123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236 |
- /*
- * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Assertions.h>
- #include <AK/StringView.h>
- #include <Kernel/Arch/CPU.h>
- #include <Kernel/Arch/PageDirectory.h>
- #include <Kernel/Arch/PageFault.h>
- #include <Kernel/Arch/RegisterState.h>
- #include <Kernel/BootInfo.h>
- #include <Kernel/FileSystem/Inode.h>
- #include <Kernel/Heap/kmalloc.h>
- #include <Kernel/InterruptDisabler.h>
- #include <Kernel/KSyms.h>
- #include <Kernel/Memory/AnonymousVMObject.h>
- #include <Kernel/Memory/MemoryManager.h>
- #include <Kernel/Memory/PhysicalRegion.h>
- #include <Kernel/Memory/SharedInodeVMObject.h>
- #include <Kernel/Multiboot.h>
- #include <Kernel/Panic.h>
- #include <Kernel/Prekernel/Prekernel.h>
- #include <Kernel/Process.h>
- #include <Kernel/Sections.h>
- #include <Kernel/StdLib.h>
- extern u8 start_of_kernel_image[];
- extern u8 end_of_kernel_image[];
- extern u8 start_of_kernel_text[];
- extern u8 start_of_kernel_data[];
- extern u8 end_of_kernel_bss[];
- extern u8 start_of_ro_after_init[];
- extern u8 end_of_ro_after_init[];
- extern u8 start_of_unmap_after_init[];
- extern u8 end_of_unmap_after_init[];
- extern u8 start_of_kernel_ksyms[];
- extern u8 end_of_kernel_ksyms[];
- extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
- extern size_t multiboot_copy_boot_modules_count;
- namespace Kernel::Memory {
- ErrorOr<FlatPtr> page_round_up(FlatPtr x)
- {
- if (x > (explode_byte(0xFF) & ~0xFFF)) {
- return Error::from_errno(EINVAL);
- }
- return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
- }
- // NOTE: We can NOT use Singleton for this class, because
- // MemoryManager::initialize is called *before* global constructors are
- // run. If we do, then Singleton would get re-initialized, causing
- // the memory manager to be initialized twice!
- static MemoryManager* s_the;
- MemoryManager& MemoryManager::the()
- {
- return *s_the;
- }
- bool MemoryManager::is_initialized()
- {
- return s_the != nullptr;
- }
- static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
- {
- #if ARCH(AARCH64)
- // NOTE: This is not the same as x86_64, because the aarch64 kernel currently doesn't use the pre-kernel.
- return VirtualRange { VirtualAddress(kernel_mapping_base), KERNEL_PD_END - kernel_mapping_base };
- #else
- size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
- return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
- #endif
- }
- MemoryManager::GlobalData::GlobalData()
- : region_tree(kernel_virtual_range())
- {
- }
- UNMAP_AFTER_INIT MemoryManager::MemoryManager()
- {
- s_the = this;
- parse_memory_map();
- activate_kernel_page_directory(kernel_page_directory());
- protect_kernel_image();
- // We're temporarily "committing" to two pages that we need to allocate below
- auto committed_pages = commit_physical_pages(2).release_value();
- m_shared_zero_page = committed_pages.take_one();
- // We're wasting a page here, we just need a special tag (physical
- // address) so that we know when we need to lazily allocate a page
- // that we should be drawing this page from the committed pool rather
- // than potentially failing if no pages are available anymore.
- // By using a tag we don't have to query the VMObject for every page
- // whether it was committed or not
- m_lazy_committed_page = committed_pages.take_one();
- }
- UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
- UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
- {
- SpinlockLocker page_lock(kernel_page_directory().get_lock());
- // Disable writing to the kernel text and rodata segments.
- for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.set_writable(false);
- }
- if (Processor::current().has_nx()) {
- // Disable execution of the kernel data, bss and heap segments.
