
  84. // We're wasting a page here, we just need a special tag (physical
  85. // address) so that we know when we need to lazily allocate a page
  86. // that we should be drawing this page from the committed pool rather
  87. // than potentially failing if no pages are available anymore.
  88. // By using a tag we don't have to query the VMObject for every page
  89. // whether it was committed or not
  90. m_lazy_committed_page = committed_pages.take_one();
  91. }
  92. UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
  93. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  94. {
  95. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  96. // Disable writing to the kernel text and rodata segments.
  97. for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  98. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  99. pte.set_writable(false);
  100. }
  101. if (Processor::current().has_nx()) {
  102. // Disable execution of the kernel data, bss and heap segments.
  103. for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  104. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  105. pte.set_execute_disabled(true);
  106. }
  107. }
  108. }
  109. UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
  110. {
  111. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  112. auto start = start_of_prekernel_image.page_base().get();
  113. auto end = end_of_prekernel_image.page_base().get();
  114. for (auto i = start; i <= end; i += PAGE_SIZE)
  115. release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
  116. flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
  117. }
  118. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  119. {
  120. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  121. // Disable writing to the .ro_after_init section
  122. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  123. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  124. pte.set_writable(false);
  125. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  126. }
  127. }
  128. void MemoryManager::unmap_text_after_init()
  129. {
  130. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  131. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  132. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
  133. // Unmap the entire .unmap_after_init section
  134. for (auto i = start; i < end; i += PAGE_SIZE) {
  135. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  136. pte.clear();
  137. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  138. }
  139. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  140. }
  141. UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
  142. {
  143. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  144. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  145. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
  146. for (auto i = start; i < end; i += PAGE_SIZE) {
  147. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  148. pte.set_writable(false);
  149. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  150. }
  151. dmesgln("Write-protected kernel symbols after init.");
  152. }
  153. IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
  154. {
  155. return m_global_data.with([&](auto& global_data) {
  156. VERIFY(!global_data.physical_memory_ranges.is_empty());
  157. for (auto& current_range : global_data.physical_memory_ranges) {
  158. IterationDecision decision = callback(current_range);
  159. if (decision != IterationDecision::Continue)
  160. return decision;
  161. }
  162. return IterationDecision::Continue;
  163. });
  164. }
  165. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  166. {
  167. m_global_data.with([&](auto& global_data) {
  168. VERIFY(!global_data.physical_memory_ranges.is_empty());
  169. ContiguousReservedMemoryRange range;
  170. for (auto& current_range : global_data.physical_memory_ranges) {
  171. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  172. if (range.start.is_null())
  173. continue;
  174. global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  175. range.start.set((FlatPtr) nullptr);
  176. continue;
  177. }
  178. if (!range.start.is_null()) {
  179. continue;
  180. }
  181. range.start = current_range.start;
  182. }
  183. if (global_data.physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  184. return;
  185. if (range.start.is_null())
  186. return;
  187. global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, global_data.physical_memory_ranges.last().start.get() + global_data.physical_memory_ranges.last().length - range.start.get() });
  188. });
  189. }
  190. bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
  191. {
  192. // Note: Guard against overflow in case someone tries to mmap on the edge of
  193. // the RAM
  194. if (start_address.offset_addition_would_overflow(read_length))
  195. return false;
  196. auto end_address = start_address.offset(read_length);
  197. return m_global_data.with([&](auto& global_data) {
  198. for (auto const& current_range : global_data.reserved_memory_ranges) {
  199. if (current_range.start > start_address)
  200. continue;
  201. if (current_range.start.offset(current_range.length) < end_address)
  202. continue;
  203. return true;
  204. }
  205. return false;
  206. });
  207. }
  208. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  209. {
  210. // Register used memory regions that we know of.
  211. m_global_data.with([&](auto& global_data) {
  212. global_data.used_memory_ranges.ensure_capacity(4);
  213. #if ARCH(X86_64)
  214. global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  215. #endif
  216. global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
  217. if (multiboot_flags & 0x4) {
  218. auto* bootmods_start = multiboot_copy_boot_modules_array;
  219. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  220. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  221. global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  222. }
  223. }
  224. auto* mmap_begin = multiboot_memory_map;
  225. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  226. struct ContiguousPhysicalVirtualRange {
  227. PhysicalAddress lower;
  228. PhysicalAddress upper;
  229. };
  230. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  231. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  232. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  233. // and doing so on a packed struct field is UB.
  234. auto address = mmap->addr;
  235. auto length = mmap->len;
  236. ArmedScopeGuard write_back_guard = [&]() {
  237. mmap->addr = address;
  238. mmap->len = length;
  239. };
  240. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  241. auto start_address = PhysicalAddress(address);
  242. switch (mmap->type) {
  243. case (MULTIBOOT_MEMORY_AVAILABLE):
  244. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  245. break;
  246. case (MULTIBOOT_MEMORY_RESERVED):
  247. #if ARCH(X86_64)
  248. // Workaround for https://gitlab.com/qemu-project/qemu/-/commit/8504f129450b909c88e199ca44facd35d38ba4de
  249. // That commit added a reserved 12GiB entry for the benefit of virtual firmware.
  250. // We can safely ignore this block as it isn't actually reserved on any real hardware.
  251. // From: https://lore.kernel.org/all/20220701161014.3850-1-joao.m.martins@oracle.com/
  252. // "Always add the HyperTransport range into e820 even when the relocation isn't
  253. // done *and* there's >= 40 phys bit that would put max phyusical boundary to 1T
  254. // This should allow virtual firmware to avoid the reserved range at the
  255. // 1T boundary on VFs with big bars."
  256. if (address != 0x000000fd00000000 || length != (0x000000ffffffffff - 0x000000fd00000000) + 1)
  257. #endif
  258. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  259. break;
  260. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  261. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  262. break;
  263. case (MULTIBOOT_MEMORY_NVS):
  264. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  265. break;
  266. case (MULTIBOOT_MEMORY_BADRAM):
  267. dmesgln("MM: Warning, detected bad memory range!");
  268. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  269. break;
  270. default:
  271. dbgln("MM: Unknown range!");
  272. global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  273. break;
  274. }
  275. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  276. continue;
  277. // Fix up unaligned memory regions.
  278. auto diff = (FlatPtr)address % PAGE_SIZE;
  279. if (diff != 0) {
  280. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  281. diff = PAGE_SIZE - diff;
  282. address += diff;
  283. length -= diff;
  284. }
  285. if ((length % PAGE_SIZE) != 0) {
  286. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  287. length -= length % PAGE_SIZE;
  288. }
  289. if (length < PAGE_SIZE) {
  290. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  291. continue;
  292. }
  293. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  294. auto addr = PhysicalAddress(page_base);
  295. // Skip used memory ranges.
  296. bool should_skip = false;
  297. for (auto& used_range : global_data.used_memory_ranges) {
  298. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  299. should_skip = true;
  300. break;
  301. }
  302. }
  303. if (should_skip)
  304. continue;
  305. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  306. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  307. .lower = addr,
  308. .upper = addr,
  309. });
  310. } else {
  311. contiguous_physical_ranges.last().upper = addr;
  312. }
  313. }
  314. }
  315. for (auto& range : contiguous_physical_ranges) {
  316. global_data.physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  317. }
  318. for (auto& region : global_data.physical_regions)
  319. global_data.system_memory_info.physical_pages += region->size();
  320. register_reserved_ranges();
  321. for (auto& range : global_data.reserved_memory_ranges) {
  322. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  323. }
  324. initialize_physical_pages();
  325. VERIFY(global_data.system_memory_info.physical_pages > 0);
  326. // We start out with no committed pages
  327. global_data.system_memory_info.physical_pages_uncommitted = global_data.system_memory_info.physical_pages;
  328. for (auto& used_range : global_data.used_memory_ranges) {
  329. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  330. }
  331. for (auto& region : global_data.physical_regions) {
  332. dmesgln("MM: User physical region: {} - {} (size {:#x})", region->lower(), region->upper().offset(-1), PAGE_SIZE * region->size());
  333. region->initialize_zones();
  334. }
  335. });
  336. }
  337. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  338. {
  339. m_global_data.with([&](auto& global_data) {
  340. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  341. PhysicalAddress highest_physical_address;
  342. for (auto& range : global_data.used_memory_ranges) {
  343. if (range.end.get() > highest_physical_address.get())
  344. highest_physical_address = range.end;
  345. }
  346. for (auto& region : global_data.physical_memory_ranges) {
  347. auto range_end = PhysicalAddress(region.start).offset(region.length);
  348. if (range_end.get() > highest_physical_address.get())
  349. highest_physical_address = range_end;
  350. }
  351. // Calculate how many total physical pages the array will have