- for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.set_execute_disabled(true);
- }
- }
- }
- UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
- {
- SpinlockLocker page_lock(kernel_page_directory().get_lock());
- auto start = start_of_prekernel_image.page_base().get();
- auto end = end_of_prekernel_image.page_base().get();
- for (auto i = start; i <= end; i += PAGE_SIZE)
- release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
- flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
- }
- UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
- {
- SpinlockLocker page_lock(kernel_page_directory().get_lock());
- // Disable writing to the .ro_after_init section
- for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.set_writable(false);
- flush_tlb(&kernel_page_directory(), VirtualAddress(i));
- }
- }
- void MemoryManager::unmap_text_after_init()
- {
- SpinlockLocker page_lock(kernel_page_directory().get_lock());
- auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
- auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
- // Unmap the entire .unmap_after_init section
- for (auto i = start; i < end; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.clear();
- flush_tlb(&kernel_page_directory(), VirtualAddress(i));
- }
- dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
- }
- UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
- {
- SpinlockLocker page_lock(kernel_page_directory().get_lock());
- auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
- auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
- for (auto i = start; i < end; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.set_writable(false);
- flush_tlb(&kernel_page_directory(), VirtualAddress(i));
- }
- dmesgln("Write-protected kernel symbols after init.");
- }
- IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
- {
- return m_global_data.with([&](auto& global_data) {
- VERIFY(!global_data.physical_memory_ranges.is_empty());
- for (auto& current_range : global_data.physical_memory_ranges) {
- IterationDecision decision = callback(current_range);
- if (decision != IterationDecision::Continue)
- return decision;
- }
- return IterationDecision::Continue;
- });
- }
- UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
- {
- m_global_data.with([&](auto& global_data) {
- VERIFY(!global_data.physical_memory_ranges.is_empty());
- ContiguousReservedMemoryRange range;
- for (auto& current_range : global_data.physical_memory_ranges) {
- if (current_range.type != PhysicalMemoryRangeType::Reserved) {
- if (range.start.is_null())
- continue;
- global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
- range.start.set((FlatPtr) nullptr);
- continue;
- }
- if (!range.start.is_null()) {
- continue;
- }
- range.start = current_range.start;
- }
- if (global_data.physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
- return;
- if (range.start.is_null())
- return;
- global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, global_data.physical_memory_ranges.last().start.get() + global_data.physical_memory_ranges.last().length - range.start.get() });
- });
- }
- bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
- {
- // Note: Guard against overflow in case someone tries to mmap on the edge of
- // the RAM
- if (start_address.offset_addition_would_overflow(read_length))
- return false;
- auto end_address = start_address.offset(read_length);
- return m_global_data.with([&](auto& global_data) {
- for (auto const& current_range : global_data.reserved_memory_ranges) {
- if (current_range.start > start_address)
- continue;
- if (current_range.start.offset(current_range.length) < end_address)
- continue;
- return true;
- }
- return false;
- });
- }
- UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
- {
- // Register used memory regions that we know of.
- m_global_data.with([&](auto& global_data) {
- global_data.used_memory_ranges.ensure_capacity(4);
- #if ARCH(X86_64)
- global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
- #endif
- global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
- if (multiboot_flags & 0x4) {
- auto* bootmods_start = multiboot_copy_boot_modules_array;
- auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
- for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
- global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
- }
- }
- auto* mmap_begin = multiboot_memory_map;
- auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
- struct ContiguousPhysicalVirtualRange {
- PhysicalAddress lower;
- PhysicalAddress upper;
- };
- Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
- for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
- // We have to copy these onto the stack, because we take a reference to these when printing them out,
- // and doing so on a packed struct field is UB.
- auto address = mmap->addr;
- auto length = mmap->len;
- ArmedScopeGuard write_back_guard = [&]() {
- mmap->addr = address;
- mmap->len = length;
- };
- dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
- auto start_address = PhysicalAddress(address);
- switch (mmap->type) {
- case (MULTIBOOT_MEMORY_AVAILABLE):
- global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_RESERVED):
- #if ARCH(X86_64)
- // Workaround for https://gitlab.com/qemu-project/qemu/-/commit/8504f129450b909c88e199ca44facd35d38ba4de
- // That commit added a reserved 12GiB entry for the benefit of virtual firmware.
- // We can safely ignore this block as it isn't actually reserved on any real hardware.