  352. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  353. VERIFY(m_physical_page_entries_count != 0);
  354. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  355. // Calculate how many bytes the array will consume
  356. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  357. auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
  358. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  359. // Calculate how many page tables we will need to be able to map them all
  360. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  361. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  362. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  363. PhysicalRegion* found_region { nullptr };
  364. Optional<size_t> found_region_index;
  365. for (size_t i = 0; i < global_data.physical_regions.size(); ++i) {
  366. auto& region = global_data.physical_regions[i];
  367. if (region->size() >= physical_page_array_pages_and_page_tables_count) {
  368. found_region = region;
  369. found_region_index = i;
  370. break;
  371. }
  372. }
  373. if (!found_region) {
  374. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  375. VERIFY_NOT_REACHED();
  376. }
  377. VERIFY(global_data.system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
  378. global_data.system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;
  379. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  380. // We're stealing the entire region
  381. global_data.physical_pages_region = global_data.physical_regions.take(*found_region_index);
  382. } else {
  383. global_data.physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  384. }
  385. global_data.used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, global_data.physical_pages_region->lower(), global_data.physical_pages_region->upper() });
  386. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  387. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  388. {
  389. // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
  390. FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
  391. FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
  392. MUST(global_data.region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
  393. }
  394. // Allocate a virtual address range for our array
  395. // This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
  396. auto& region = *MUST(Region::create_unbacked()).leak_ptr();
  397. MUST(global_data.region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
  398. auto range = region.range();
  399. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  400. // try to map the entire region into kernel space so we always have it
  401. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  402. // mapped yet so we can't create them
  403. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  404. auto page_tables_base = global_data.physical_pages_region->lower();
  405. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  406. auto physical_page_array_current_page = physical_page_array_base.get();
  407. auto virtual_page_array_base = range.base().get();
  408. auto virtual_page_array_current_page = virtual_page_array_base;
  409. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  410. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  411. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  412. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  413. __builtin_memset(pt, 0, PAGE_SIZE);
  414. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  415. auto& pte = pt[pte_index];
  416. pte.set_physical_page_base(physical_page_array_current_page);
  417. pte.set_user_allowed(false);
  418. pte.set_writable(true);
  419. if (Processor::current().has_nx())
  420. pte.set_execute_disabled(false);
  421. pte.set_global(true);
  422. pte.set_present(true);
  423. physical_page_array_current_page += PAGE_SIZE;
  424. virtual_page_array_current_page += PAGE_SIZE;
  425. }
  426. unquickmap_page();
  427. // Hook the page table into the kernel page directory
  428. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  429. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  430. PageDirectoryEntry& pde = pd[page_directory_index];
  431. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  432. // We can't use ensure_pte quite yet!
  433. pde.set_page_table_base(pt_paddr.get());
  434. pde.set_user_allowed(false);
  435. pde.set_present(true);
  436. pde.set_writable(true);
  437. pde.set_global(true);
  438. unquickmap_page();
  439. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  440. }
  441. // We now have the entire PhysicalPageEntry array mapped!
  442. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  443. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  444. new (&m_physical_page_entries[i]) PageTableEntry();
  445. // Now we should be able to allocate PhysicalPage instances,
  446. // so finish setting up the kernel page directory
  447. m_kernel_page_directory->allocate_kernel_directory();
  448. // Now create legit PhysicalPage objects for the page tables we created.
  449. virtual_page_array_current_page = virtual_page_array_base;
  450. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  451. VERIFY(virtual_page_array_current_page <= range.end().get());
  452. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  453. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  454. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  455. auto physical_page = adopt_lock_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  456. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  457. (void)physical_page.leak_ref();
  458. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  459. }
  460. dmesgln("MM: Physical page entries: {}", range);
  461. });
  462. }
  463. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  464. {
  465. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  466. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  467. return m_physical_page_entries[physical_page_entry_index];
  468. }
  469. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  470. {
  471. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  472. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  473. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  474. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  475. }
  476. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  477. {
  478. VERIFY_INTERRUPTS_DISABLED();
  479. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  480. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  481. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  482. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  483. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  484. PageDirectoryEntry const& pde = pd[page_directory_index];
  485. if (!pde.is_present())
  486. return nullptr;
  487. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  488. }
  489. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  490. {
  491. VERIFY_INTERRUPTS_DISABLED();
  492. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  493. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  494. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  495. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  496. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  497. auto& pde = pd[page_directory_index];
  498. if (pde.is_present())
  499. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  500. bool did_purge = false;
  501. auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
  502. if (page_table_or_error.is_error()) {
  503. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  504. return nullptr;
  505. }
  506. auto page_table = page_table_or_error.release_value();
  507. if (did_purge) {
  508. // If any memory had to be purged, ensure_pte may have been called as part
  509. // of the purging process. So we need to re-map the pd in this case to ensure
  510. // we're writing to the correct underlying physical page
  511. pd = quickmap_pd(page_directory, page_directory_table_index);
  512. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  513. VERIFY(!pde.is_present()); // Should have not changed
  514. }
  515. pde.set_page_table_base(page_table->paddr().get());
  516. pde.set_user_allowed(true);
  517. pde.set_present(true);
  518. pde.set_writable(true);
  519. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  520. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  521. (void)page_table.leak_ref();
  522. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  523. }
  524. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
  525. {
  526. VERIFY_INTERRUPTS_DISABLED();
  527. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  528. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  529. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  530. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  531. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  532. PageDirectoryEntry& pde = pd[page_directory_index];
  533. if (pde.is_present()) {
  534. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  535. auto& pte = page_table[page_table_index];
  536. pte.clear();
  537. if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
  538. // If this is the last PTE in a region or the last PTE in a page table then
  539. // check if we can also release the page table
  540. bool all_clear = true;
  541. for (u32 i = 0; i <= 0x1ff; i++) {
  542. if (!page_table[i].is_null()) {
  543. all_clear = false;
  544. break;
  545. }
  546. }
  547. if (all_clear) {
  548. get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
  549. pde.clear();
  550. }
  551. }
  552. }
  553. }
  554. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  555. {
  556. dmesgln("Initialize MMU");
  557. ProcessorSpecific<MemoryManagerData>::initialize();
  558. if (cpu == 0) {
  559. new MemoryManager;
  560. kmalloc_enable_expand();
  561. }
  562. }
  563. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress address)
  564. {
  565. if (is_user_address(address))
  566. return nullptr;
  567. return MM.m_global_data.with([&](auto& global_data) {
  568. return global_data.region_tree.find_region_containing(address);
  569. });
  570. }
  571. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  572. {
  573. return space.find_region_containing({ vaddr, 1 });