- // From: https://lore.kernel.org/all/20220701161014.3850-1-joao.m.martins@oracle.com/
- // "Always add the HyperTransport range into e820 even when the relocation isn't
- // done *and* there's >= 40 phys bit that would put max phyusical boundary to 1T
- // This should allow virtual firmware to avoid the reserved range at the
- // 1T boundary on VFs with big bars."
- if (address != 0x000000fd00000000 || length != (0x000000ffffffffff - 0x000000fd00000000) + 1)
- #endif
- global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
- global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_NVS):
- global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_BADRAM):
- dmesgln("MM: Warning, detected bad memory range!");
- global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
- break;
- default:
- dbgln("MM: Unknown range!");
- global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
- break;
- }
- if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
- continue;
- // Fix up unaligned memory regions.
- auto diff = (FlatPtr)address % PAGE_SIZE;
- if (diff != 0) {
- dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
- diff = PAGE_SIZE - diff;
- address += diff;
- length -= diff;
- }
- if ((length % PAGE_SIZE) != 0) {
- dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
- length -= length % PAGE_SIZE;
- }
- if (length < PAGE_SIZE) {
- dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
- continue;
- }
- for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
- auto addr = PhysicalAddress(page_base);
- // Skip used memory ranges.
- bool should_skip = false;
- for (auto& used_range : global_data.used_memory_ranges) {
- if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
- should_skip = true;
- break;
- }
- }
- if (should_skip)
- continue;
- if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
- contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
- .lower = addr,
- .upper = addr,
- });
- } else {
- contiguous_physical_ranges.last().upper = addr;
- }
- }
- }
- for (auto& range : contiguous_physical_ranges) {
- global_data.physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
- }
- for (auto& region : global_data.physical_regions)
- global_data.system_memory_info.physical_pages += region->size();
- register_reserved_ranges();
- for (auto& range : global_data.reserved_memory_ranges) {
- dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
- }
- initialize_physical_pages();
- VERIFY(global_data.system_memory_info.physical_pages > 0);
- // We start out with no committed pages
- global_data.system_memory_info.physical_pages_uncommitted = global_data.system_memory_info.physical_pages;
- for (auto& used_range : global_data.used_memory_ranges) {
- dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
- }
- for (auto& region : global_data.physical_regions) {
- dmesgln("MM: User physical region: {} - {} (size {:#x})", region->lower(), region->upper().offset(-1), PAGE_SIZE * region->size());
- region->initialize_zones();
- }
- });
- }
- UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
- {
- m_global_data.with([&](auto& global_data) {
- // We assume that the physical page range is contiguous and doesn't contain huge gaps!
- PhysicalAddress highest_physical_address;
- for (auto& range : global_data.used_memory_ranges) {
- if (range.end.get() > highest_physical_address.get())
- highest_physical_address = range.end;
- }
- for (auto& region : global_data.physical_memory_ranges) {
- auto range_end = PhysicalAddress(region.start).offset(region.length);
- if (range_end.get() > highest_physical_address.get())
- highest_physical_address = range_end;
- }
- // Calculate how many total physical pages the array will have
- m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
- VERIFY(m_physical_page_entries_count != 0);
- VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
- // Calculate how many bytes the array will consume
- auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
- auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
- VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
- // Calculate how many page tables we will need to be able to map them all
- auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
- auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
- // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
- PhysicalRegion* found_region { nullptr };
- Optional<size_t> found_region_index;
- for (size_t i = 0; i < global_data.physical_regions.size(); ++i) {
- auto& region = global_data.physical_regions[i];
- if (region->size() >= physical_page_array_pages_and_page_tables_count) {
- found_region = region;
- found_region_index = i;
- break;
- }
- }
- if (!found_region) {
- dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
- VERIFY_NOT_REACHED();
- }
- VERIFY(global_data.system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
- global_data.system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;
- if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
- // We're stealing the entire region
- global_data.physical_pages_region = global_data.physical_regions.take(*found_region_index);
- } else {
- global_data.physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
- }
- global_data.used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, global_data.physical_pages_region->lower(), global_data.physical_pages_region->upper() });
- // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
- m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
- {
- // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
- FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
- FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
- MUST(global_data.region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
- }
- // Allocate a virtual address range for our array
- // This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
- auto& region = *MUST(Region::create_unbacked()).leak_ptr();
- MUST(global_data.region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
- auto range = region.range();
- // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
- // try to map the entire region into kernel space so we always have it
- // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
- // mapped yet so we can't create them
- // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
- auto page_tables_base = global_data.physical_pages_region->lower();
- auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
- auto physical_page_array_current_page = physical_page_array_base.get();
- auto virtual_page_array_base = range.base().get();
- auto virtual_page_array_current_page = virtual_page_array_base;
- for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
- auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
- auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
- auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
- __builtin_memset(pt, 0, PAGE_SIZE);
- for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
- auto& pte = pt[pte_index];
- pte.set_physical_page_base(physical_page_array_current_page);
- pte.set_user_allowed(false);
- pte.set_writable(true);
- if (Processor::current().has_nx())
- pte.set_execute_disabled(false);
- pte.set_global(true);
- pte.set_present(true);
- physical_page_array_current_page += PAGE_SIZE;
- virtual_page_array_current_page += PAGE_SIZE;
- }
- unquickmap_page();
- // Hook the page table into the kernel page directory
- u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
- auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
- PageDirectoryEntry& pde = pd[page_directory_index];
- VERIFY(!pde.is_present()); // Nothing should be using this PD yet
- // We can't use ensure_pte quite yet!
- pde.set_page_table_base(pt_paddr.get());
- pde.set_user_allowed(false);
- pde.set_present(true);
- pde.set_writable(true);
- pde.set_global(true);
- unquickmap_page();
- flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
- }
- // We now have the entire PhysicalPageEntry array mapped!
- m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
- for (size_t i = 0; i < m_physical_page_entries_count; i++)
- new (&m_physical_page_entries[i]) PageTableEntry();
- // Now we should be able to allocate PhysicalPage instances,
- // so finish setting up the kernel page directory
- m_kernel_page_directory->allocate_kernel_directory();
- // Now create legit PhysicalPage objects for the page tables we created.
- virtual_page_array_current_page = virtual_page_array_base;
- for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
- VERIFY(virtual_page_array_current_page <= range.end().get());
- auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
- auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
- auto& physical_page_entry = m_physical_page_entries[physical_page_index];
- auto physical_page = adopt_lock_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
- // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
- (void)physical_page.leak_ref();
- virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
- }
- dmesgln("MM: Physical page entries: {}", range);
- });
- }
- PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
- {
- auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
- VERIFY(physical_page_entry_index < m_physical_page_entries_count);
- return m_physical_page_entries[physical_page_entry_index];
- }
- PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
- {
- PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
- size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
- VERIFY(physical_page_entry_index < m_physical_page_entries_count);
- return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
- }
- PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(page_directory.get_lock().is_locked_by_current_processor());
- u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
- u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
- u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
- auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
- PageDirectoryEntry const& pde = pd[page_directory_index];
- if (!pde.is_present())
- return nullptr;
- return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
- }
- PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(page_directory.get_lock().is_locked_by_current_processor());
- u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
- u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
- u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