  574. }
  575. void MemoryManager::validate_syscall_preconditions(Process& process, RegisterState const& regs)
  576. {
  577. bool should_crash = false;
  578. char const* crash_description = nullptr;
  579. int crash_signal = 0;
  580. auto unlock_and_handle_crash = [&](char const* description, int signal) {
  581. should_crash = true;
  582. crash_description = description;
  583. crash_signal = signal;
  584. };
  585. process.address_space().with([&](auto& space) -> void {
  586. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  587. if (!MM.validate_user_stack(*space, userspace_sp)) {
  588. dbgln("Invalid stack pointer: {}", userspace_sp);
  589. return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
  590. }
  591. VirtualAddress ip = VirtualAddress { regs.ip() };
  592. auto* calling_region = MM.find_user_region_from_vaddr(*space, ip);
  593. if (!calling_region) {
  594. dbgln("Syscall from {:p} which has no associated region", ip);
  595. return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  596. }
  597. if (calling_region->is_writable()) {
  598. dbgln("Syscall from writable memory at {:p}", ip);
  599. return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  600. }
  601. if (space->enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  602. dbgln("Syscall from non-syscall region");
  603. return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  604. }
  605. });
  606. if (should_crash) {
  607. handle_crash(regs, crash_description, crash_signal);
  608. }
  609. }
  610. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  611. {
  612. if (auto* region = kernel_region_from_vaddr(vaddr))
  613. return region;
  614. auto page_directory = PageDirectory::find_current();
  615. if (!page_directory)
  616. return nullptr;
  617. VERIFY(page_directory->address_space());
  618. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  619. }
  620. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  621. {
  622. auto faulted_in_range = [&fault](auto const* start, auto const* end) {
  623. return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
  624. };
  625. if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init))
  626. PANIC("Attempt to write into READONLY_AFTER_INIT section");
  627. if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
  628. auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
  629. PANIC("Attempt to access UNMAP_AFTER_INIT section ({:p}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
  630. }
  631. if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms))
  632. PANIC("Attempt to access KSYMS section");
  633. if (Processor::current_in_irq()) {
  634. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  635. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  636. dump_kernel_regions();
  637. return PageFaultResponse::ShouldCrash;
  638. }
  639. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  640. auto* region = find_region_from_vaddr(fault.vaddr());
  641. if (!region) {
  642. return PageFaultResponse::ShouldCrash;
  643. }
  644. return region->handle_fault(fault);
  645. }
  646. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  647. {
  648. VERIFY(!(size % PAGE_SIZE));
  649. OwnPtr<KString> name_kstring;
  650. if (!name.is_null())
  651. name_kstring = TRY(KString::try_create(name));
  652. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  653. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  654. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
  655. TRY(region->map(kernel_page_directory()));
  656. return region;
  657. }
  658. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
  659. {
  660. dma_buffer_page = TRY(allocate_physical_page());
  661. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  662. return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
  663. }
  664. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
  665. {
  666. RefPtr<Memory::PhysicalPage> dma_buffer_page;
  667. return allocate_dma_buffer_page(name, access, dma_buffer_page);
  668. }
  669. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, Vector<NonnullRefPtr<Memory::PhysicalPage>>& dma_buffer_pages)
  670. {
  671. VERIFY(!(size % PAGE_SIZE));
  672. dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
  673. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  674. return allocate_kernel_region(dma_buffer_pages.first()->paddr(), size, name, access, Region::Cacheable::No);
  675. }
  676. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
  677. {
  678. VERIFY(!(size % PAGE_SIZE));
  679. Vector<NonnullRefPtr<Memory::PhysicalPage>> dma_buffer_pages;
  680. return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
  681. }
  682. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  683. {
  684. VERIFY(!(size % PAGE_SIZE));
  685. OwnPtr<KString> name_kstring;
  686. if (!name.is_null())
  687. name_kstring = TRY(KString::try_create(name));
  688. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  689. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  690. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
  691. TRY(region->map(kernel_page_directory()));
  692. return region;
  693. }
  694. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  695. {
  696. VERIFY(!(size % PAGE_SIZE));