- auto* pd = quickmap_pd(page_directory, page_directory_table_index);
- auto& pde = pd[page_directory_index];
- if (pde.is_present())
- return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
- bool did_purge = false;
- auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
- if (page_table_or_error.is_error()) {
- dbgln("MM: Unable to allocate page table to map {}", vaddr);
- return nullptr;
- }
- auto page_table = page_table_or_error.release_value();
- if (did_purge) {
- // If any memory had to be purged, ensure_pte may have been called as part
- // of the purging process. So we need to re-map the pd in this case to ensure
- // we're writing to the correct underlying physical page
- pd = quickmap_pd(page_directory, page_directory_table_index);
- VERIFY(&pde == &pd[page_directory_index]); // Sanity check
- VERIFY(!pde.is_present()); // Should have not changed
- }
- pde.set_page_table_base(page_table->paddr().get());
- pde.set_user_allowed(true);
- pde.set_present(true);
- pde.set_writable(true);
- pde.set_global(&page_directory == m_kernel_page_directory.ptr());
- // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
- (void)page_table.leak_ref();
- return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
- }
- void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(page_directory.get_lock().is_locked_by_current_processor());
- u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
- u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
- u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
- auto* pd = quickmap_pd(page_directory, page_directory_table_index);
- PageDirectoryEntry& pde = pd[page_directory_index];
- if (pde.is_present()) {
- auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
- auto& pte = page_table[page_table_index];
- pte.clear();
- if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
- // If this is the last PTE in a region or the last PTE in a page table then
- // check if we can also release the page table
- bool all_clear = true;
- for (u32 i = 0; i <= 0x1ff; i++) {
- if (!page_table[i].is_null()) {
- all_clear = false;
- break;
- }
- }
- if (all_clear) {
- get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
- pde.clear();
- }
- }
- }
- }
- UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
- {
- dmesgln("Initialize MMU");
- ProcessorSpecific<MemoryManagerData>::initialize();
- if (cpu == 0) {
- new MemoryManager;
- kmalloc_enable_expand();
- }
- }
- Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress address)
- {
- if (is_user_address(address))
- return nullptr;
- return MM.m_global_data.with([&](auto& global_data) {
- return global_data.region_tree.find_region_containing(address);
- });
- }
- Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
- {
- return space.find_region_containing({ vaddr, 1 });
- }
- void MemoryManager::validate_syscall_preconditions(Process& process, RegisterState const& regs)
- {
- bool should_crash = false;
- char const* crash_description = nullptr;
- int crash_signal = 0;
- auto unlock_and_handle_crash = [&](char const* description, int signal) {
- should_crash = true;
- crash_description = description;
- crash_signal = signal;
- };
- process.address_space().with([&](auto& space) -> void {
- VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
- if (!MM.validate_user_stack(*space, userspace_sp)) {
- dbgln("Invalid stack pointer: {}", userspace_sp);
- return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
- }
- VirtualAddress ip = VirtualAddress { regs.ip() };
- auto* calling_region = MM.find_user_region_from_vaddr(*space, ip);
- if (!calling_region) {
- dbgln("Syscall from {:p} which has no associated region", ip);
- return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
- }
- if (calling_region->is_writable()) {
- dbgln("Syscall from writable memory at {:p}", ip);
- return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
- }
- if (space->enforces_syscall_regions() && !calling_region->is_syscall_region()) {
- dbgln("Syscall from non-syscall region");
- return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
- }
- });
- if (should_crash) {
- handle_crash(regs, crash_description, crash_signal);
- }
- }
- Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
- {
- if (auto* region = kernel_region_from_vaddr(vaddr))
- return region;
- auto page_directory = PageDirectory::find_current();
- if (!page_directory)
- return nullptr;
- VERIFY(page_directory->address_space());
- return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
- }
- PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
- {
- auto faulted_in_range = [&fault](auto const* start, auto const* end) {
- return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
- };
- if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init))
- PANIC("Attempt to write into READONLY_AFTER_INIT section");
- if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
- auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
- PANIC("Attempt to access UNMAP_AFTER_INIT section ({:p}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
- }
- if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms))
- PANIC("Attempt to access KSYMS section");
- if (Processor::current_in_irq()) {
- dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
- Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
- dump_kernel_regions();
- return PageFaultResponse::ShouldCrash;
- }
- dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
- auto* region = find_region_from_vaddr(fault.vaddr());
- if (!region) {
- return PageFaultResponse::ShouldCrash;
- }
- return region->handle_fault(fault);
- }
- ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- VERIFY(!(size % PAGE_SIZE));
- OwnPtr<KString> name_kstring;
- if (!name.is_null())
- name_kstring = TRY(KString::try_create(name));
- auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
- auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
- TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
- TRY(region->map(kernel_page_directory()));
- return region;
- }
- ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
- {
- dma_buffer_page = TRY(allocate_physical_page());
- // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
- return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
- }
- ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
- {
- RefPtr<Memory::PhysicalPage> dma_buffer_page;
- return allocate_dma_buffer_page(name, access, dma_buffer_page);
- }
- ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, Vector<NonnullRefPtr<Memory::PhysicalPage>>& dma_buffer_pages)
- {
- VERIFY(!(size % PAGE_SIZE));
- dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
- // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
- return allocate_kernel_region(dma_buffer_pages.first()->paddr(), size, name, access, Region::Cacheable::No);
- }
- ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
- {
- VERIFY(!(size % PAGE_SIZE));
- Vector<NonnullRefPtr<Memory::PhysicalPage>> dma_buffer_pages;
- return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
- }
- ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
- {
- VERIFY(!(size % PAGE_SIZE));
- OwnPtr<KString> name_kstring;
- if (!name.is_null())
- name_kstring = TRY(KString::try_create(name));
- auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
- auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
- TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
- TRY(region->map(kernel_page_directory()));
- return region;
- }
- ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- VERIFY(!(size % PAGE_SIZE));
- auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
- OwnPtr<KString> name_kstring;
- if (!name.is_null())
- name_kstring = TRY(KString::try_create(name));
- auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
- TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE); }));
- TRY(region->map(kernel_page_directory()));
- return region;
- }
- ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- VERIFY(!(size % PAGE_SIZE));
- OwnPtr<KString> name_kstring;
- if (!name.is_null())
- name_kstring = TRY(KString::try_create(name));
- auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
- TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
- TRY(region->map(kernel_page_directory()));
- return region;
- }
- ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
- {
- VERIFY(page_count > 0);
- auto result = m_global_data.with([&](auto& global_data) -> ErrorOr<CommittedPhysicalPageSet> {
- if (global_data.system_memory_info.physical_pages_uncommitted < page_count) {
- dbgln("MM: Unable to commit {} pages, have only {}", page_count, global_data.system_memory_info.physical_pages_uncommitted);
- return ENOMEM;
- }
- global_data.system_memory_info.physical_pages_uncommitted -= page_count;
- global_data.system_memory_info.physical_pages_committed += page_count;
- return CommittedPhysicalPageSet { {}, page_count };
- });
- if (result.is_error()) {
- Process::for_each_ignoring_jails([&](Process const& process) {
- size_t amount_resident = 0;
- size_t amount_shared = 0;
- size_t amount_virtual = 0;
- process.address_space().with([&](auto& space) {
- amount_resident = space->amount_resident();
- amount_shared = space->amount_shared();
- amount_virtual = space->amount_virtual();
- });
- process.name().with([&](auto& process_name) {
- dbgln("{}({}) resident:{}, shared:{}, virtual:{}",
- process_name->view(),
- process.pid(),
- amount_resident / PAGE_SIZE,
- amount_shared / PAGE_SIZE,
- amount_virtual / PAGE_SIZE);
- });
- return IterationDecision::Continue;
- });
- }
- return result;
- }
- void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
- {
- VERIFY(page_count > 0);
- m_global_data.with([&](auto& global_data) {
- VERIFY(global_data.system_memory_info.physical_pages_committed >= page_count);
- global_data.system_memory_info.physical_pages_uncommitted += page_count;
- global_data.system_memory_info.physical_pages_committed -= page_count;
- });
- }
- void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
- {
- return m_global_data.with([&](auto& global_data) {
- // Are we returning a user page?
- for (auto& region : global_data.physical_regions) {
- if (!region->contains(paddr))
- continue;
- region->return_page(paddr);
- --global_data.system_memory_info.physical_pages_used;
- // Always return pages to the uncommitted pool. Pages that were
- // committed and allocated are only freed upon request. Once
- // returned there is no guarantee being able to get them back.