  697. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  698. OwnPtr<KString> name_kstring;
  699. if (!name.is_null())
  700. name_kstring = TRY(KString::try_create(name));
  701. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  702. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE); }));
  703. TRY(region->map(kernel_page_directory()));
  704. return region;
  705. }
  706. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  707. {
  708. VERIFY(!(size % PAGE_SIZE));
  709. OwnPtr<KString> name_kstring;
  710. if (!name.is_null())
  711. name_kstring = TRY(KString::try_create(name));
  712. auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
  713. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
  714. TRY(region->map(kernel_page_directory()));
  715. return region;
  716. }
  717. ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
  718. {
  719. VERIFY(page_count > 0);
  720. auto result = m_global_data.with([&](auto& global_data) -> ErrorOr<CommittedPhysicalPageSet> {
  721. if (global_data.system_memory_info.physical_pages_uncommitted < page_count) {
  722. dbgln("MM: Unable to commit {} pages, have only {}", page_count, global_data.system_memory_info.physical_pages_uncommitted);
  723. return ENOMEM;
  724. }
  725. global_data.system_memory_info.physical_pages_uncommitted -= page_count;
  726. global_data.system_memory_info.physical_pages_committed += page_count;
  727. return CommittedPhysicalPageSet { {}, page_count };
  728. });
  729. if (result.is_error()) {
  730. Process::for_each_ignoring_jails([&](Process const& process) {
  731. size_t amount_resident = 0;
  732. size_t amount_shared = 0;
  733. size_t amount_virtual = 0;
  734. process.address_space().with([&](auto& space) {
  735. amount_resident = space->amount_resident();
  736. amount_shared = space->amount_shared();
  737. amount_virtual = space->amount_virtual();
  738. });
  739. process.name().with([&](auto& process_name) {
  740. dbgln("{}({}) resident:{}, shared:{}, virtual:{}",
  741. process_name->view(),
  742. process.pid(),
  743. amount_resident / PAGE_SIZE,
  744. amount_shared / PAGE_SIZE,
  745. amount_virtual / PAGE_SIZE);
  746. });
  747. return IterationDecision::Continue;
  748. });
  749. }
  750. return result;
  751. }
  752. void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  753. {
  754. VERIFY(page_count > 0);
  755. m_global_data.with([&](auto& global_data) {
  756. VERIFY(global_data.system_memory_info.physical_pages_committed >= page_count);
  757. global_data.system_memory_info.physical_pages_uncommitted += page_count;
  758. global_data.system_memory_info.physical_pages_committed -= page_count;
  759. });
  760. }
  761. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  762. {
  763. return m_global_data.with([&](auto& global_data) {
  764. // Are we returning a user page?
  765. for (auto& region : global_data.physical_regions) {
  766. if (!region->contains(paddr))
  767. continue;
  768. region->return_page(paddr);
  769. --global_data.system_memory_info.physical_pages_used;
  770. // Always return pages to the uncommitted pool. Pages that were
  771. // committed and allocated are only freed upon request. Once
  772. // returned there is no guarantee being able to get them back.
  773. ++global_data.system_memory_info.physical_pages_uncommitted;
  774. return;
  775. }
  776. PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
  777. });
  778. }
  779. RefPtr<PhysicalPage> MemoryManager::find_free_physical_page(bool committed)
  780. {
  781. RefPtr<PhysicalPage> page;
  782. m_global_data.with([&](auto& global_data) {
  783. if (committed) {
  784. // Draw from the committed pages pool. We should always have these pages available
  785. VERIFY(global_data.system_memory_info.physical_pages_committed > 0);
  786. global_data.system_memory_info.physical_pages_committed--;
  787. } else {
  788. // We need to make sure we don't touch pages that we have committed to
  789. if (global_data.system_memory_info.physical_pages_uncommitted == 0)
  790. return;
  791. global_data.system_memory_info.physical_pages_uncommitted--;
  792. }
  793. for (auto& region : global_data.physical_regions) {
  794. page = region->take_free_page();
  795. if (!page.is_null()) {
  796. ++global_data.system_memory_info.physical_pages_used;
  797. break;
  798. }
  799. }
  800. });
  801. if (page.is_null())
  802. dbgln("MM: couldn't find free physical page. Continuing...");
  803. return page;
  804. }
  805. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  806. {
  807. auto page = find_free_physical_page(true);
  808. VERIFY(page);
  809. if (should_zero_fill == ShouldZeroFill::Yes) {
  810. InterruptDisabler disabler;
  811. auto* ptr = quickmap_page(*page);
  812. memset(ptr, 0, PAGE_SIZE);
  813. unquickmap_page();
  814. }
  815. return page.release_nonnull();
  816. }
  817. ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  818. {
  819. return m_global_data.with([&](auto&) -> ErrorOr<NonnullRefPtr<PhysicalPage>> {
  820. auto page = find_free_physical_page(false);
  821. bool purged_pages = false;
  822. if (!page) {
  823. // We didn't have a single free physical page. Let's try to free something up!
  824. // First, we look for a purgeable VMObject in the volatile state.