- ++global_data.system_memory_info.physical_pages_uncommitted;
- return;
- }
- PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
- });
- }
- RefPtr<PhysicalPage> MemoryManager::find_free_physical_page(bool committed)
- {
- RefPtr<PhysicalPage> page;
- m_global_data.with([&](auto& global_data) {
- if (committed) {
- // Draw from the committed pages pool. We should always have these pages available
- VERIFY(global_data.system_memory_info.physical_pages_committed > 0);
- global_data.system_memory_info.physical_pages_committed--;
- } else {
- // We need to make sure we don't touch pages that we have committed to
- if (global_data.system_memory_info.physical_pages_uncommitted == 0)
- return;
- global_data.system_memory_info.physical_pages_uncommitted--;
- }
- for (auto& region : global_data.physical_regions) {
- page = region->take_free_page();
- if (!page.is_null()) {
- ++global_data.system_memory_info.physical_pages_used;
- break;
- }
- }
- });
- if (page.is_null())
- dbgln("MM: couldn't find free physical page. Continuing...");
- return page;
- }
- NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
- {
- auto page = find_free_physical_page(true);
- VERIFY(page);
- if (should_zero_fill == ShouldZeroFill::Yes) {
- InterruptDisabler disabler;
- auto* ptr = quickmap_page(*page);
- memset(ptr, 0, PAGE_SIZE);
- unquickmap_page();
- }
- return page.release_nonnull();
- }
- ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
- {
- return m_global_data.with([&](auto&) -> ErrorOr<NonnullRefPtr<PhysicalPage>> {
- auto page = find_free_physical_page(false);
- bool purged_pages = false;
- if (!page) {
- // We didn't have a single free physical page. Let's try to free something up!
- // First, we look for a purgeable VMObject in the volatile state.
- for_each_vmobject([&](auto& vmobject) {
- if (!vmobject.is_anonymous())
- return IterationDecision::Continue;
- auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
- if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
- return IterationDecision::Continue;
- if (auto purged_page_count = anonymous_vmobject.purge()) {
- dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
- page = find_free_physical_page(false);
- purged_pages = true;
- VERIFY(page);
- return IterationDecision::Break;
- }
- return IterationDecision::Continue;
- });
- }
- if (!page) {
- // Second, we look for a file-backed VMObject with clean pages.
- for_each_vmobject([&](auto& vmobject) {
- if (!vmobject.is_inode())
- return IterationDecision::Continue;
- auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
- if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) {
- dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count);
- page = find_free_physical_page(false);
- VERIFY(page);
- return IterationDecision::Break;
- }
- return IterationDecision::Continue;
- });
- }
- if (!page) {
- dmesgln("MM: no physical pages available");
- return ENOMEM;
- }
- if (should_zero_fill == ShouldZeroFill::Yes) {
- auto* ptr = quickmap_page(*page);
- memset(ptr, 0, PAGE_SIZE);
- unquickmap_page();
- }
- if (did_purge)
- *did_purge = purged_pages;
- return page.release_nonnull();
- });
- }
- ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
- {
- VERIFY(!(size % PAGE_SIZE));
- size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
- auto physical_pages = TRY(m_global_data.with([&](auto& global_data) -> ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> {
- // We need to make sure we don't touch pages that we have committed to
- if (global_data.system_memory_info.physical_pages_uncommitted < page_count)
- return ENOMEM;
- for (auto& physical_region : global_data.physical_regions) {
- auto physical_pages = physical_region->take_contiguous_free_pages(page_count);
- if (!physical_pages.is_empty()) {
- global_data.system_memory_info.physical_pages_uncommitted -= page_count;
- global_data.system_memory_info.physical_pages_used += page_count;
- return physical_pages;
- }
- }
- dmesgln("MM: no contiguous physical pages available");
- return ENOMEM;
- }));
- {
- auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0]->paddr(), PAGE_SIZE * page_count, {}, Region::Access::Read | Region::Access::Write));
- memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
- }
- return physical_pages;
- }
- void MemoryManager::enter_process_address_space(Process& process)
- {
- process.address_space().with([](auto& space) {
- enter_address_space(*space);
- });
- }
- void MemoryManager::enter_address_space(AddressSpace& space)
- {
- auto* current_thread = Thread::current();
- VERIFY(current_thread != nullptr);
- activate_page_directory(space.page_directory(), current_thread);
- }
- void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
- {
- Processor::flush_tlb_local(vaddr, page_count);
- }
- void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
- {
- Processor::flush_tlb(page_directory, vaddr, page_count);
- }
- PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VirtualAddress vaddr(KERNEL_QUICKMAP_PD_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
- size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