  825. for_each_vmobject([&](auto& vmobject) {
  826. if (!vmobject.is_anonymous())
  827. return IterationDecision::Continue;
  828. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  829. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  830. return IterationDecision::Continue;
  831. if (auto purged_page_count = anonymous_vmobject.purge()) {
  832. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  833. page = find_free_physical_page(false);
  834. purged_pages = true;
  835. VERIFY(page);
  836. return IterationDecision::Break;
  837. }
  838. return IterationDecision::Continue;
  839. });
  840. }
  841. if (!page) {
  842. // Second, we look for a file-backed VMObject with clean pages.
  843. for_each_vmobject([&](auto& vmobject) {
  844. if (!vmobject.is_inode())
  845. return IterationDecision::Continue;
  846. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
  847. if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) {
  848. dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count);
  849. page = find_free_physical_page(false);
  850. VERIFY(page);
  851. return IterationDecision::Break;
  852. }
  853. return IterationDecision::Continue;
  854. });
  855. }
  856. if (!page) {
  857. dmesgln("MM: no physical pages available");
  858. return ENOMEM;
  859. }
  860. if (should_zero_fill == ShouldZeroFill::Yes) {
  861. auto* ptr = quickmap_page(*page);
  862. memset(ptr, 0, PAGE_SIZE);
  863. unquickmap_page();
  864. }
  865. if (did_purge)
  866. *did_purge = purged_pages;
  867. return page.release_nonnull();
  868. });
  869. }
  870. ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
  871. {
  872. VERIFY(!(size % PAGE_SIZE));
  873. size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  874. auto physical_pages = TRY(m_global_data.with([&](auto& global_data) -> ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> {
  875. // We need to make sure we don't touch pages that we have committed to
  876. if (global_data.system_memory_info.physical_pages_uncommitted < page_count)
  877. return ENOMEM;
  878. for (auto& physical_region : global_data.physical_regions) {
  879. auto physical_pages = physical_region->take_contiguous_free_pages(page_count);
  880. if (!physical_pages.is_empty()) {
  881. global_data.system_memory_info.physical_pages_uncommitted -= page_count;
  882. global_data.system_memory_info.physical_pages_used += page_count;
  883. return physical_pages;
  884. }
  885. }
  886. dmesgln("MM: no contiguous physical pages available");
  887. return ENOMEM;
  888. }));
  889. {
  890. auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0]->paddr(), PAGE_SIZE * page_count, {}, Region::Access::Read | Region::Access::Write));
  891. memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
  892. }
  893. return physical_pages;
  894. }
  895. void MemoryManager::enter_process_address_space(Process& process)
  896. {
  897. process.address_space().with([](auto& space) {
  898. enter_address_space(*space);
  899. });
  900. }
  901. void MemoryManager::enter_address_space(AddressSpace& space)
  902. {
  903. auto* current_thread = Thread::current();
  904. VERIFY(current_thread != nullptr);
  905. activate_page_directory(space.page_directory(), current_thread);
  906. }
  907. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  908. {
  909. Processor::flush_tlb_local(vaddr, page_count);
  910. }
  911. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  912. {
  913. Processor::flush_tlb(page_directory, vaddr, page_count);
  914. }
  915. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  916. {
  917. VERIFY_INTERRUPTS_DISABLED();
  918. VirtualAddress vaddr(KERNEL_QUICKMAP_PD_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  919. size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  920. auto& pte = boot_pd_kernel_pt1023[pte_index];
  921. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  922. if (pte.physical_page_base() != pd_paddr.get()) {
  923. pte.set_physical_page_base(pd_paddr.get());
  924. pte.set_present(true);
  925. pte.set_writable(true);
  926. pte.set_user_allowed(false);
  927. flush_tlb_local(vaddr);
  928. }
  929. return (PageDirectoryEntry*)vaddr.get();
  930. }
  931. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  932. {
  933. VERIFY_INTERRUPTS_DISABLED();
  934. VirtualAddress vaddr(KERNEL_QUICKMAP_PT_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  935. size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  936. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_index];
  937. if (pte.physical_page_base() != pt_paddr.get()) {
  938. pte.set_physical_page_base(pt_paddr.get());
  939. pte.set_present(true);
  940. pte.set_writable(true);
  941. pte.set_user_allowed(false);
  942. flush_tlb_local(vaddr);
  943. }
  944. return (PageTableEntry*)vaddr.get();
  945. }
  946. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  947. {
  948. VERIFY_INTERRUPTS_DISABLED();
  949. auto& mm_data = get_data();
  950. mm_data.m_quickmap_previous_interrupts_state = mm_data.m_quickmap_in_use.lock();
  951. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  952. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  953. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  954. if (pte.physical_page_base() != physical_address.get()) {
  955. pte.set_physical_page_base(physical_address.get());
  956. pte.set_present(true);
  957. pte.set_writable(true);
  958. pte.set_user_allowed(false);
  959. flush_tlb_local(vaddr);
  960. }
  961. return vaddr.as_ptr();
  962. }
  963. void MemoryManager::unquickmap_page()
  964. {
  965. VERIFY_INTERRUPTS_DISABLED();
  966. auto& mm_data = get_data();
  967. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  968. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  969. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  970. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  971. pte.clear();
  972. flush_tlb_local(vaddr);
  973. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_previous_interrupts_state);
  974. }
  975. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  976. {
  977. if (!is_user_address(vaddr))
  978. return false;
  979. auto* region = find_user_region_from_vaddr(space, vaddr);
  980. return region && region->is_user() && region->is_stack();
  981. }
  982. void MemoryManager::unregister_kernel_region(Region& region)
  983. {
  984. VERIFY(region.is_kernel());
  985. m_global_data.with([&](auto& global_data) { global_data.region_tree.remove(region); });
  986. }
  987. void MemoryManager::dump_kernel_regions()
  988. {
  989. dbgln("Kernel regions:");
  990. char const* addr_padding = " ";
  991. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  992. addr_padding, addr_padding, addr_padding);
  993. m_global_data.with([&](auto& global_data) {
  994. for (auto& region : global_data.region_tree.regions()) {
  995. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  996. region.vaddr().get(),
  997. region.vaddr().offset(region.size() - 1).get(),
  998. region.size(),
  999. region.is_readable() ? 'R' : ' ',
  1000. region.is_writable() ? 'W' : ' ',
  1001. region.is_executable() ? 'X' : ' ',
  1002. region.is_shared() ? 'S' : ' ',
  1003. region.is_stack() ? 'T' : ' ',
  1004. region.is_syscall_region() ? 'C' : ' ',
  1005. region.name());
  1006. }
  1007. });
  1008. }
  1009. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  1010. {
  1011. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  1012. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  1013. VERIFY(pte);
  1014. if (pte->is_writable() == writable)
  1015. return;
  1016. pte->set_writable(writable);
  1017. flush_tlb(&kernel_page_directory(), vaddr);
  1018. }
  1019. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  1020. {
  1021. if (m_page_count)
  1022. MM.uncommit_physical_pages({}, m_page_count);
  1023. }
  1024. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  1025. {
  1026. VERIFY(m_page_count > 0);
  1027. --m_page_count;
  1028. return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  1029. }
  1030. void CommittedPhysicalPageSet::uncommit_one()
  1031. {
  1032. VERIFY(m_page_count > 0);
  1033. --m_page_count;
  1034. MM.uncommit_physical_pages({}, 1);
  1035. }
  1036. void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
  1037. {
  1038. auto* quickmapped_page = quickmap_page(physical_page);
  1039. memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
  1040. unquickmap_page();
  1041. }
  1042. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
  1043. {
  1044. auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
  1045. auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
  1046. Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
  1047. region->m_range = range;
  1048. TRY(region->map(MM.kernel_page_directory()));
  1049. return region;
  1050. }
  1051. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
  1052. {
  1053. auto region = TRY(Region::create_unbacked());
  1054. TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment); }));
  1055. return region;
  1056. }
  1057. MemoryManager::SystemMemoryInfo MemoryManager::get_system_memory_info()
  1058. {
  1059. return m_global_data.with([&](auto& global_data) {
  1060. auto physical_pages_unused = global_data.system_memory_info.physical_pages_committed + global_data.system_memory_info.physical_pages_uncommitted;
  1061. VERIFY(global_data.system_memory_info.physical_pages == (global_data.system_memory_info.physical_pages_used + physical_pages_unused));
  1062. return global_data.system_memory_info;
  1063. });
  1064. }
  1065. }