- auto& pte = boot_pd_kernel_pt1023[pte_index];
- auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
- if (pte.physical_page_base() != pd_paddr.get()) {
- pte.set_physical_page_base(pd_paddr.get());
- pte.set_present(true);
- pte.set_writable(true);
- pte.set_user_allowed(false);
- flush_tlb_local(vaddr);
- }
- return (PageDirectoryEntry*)vaddr.get();
- }
- PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VirtualAddress vaddr(KERNEL_QUICKMAP_PT_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
- size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
- auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_index];
- if (pte.physical_page_base() != pt_paddr.get()) {
- pte.set_physical_page_base(pt_paddr.get());
- pte.set_present(true);
- pte.set_writable(true);
- pte.set_user_allowed(false);
- flush_tlb_local(vaddr);
- }
- return (PageTableEntry*)vaddr.get();
- }
- u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
- {
- VERIFY_INTERRUPTS_DISABLED();
- auto& mm_data = get_data();
- mm_data.m_quickmap_previous_interrupts_state = mm_data.m_quickmap_in_use.lock();
- VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
- u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
- auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
- if (pte.physical_page_base() != physical_address.get()) {
- pte.set_physical_page_base(physical_address.get());
- pte.set_present(true);
- pte.set_writable(true);
- pte.set_user_allowed(false);
- flush_tlb_local(vaddr);
- }
- return vaddr.as_ptr();
- }
- void MemoryManager::unquickmap_page()
- {
- VERIFY_INTERRUPTS_DISABLED();
- auto& mm_data = get_data();
- VERIFY(mm_data.m_quickmap_in_use.is_locked());
- VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
- u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
- auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
- pte.clear();
- flush_tlb_local(vaddr);
- mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_previous_interrupts_state);
- }
- bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
- {
- if (!is_user_address(vaddr))
- return false;
- auto* region = find_user_region_from_vaddr(space, vaddr);
- return region && region->is_user() && region->is_stack();
- }
- void MemoryManager::unregister_kernel_region(Region& region)
- {
- VERIFY(region.is_kernel());
- m_global_data.with([&](auto& global_data) { global_data.region_tree.remove(region); });
- }
- void MemoryManager::dump_kernel_regions()
- {
- dbgln("Kernel regions:");
- char const* addr_padding = " ";
- dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
- addr_padding, addr_padding, addr_padding);
- m_global_data.with([&](auto& global_data) {
- for (auto& region : global_data.region_tree.regions()) {
- dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
- region.vaddr().get(),
- region.vaddr().offset(region.size() - 1).get(),
- region.size(),
- region.is_readable() ? 'R' : ' ',
- region.is_writable() ? 'W' : ' ',
- region.is_executable() ? 'X' : ' ',
- region.is_shared() ? 'S' : ' ',
- region.is_stack() ? 'T' : ' ',
- region.is_syscall_region() ? 'C' : ' ',
- region.name());
- }
- });
- }
- void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
- {
- SpinlockLocker page_lock(kernel_page_directory().get_lock());
- auto* pte = ensure_pte(kernel_page_directory(), vaddr);
- VERIFY(pte);
- if (pte->is_writable() == writable)
- return;
- pte->set_writable(writable);
- flush_tlb(&kernel_page_directory(), vaddr);
- }
- CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
- {
- if (m_page_count)
- MM.uncommit_physical_pages({}, m_page_count);
- }
- NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
- {
- VERIFY(m_page_count > 0);
- --m_page_count;
- return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
- }
- void CommittedPhysicalPageSet::uncommit_one()
- {
- VERIFY(m_page_count > 0);
- --m_page_count;
- MM.uncommit_physical_pages({}, 1);
- }
- void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
- {
- auto* quickmapped_page = quickmap_page(physical_page);
- memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
- unquickmap_page();
- }
- ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
- {
- auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
- auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
- Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
- region->m_range = range;
- TRY(region->map(MM.kernel_page_directory()));
- return region;
- }
- ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
- {
- auto region = TRY(Region::create_unbacked());
- TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment); }));
- return region;
- }
- MemoryManager::SystemMemoryInfo MemoryManager::get_system_memory_info()
- {
- return m_global_data.with([&](auto& global_data) {
- auto physical_pages_unused = global_data.system_memory_info.physical_pages_committed + global_data.system_memory_info.physical_pages_uncommitted;
- VERIFY(global_data.system_memory_info.physical_pages == (global_data.system_memory_info.physical_pages_used + physical_pages_unused));
- return global_data.system_memory_info;
- });
- }
- }
|